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Andreev reflection at half-metal/superconductor interfaces with nonuniform magnetization
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Andreev reflection at the interface between a half-metallic ferromagnet and a spin-singlet superconductor is
possible only if it is accompanied by a spin flip. Here we calculate the Andreev reflection amplitudes for the case
where the spin flip originates from a spatially nonuniform magnetization direction in the half-metal. We calculate
both the microscopic Andreev reflection amplitude for a single reflection event and an effective Andreev reflection
amplitude describing the effect of multiple Andreev reflections in a ballistic thin film geometry. It is shown that
the angle and energy dependence of the Andreev reflection amplitude strongly depends on the orientation of
the gradient of the magnetization with respect to the interface. We calculate the resulting effects on the subgap
conductance as well as Josephson current for a few exemplary cases. Establishing a connection between the
scattering approach employed here and earlier work that employs the quasiclassical formalism, we connect the
symmetry properties of the Andreev reflection amplitudes to the symmetry properties of the anomalous Green
function in the half-metal.
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I. INTRODUCTION

Superconductors extend their order into adjacent normal
metals via the mechanism of Andreev reflection:1 An electron
incident on the superconductor–normal-metal interface is
phase-coherently reflected as a hole, and vice versa.2 Half-
metallic ferromagnets (half-metals) are normal metals that
support quasiparticle excitations of only one spin orientation.
If superconducting correlations are to extend from a spin-
singlet superconductor into a half-metallic ferromagnet, the
azimuthal spin-rotation symmetry around the magnetization
axis needs to be broken near the superconductor–half-metal
interface, so that electrons can be Andreev reflected into holes
in the same spin band.

In standard ferromagnets (which have majority as well as
minority carriers), such a combination of spin-flip and Andreev
reflection was shown theoretically3–6 and experimentally 7–10

to lead to a superconductor proximity effect with a range
comparable to that in normal metals. In the literature, magnetic
domain walls,3–5,11–14 helical structures intrinsic to the ferro-
magnetic material,14–17 artificially structured multilayers with
noncollinear magnetization directions in different layers,18–22

and a precessing magnetization direction23 were addressed
as possible microscopic origins of the broken spin-rotation
symmetry. Although the possibility of spin-flip Andreev
reflection (with similar origins) also exists for half-metal–
superconductor interfaces,20,24–29 and a sizable Josephson
current has been observed in junctions involving a half-
metallic ferromagnet,30,31 the Andreev reflection mechanism
at half-metal–superconductor interfaces was found to be more
delicate than in the case of standard ferromagnets.29

The underlying reason for the differences between a
ferromagnet–superconductor (FS) interface and a half-metal–
superconductor (HS) interface is that, if no orbital symmetries
are broken, the latter admits a description in terms of
an effective 2 × 2 scattering matrix, whereas the former
requires at least a 4 × 4 scattering matrix, to account for the
spin degree of freedom. Mathematical constraints on 2 × 2

matrices following from current conservation and particle-hole
symmetry then force the Andreev reflection amplitude rhe(ε)
of an HS junction to be generically zero at the Fermi level
ε = 0, whereas there is no such strong restriction on the
Andreev reflection amplitudes for an FS junction. As shown
in Ref. 29, the fact that rhe(0) = 0 for an HS junction has
little consequences for the strength of the proximity effect
at distances below the superconducting coherence length ξS,
but leads to a suppression of the proximity effect at larger
distances in comparison to a normal-metal–superconductor
(NS) junction.29 For example, the zero-temperature critical
current in a ballistic SHS junction of length L � ξS is a
factor ∼(L/ξS)2 smaller than in an otherwise comparable SFS
junction.29 (The experiments of Refs. 30,31, which observe
a sizable Josephson effect in SHS junctions, have L ∼ ξS, so
that they need not be affected by this effect.)

If orbital symmetries are broken, the mathematical con-
straints leading to the condition rhe(ε) = 0 at ε = 0 are no
longer operative. Examples of broken orbital symmetries that
allow for a finite Andreev reflection amplitude rhe(ε) at ε = 0
are a magnetization gradient parallel to the interface, spin-orbit
coupling in the superconductor, unconventional symmetry
of the superconducting order parameter—which all break
inversion symmetry with respect to the interface normal—or
impurity scattering. Andreev reflection in the presence of
a magnetization gradient parallel to the interface, which is
relevant for a domain wall in the half-metal, was previously
considered by us in Ref. 32 in the limiting case of a half-metal
with infinite wave function decay rate κ↓ of the minority
carriers. This situation will be analyzed in more detail here.
We lift simplifying assumptions of Ref. 32, and compare the
generalized result to the case when the magnetization varies
perpendicular to the interface, where no orbital symmetry
is broken. Andreev reflection at interfaces between a half-
metal and a superconductor with unconventional pairing
was considered by Linder et al. in Ref. 33. The other two
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scenarios for breaking orbital symmetries will be analyzed
elsewhere.34,35

The scenario of a magnetization gradient parallel to the HS
interface is particularly relevant for a lateral superconductor–
half-metal contact, for which the superconducting contact is
deposited on top of a half-metallic film. The experiments of
Refs. 30,31 were performed in such a lateral geometry. A
lateral contact, with a domain wall in the half-metal under
the contact area, is shown schematically in Fig. 1. For a
phase-coherent lateral contact, it is convenient to define an
“effective” Andreev reflection amplitude reff

he that represents
the effect of multiple Andreev reflections at the HS interface for
a quasiparticle moving in the thin half-metallic film, incident
on a domain wall (or any other region with nonuniform
magnetization) from a region with uniform magnetization, see
Fig. 1c. (The standard definition of the Andreev reflection
amplitude rhe is for single incidence of a quasiparticle onto
the superconductor interface. This is the situation shown in
Fig. 1b.) Because one is interested in currents flowing parallel
to the interface in a lateral contact (see Fig. 1c), it is the
effective amplitude reff

he , not rhe, which occurs in a calculation
of, e.g., the subgap conductance or the Josephson current.32

In this article, we calculate both the microscopic Andreev
reflection amplitudes rhe and the effective amplitude reff

he . We
consider an HS interface with a low normal-state transmission
probability, caused by the presence of a tunnel barrier or
by the mismatch of Fermi velocities on both sides of the
junction. We do not consider the effect of impurity scattering.

rhe

S

H(a)
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S S

(b) (c)

HH
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FIG. 1. (Color online) (a) Lateral contact between a thin half-
metallic film (H) and a superconductor (S). Andreev reflection
at the HS interface is possible at those interface positions where
the magnetization direction (indicated by thin black arrows) is not
uniform, such as a domain wall. The situation shown in the figure is
generic, since domain walls at the HS interface are bound to occur
if the HS contact is larger than the domain size in the half-metallic
film. In this geometry, there are two possible ways to define the
Andreev reflection amplitude: The amplitude rhe for a single Andreev
reflection (filled red arrows), appropriate for the interface between a
semi-infinite half-metal and a superconductor (b), and the effective
amplitude reff

he representing the combined effect of multiple Andreev
reflections in the same region of nonuniform magnetization for
quasiparticles moving in the half-metallic film (c). In (b) and (c),
the black arrows in the top panel show the spatial variation of the
magnetization direction, whereas the filled red arrows in the bottom
panel show an example of a trajectory for an incoming electron (solid)
and an Andreev reflected hole (dashed).

For the calculation of rhe this is not a serious shortcoming
as Andreev reflection is local, and only impurities in the
immediate vicinity of the interface would play a role (up to
distances of the order of a Fermi wavelength). For the effective
Andreev reflection amplitude reff

he in the thin-film geometry, the
omission of impurity scattering limits the applicability of our
results to situations in which the mean free path is larger than
the domain wall size ld (or even the contact size, if the region
of nonuniform magnetization extends along the entire lateral
contact). In addition to the scenario of a magnetization gradient
parallel to the HS interface, we also consider the case that the
magnetization gradient is perpendicular to the HS surface as
is relevant, e.g., if the half-metal has different boundary and
bulk anisotropies.

The calculation of the microscopic, single-reflection am-
plitude rhe will be presented first. Hereto, we first review
the restrictions of symmetry on Andreev reflection at a HS
interface in Sec. II. We then introduce the Hamiltonian and
the wave functions for the case of a uniform magnetization in
Sec. III. The calculation of the Andreev reflection amplitudes
in the presence of a nonuniform magnetization then takes place
in Sec. IV. The calculation of the effective Andreev reflection
amplitude reff

he for a superconductor placed on top of a thin
half-metallic film is then presented in Sec. V. In Secs. IV and
V we also discuss applications of our results to the subgap
conductance of an HS junction and the Josephson current in
an SHS junction. Finally, in Sec. VI, we discuss the relation
of the scattering approach used in this article and the Green
function approach used in most of the literature. In particular,
we consider the anomalous Green function and its frequency
dependence. We conclude in Sec. VII. The Appendix contains
certain details of the calculations not presented in the main
text.

II. CONSTRAINTS IMPOSED BY UNITARITY AND
PARTICLE-HOLE DEGENERACY

Although the considerations of this section are completely
general, for definiteness we choose coordinates such that the
half-metal–superconductor interface is the plane z = 0. In
this section and in the following two sections, the half-metal
occupies the half-space z < 0, and the superconductor, which
is taken to be of s-wave, spin-singlet type, occupies the
half-space z > 0. This setup is shown schematically in Fig. 2.

z
y
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e
h

FIG. 2. (Color online) Illustration of the scattering setup. Coor-
dinates are chosen, such that the half-metal–superconductor interface
is the plane z = 0. Electron-like quasiparticles incident on the HS
interface are either reflected as an electron (normal reflection), or as a
hole (Andreev reflection). At a translationally invariant interface, the
projection k‖ of the wave vector on the interface is conserved upon
reflection.
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Quasiparticles in the half-metal are labeled by their wave
vector k‖ = kxex + kyey parallel to the HS interface (ex and
ey are unit vectors in the x and y directions, respectively) and
by their excitation energy ε. We assume periodic boundary
conditions in the x and y directions, so that the wave vectors
k‖ are discrete.

At excitation energies ε below the superconducting gap
�, quasiparticles incident on the half-metal–superconductor
interface from the half-metallic side will be reflected back into
the half-metal. This reflection can be either normal reflection
or Andreev reflection, for which electron-like quasiparticles
are reflected as holes and vice versa. The reflection process
is described by a scattering matrix S(k′

‖,k‖; ε), which takes
the form

S(k′
‖,k‖; ε) =

(
ree(k′

‖,k‖; ε) reh(k′
‖,k‖; ε)

rhe(k′
‖,k‖; ε) rhh(k′

‖,k‖; ε)

)
, (1)

where the subscripts e and h refer to electron-like and hole-like
states. The scattering amplitudes reh and rhe describe Andreev
reflection processes.

The scattering matrix S(k′
‖,k‖; ε) satisfies two constraints:

Unitarity and particle-hole symmetry. The latter condition
reads

S(k′
‖,k‖; ε) =

(
0 1
1 0

)
S(−k′

‖, − k‖; −ε)∗
(

0 1
1 0

)
. (2)

The combination of unitarity and particle-hole degeneracy
severely restricts the form of the scattering matrix if there
is translation invariance along the interface, which implies

S(k′
‖,k‖; ε) = S(k‖; ε) δk′

‖,k‖ . (3)

Combination of Eqs. (2) and (3) gives

ree(k‖,ε) = rhh(−k‖, − ε)∗,
reh(k‖,ε) = rhe(−k‖, − ε)∗. (4)

If the scattering problem is also invariant for a π rotation
around the interface normal, so that

S(k′
‖,k‖; ε) = S(−k′

‖, − k‖; ε), (5)

one finds, upon combining all symmetry properties,

ree(k‖; 0)reh(k‖; 0) = 0 (6)

for the scattering matrix at the Fermi level ε = 0. Since ree �= 0,
except for a special choice of parameters, this implies that
generically one must have29

reh(k‖; 0) = 0. (7)

These very general considerations pose a severe restriction
on the magnitude and the spatial extension of the prox-
imity effect in half-metals that is absent in ferromagnet–
superconductor junctions with otherwise comparable char-
acteristics. A nonzero Andreev reflection amplitude for a
half-metal–superconductor junction can be obtained only by
fine-tuning device parameters such that the normal reflection
amplitude becomes zero, or by invoking processes that break
the symmetries leading to Eq. (7). The former scenario
was discussed in Ref. 29 and will not be addressed here.
Examples of symmetry-breaking processes that result in a

nonzero Andreev reflection amplitude are: lifting of particle-
hole degeneracy by a finite excitation energy ε,29,36 breaking
of the rotation symmetry around the interface normal,32

breaking of the translation symmetry along the interface, or
the breaking of phase coherence.37 A domain wall for which
the magnetization direction varies in a direction parallel to the
interface is an example of a perturbation that breaks the rotation
symmetry.32 However, a thin interface layer of different
magnetic orientation than the interior of the half-metal (which
is a model of a “spin-active interface”24–27,38) does not lift the
constraints leading to Eq. (7).29,36 The role of variations in the
magnetization direction will be considered in more detail in
Sec. IV below.

A finite excitation energy ε lifts the particle-hole degen-
eracy, and the Andreev reflection amplitude reh becomes
nonzero. If no other symmetries are broken, the order of
magnitude of the Andreev reflection amplitudes at finite ε

can be estimated as

|reh(ε)| ∼ |ε|
min(�/τ,Eξ )

|reh, FS|, (8)

where Eξ is the Thouless energy of the interface layer where
the singlet-triplet conversion takes place, τ is the transparency
of the superconductor interface, � the superconducting gap,
and reh, FS the Andreev reflection amplitude of a ferromagnet–
superconductor amplitude of otherwise comparable character-
istics. The first energy scale in the denominator comes about
because electrons and holes scattering off a normal-metal–
superconductor interface of transparency τ at finite excitation
energy ε experience an additional phase difference ∼ ±ετ/�,
which lifts the electron-hole degeneracy.39 The second energy
scale in the denominator appears from phase differences
acquired in the interface layer. The typical thickness of this
interface layer is of the order of minority decay length ξ ,
which implies that Eξ is of the order of the Fermi energy.
For tunneling interfaces one always has |reh(ε)| 	 |reh, FS| and
we conclude that the breaking of electron hole symmetry
by finite excitation energies is not an efficient route toward
sizable Andreev reflection in that case. The suppression of
Andreev reflection in half-metal–superconductor junctions (as
compared to ferromagnet–superconductor junctions) is absent
only for transparent interfaces and excitation energies of
order �.

The ε-dependence of reh not only determines the conduc-
tance through the half-metal–superconductor interface at finite
bias,29,36 it also sets the scale for the Josephson effect in
a superconductor-half-metal–superconductor junction.40,41 If
the Thouless energy EL of a Josephson junction of length
L is large in comparison to � (“short junction limit”), the
Josephson current I is carried by quasiparticle states with
energies up to �. In this limit, the symmetry considerations
that suppressed Andreev reflection at ε = 0 do not affect the
order of magnitude of I , and one concludes that otherwise
comparable superconductor-half-metal–superconductor and
superconductor–ferromagnet–superconductor junctions have
comparable Josephson currents.29 If, however, EL 	 � (“long
junction limit”), only quasiparticle states with energy below
EL contribute to I , so that I is significantly suppressed com-
pared to the Josephson current in comparable superconductor–
ferromagnet–superconductor junctions.
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In the remainder of this article, we present explicit model
calculations of the Andreev reflection amplitudes for the
case that singlet-triplet conversion is mediated by a spatially
nonuniform magnetization in the half-metal, as it appears, e.g.,
in a domain wall.

III. HAMILTONIAN AND SCATTERING STATES

A. Bogoliubov–de Gennes Hamiltonian

Quasiparticle excitations near the HS interface are de-
scribed by the Bogoliubov–de Gennes equation42

H	(r) = ε	(r), H =
(

Ĥ i�eiφσ2

−i�e−iφσ2 −Ĥ ∗

)
, (9)

where the four-component spinor

	(r) = [u↑(r),u↓(r),v↑(r),v↓(r)]T (10)

consists of wave functions uσ (r) for the electron and vσ (r)
for the hole degrees of freedom. The superconducting order
parameter �(r)eiφ is nonzero only in the superconductor.
We will take �(r) = ��(z), where �(z) = 1 if z > 0 and
0 otherwise. This step function model is appropriate for
tunneling interfaces of s-wave superconductors.43

For the single-particle Hamiltonian, we take the simplest
model that contains the essential features of the half-metal–
superconductor interface,

Ĥ = −h̄2∇ 1

2m(z)
∇ −

∑
σ

μσ (z)P̂σ (r) + h̄wδ(z), (11)

where

m(z) =
{

mH if z < 0,

mS if z > 0,
(12)

with mH and mS being the effective masses for the half-metal
and the superconductor, respectively,

μσ (z) =
{

μHσ if z < 0,

μS if z > 0,
(13)

with σ =↑ , ↓ and the potentials μH↑, μH↓, and μS represent-
ing the combined effect of the chemical potential and band
offsets for the majority and minority electrons in the half-metal
and for the superconductor, respectively, and where w sets the
strength of a δ-function potential barrier at the interface. The
operators

P̂↑ = 1
2 + 1

2 m(r) · σ̂ , P̂↓ = 1
2 − 1

2 m(r) · σ̂ (14)

project onto the majority and minority components, re-
spectively, where m(r) is a unit vector pointing along the
magnetization direction in the half-metal.

The potentials μH↑, μH↓, and μS are chosen such that
μH↑, μS > 0, and μH↓ < 0. As a result, majority states in
the half-metal and in the normal state of the superconductor
are propagating states, with Fermi wave numbers

k↑ = 1

h̄

√
2mHμH↑, kS = 1

h̄

√
2mSμS, (15)

respectively. The corresponding Fermi velocities are v↑ =
h̄k↑/mH and vS = h̄kS/mS, respectively. Minority states in
the half-metal are evanescent with wave-function decay rate

κ↓ = 1

h̄

√
2mH|μH↓|. (16)

(The wave-function decay rate κ↓ is the inverse of the wave-
function decay length ξ used in the previous section.) The
strength w of the δ-function potential is chosen such that the
transmission probability of the interface is much smaller than
unity. It is in this limit only, that the step-function model for the
superconducting order parameter � used in Eq. (9) is valid.43

We use the Andreev approximation � 	 μS throughout our
calculation.

B. Scattering states for � = 0

In order to introduce the relevant notation, we first consider
solutions of the Bogoliubov–de Gennes equation (9) in the
normal state (i.e., with � = 0), for a spatially uniform
magnetization direction m = e3, and at ε = 0. In this case,
solutions of the Bogoliubov–de Gennes equation (9) can be
written as a product

	(r) = eik‖·r	k‖ (z), (17)

where k‖ = kxex + kyey . For z < 0, the spinor wave function
	k‖ has the general form

	k‖(z) = 1√
v↑z

⎛
⎜⎜⎜⎝

ce↑eik↑zz + c′
e↑e−ik↑zz

0

ch↑e−ik↑zz + c′
h↑eik↑zz

0

⎞
⎟⎟⎟⎠

+ 1√
v↓z

⎛
⎜⎜⎜⎝

0

ce↓eκ↓zz

0

ch↓eκ↓zz

⎞
⎟⎟⎟⎠ , (18)

where

k↑z =
√

k2
↑ − |k‖|2, κ↓z =

√
κ2

↓ + |k‖|2, (19)

and

v↑z = h̄k↑z/mH, v↓z = h̄κ↓z/mH. (20)

In the superconductor, for z > 0, the general form of the spinor
wave function is

	k‖(z) = 1√
vSz

⎛
⎜⎜⎜⎝

de↑e−ikSzz + d ′
e↑eikSzz

de↓e−ikSzz + d ′
e↓eikSzz

dh↑eikSzz + d ′
h↑e−ikSzz

dh↓eikSzz + d ′
h↓e−ikSzz

⎞
⎟⎟⎟⎠ , (21)

where

kSz =
√

k2
S − |k‖|2, vSz = h̄kSz/mS. (22)
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The amplitudes appearing in the above equations are related
as ⎛

⎜⎜⎜⎝
c′

e↑
d ′

e↑
c′

h↑
d ′

h↑

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r t 0 0

t r ′ 0 0

0 0 r∗ t∗

0 0 t∗ r ′∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ce↑
de↑
ch↑
dh↑

⎞
⎟⎟⎟⎠ ,

(23)⎛
⎜⎜⎜⎝

ce↓
d ′

e↓
ch↓
d ′

h↓

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

t↓ 0

r ′
↓ 0

0 t∗↓
0 r ′∗

↓

⎞
⎟⎟⎟⎠

(
de↓
dh↓

)
,

with

t = 2
√

v↑zvSz

2iw + v↑z + vSz

,

r = −1 + t
√

v↑z/vSz,

r ′ = −1 + t
√

vSz/v↑z, (24)

r ′
↓ = −1 + t↓

√
vSz/v↓z,

t↓ = 2
√

v↓zvSz

2iw + iv↓z + vSz

.

The amplitudes r , r ′, and t are majority electron reflection
and transmission amplitudes of the half-metal–superconductor
interface (with the superconductor in the normal state); the
amplitude r ′

↓ is the minority electron reflection amplitude.
The coefficient t↓ parametrizes the evanescent wave amplitude
for minority electrons in the half-metal. (There is no trans-
mission amplitude for minority electrons.) In terms of these
amplitudes, the assumption of a tunneling interface translates
to |t |, |t↓| 	 1.

C. Scattering states for uniform magnetization

We now use the notation established in the previous
subsection to construct retarded and advanced scattering states
for the half-metal–superconductor interface at finite excitation
energy ε. The scattering states will be used for the perturbation-
theory calculation of the Andreev reflection amplitudes for a
nonuniform magnetization in the next section.

As before, we consider a spatially uniform magnetization
direction m = e3. For each wave vector k‖, there is an electron-
like and a hole-like scattering state, which we label |k‖,e〉R and
|k‖,h〉R for the retarded states and |k‖,e〉A and |k‖,h〉A for the
advanced states. A retarded scattering state is called “electron-
like” or “hole-like” if the incoming part is electron-like or
hole-like, respectively, whereas one considers the outgoing
part of the wave function for an advanced scattering state.
In general, the outgoing part of a retarded scattering state
will be of mixed electron/hole type, as well as the incoming
part of an advanced scattering state. For the states constructed
below, however, there is no mixing between electron-like and
hole-like parts in the propagating components, since there is
no Andreev reflection at an HS interface if the magnetization
is uniform. Only the evanescent parts of the scattering states
will be of mixed electron/hole type.

The scattering states are constructed from the general form
of the spinor wave function 	k‖(z) at finite excitation energy ε

and with nonzero superconducting order parameter �, which
reads

	k‖ (z) = 1√
v↑z

⎛
⎜⎜⎜⎜⎝

ce↑eik↑z(ε)z + c′
e↑e−ik↑z(ε)z

0

ch↑e−ik↑z(−ε)z + c′
h↑eik↑z(−ε)z

0

⎞
⎟⎟⎟⎟⎠

+ 1√
v↓z

⎛
⎜⎜⎜⎜⎝

0

ce↓eκ↓z(ε)z

0

ch↓eκ↓z(−ε)z

⎞
⎟⎟⎟⎟⎠ (25)

for z < 0, and

	k‖(z) = eikSzz−κSz(ε)z

√
vSz

⎛
⎜⎜⎜⎜⎝

d ′
↑

d ′
↓

−d ′
↓e−iη(ε)−iφ

d ′
↑e−iη(ε)−iφ

⎞
⎟⎟⎟⎟⎠

+ e−ikSzz−κSz(ε)z

√
vSz

⎛
⎜⎜⎜⎜⎝

d↑
d↓

−d↓e+iη(ε)−iφ

d↑e+iη(ε)−iφ

⎞
⎟⎟⎟⎟⎠ (26)

for z > 0. Here we defined

k↑z(ε) = k↑z + ε/h̄v↑z, (27)

κ↓z(ε) = κ↓z − ε/h̄v↓z, (28)

η(ε) = arccos(ε/�), (29)

κSz(ε) = (
√

�2 − ε2)/h̄vSz. (30)

[In Eqs. (27), (28), and (30) we kept the leading terms in
a small-ε expansion only.] Solution of the Bogoliubov–de
Gennes equation (9) in the Andreev approximation then gives
the following relations between the coefficients:

c′
e↑ =

(
r + t2

e2iη(ε)r ′
↓ − r ′

)
ce↑, ch↓ = t t↓eiη(ε)−iφ

e2iη(ε)r ′
↓ − r ′ ce↑,

d↑ = t

e2iη(ε)r ′
↓ − r ′ ce↑, d ′

↑ = tr ′
↓e2iη(ε)

e2iη(ε)r ′
↓ − r ′ ce↑,

c′
h↑ =

(
r∗ + t∗2

e2iη(ε)r ′∗
↓ − r ′∗

)
ch↑, ce↓ = − t∗t∗↓eiη(ε)+iφ

e2iη(ε)r ′∗
↓ − r ′∗ ch↑,

d↓ = − t∗r ′∗
↓ eiη(ε)+iφ

e2iη(ε)r ′∗
↓ − r ′∗ ch↑, d ′

↓ = − t∗eiη(ε)+iφ

e2iη(ε)r ′∗
↓ − r ′∗ ch↑.

(31)
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With the help of the above wave functions, we construct the
retarded scattering states |k‖,e〉R and |k‖,h〉R as the state with
wave function

〈r|k‖,e〉R = 1√
WxWy

	k‖,e(z)eik‖·r,

(32)
〈r|k‖,h〉R = 1√

WxWy

	k‖,h(z)eik‖·r,

where Wx and Wy are the dimensions of the HS interface in
the x and y directions, the spinor wave function 	k‖,e(z) is
given by Eqs. (25) and (26) with ce↑ = 1, ch↓ = 0, all other
coefficients being determined by Eqs. (31), and the spinor wave
function 	k‖,h(z) is given by Eqs. (25) and (26) with ce↑ =
0, ch↓ = 1. Similarly, the advanced scattering states |k‖,e〉A

and |k‖,h〉A are then defined as the states for which c′
e↑ = 1,

c′
h↓ = 0 and c′

e↑ = 0, c′
h↓ = 1, respectively, again with all other

coefficients determined by Eqs. (31). The factors 1/
√

WxWy in
Eqs. (32) ensure that retarded and advanced scattering states
are normalized to unit incoming or outgoing flux in the z

direction, respectively. The lengths Wx and Wy do not appear
in the final expressions for the Andreev reflection amplitudes.
These scattering states are at the basis of the calculation of the
Andreev reflection amplitudes in the presence of a nonuniform
magnetization, which is described in the next section.

IV. ANDREEV REFLECTION IN THE PRESENCE OF A
NONUNIFORM MAGNETIZATION DIRECTION

A. Slow variations of the magnetization direction

A spatial variation of the magnetization direction in the
half-metal breaks the remaining symmetries in spin space and
allows for Andreev reflection at the half-metal–superconductor
interface. Here we consider a continuous and slow variation
of the the magnetization direction m(r). An example of such a
continuous change is a domain wall, for which the net change
of the magnetization angle is π , smeared out over a length
ld much larger than the microscopic lengths k−1

S , k−1
↑ , and

κ−1
↓ . However, smaller rotation angles are possible, too, e.g.,

induced by strain at the interface due to lattice mismatches.44

To be specific, we choose a right-handed set of unit vectors
e1, e2, and e3 in spin space (which need not coincide with
the coordinates used for the orbital degrees of freedom) and
consider a variation of the magnetization direction m of the
form

m(r) = (e1 cos φm + e2 sin φm) sin θm(r) + e3 cos θm(r).

(33)

Such variations of the magnetization direction are sufficient
to model domain walls, but they do not allow for certain
continuous changes of the magnetization at a fixed polar
angle, as it occurs in helical magnets. (The full expressions
for arbitrary variations of m are given in the Appendix.) We
then employ a gauge transformation that rotates m to the e3

direction,

H → U(r)†HU(r), U(r) =
(

U (r) 0

0 U ∗(r)

)
, (34)

with

U (r) = eiθm[m(r)×e3]·σ/2 sin θm . (35)

This gauge transformation adds a spin-dependent gauge
potential

A(r) = ih̄U †∇U = h̄

2
(σ2 cos φm − σ1 sin φm)∇θm (36)

to the Hamiltonian Ĥ ,45 but it does not affect the singlet
superconducting order parameter, since UTiσ2�U = iσ2�.
To lowest order in the rate of change of the angle θm we then
find that the perturbation V̂ to the Hamiltonian Ĥ reads

V̂ = i(σ2 cos φm − σ1 sin φm)

(
∇θ · h̄2

2m
∇ + ∇ h̄2

2m
· ∇θ

)
.

(37)

Since we take the length scale ld for variations of the
gradient of the magnetization angle θm to be large in com-
parison to the microscopic length scales k−1

↑ , k−1
S , and κ−1

↓ ,

we may neglect spatial variations of the perturbation V̂ in
the direction parallel to the interface. In this approximation
translation symmetry along the interface is preserved (after the
gauge transformation) and the scattering matrix S(k′

‖,k‖; ε) is
diagonal, see Eq. (3). To lowest order in the rate of change of
θm, the Andreev reflection amplitudes may then be calculated
in perturbation theory. Using the scattering states defined in
the previous section, one finds

rhe(k‖,ε) = − i

h̄

A〈k‖,h,ε|V|k‖,e,ε〉R,

(38)
reh(k‖,ε) = − i

h̄

A〈k‖,e,ε|V|k‖,h,ε〉R,

where

V =
(

V̂ 0

0 −V̂ ∗

)
. (39)

We now present calculations of the Andreev reflection
amplitudes for two special cases: Variation of the angle θm

in a direction perpendicular to the superconductor interface,
as illustrated in Fig. 3(a), and variation of θm in a direction
parallel to the superconductor interface, which is illustrated in
Fig. 3(b). These two cases differ with respect to the symmetries
discussed in Sec. II: The rotation symmetry around an axis
normal to the interface is preserved in the former case, whereas
it is broken in the latter case. We will see that this difference has
profound consequences for the Andreev reflection amplitude.

S

H

z
S

H

z

(a) (b)

FIG. 3. (Color online) Illustration of a magnetization gradient
perpendicular to the HS interface (a) and parallel to the HS
interface (b).
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A variation perpendicular to the interface is relevant, e.g.,
if the interface anisotropy at the half-metal–superconductor
interface differs from the anisotropy in the bulk of the half-
metal. Calculating the Andreev reflection amplitude, we find,
to leading orders in |t | and |t↓|,

rhe(k‖; ε) = − iεe−i(φ−φm)�

κ↓z

√
�2 − ε2

(∇θm · ez)

×
[

|t t↓|2
8
√

�2 − ε2
+

(
v2

↓z − v2
↑z

)
Re t t↓

h̄k↑z

(
v2

↓z + v2
↑z

)√
v↑zv↓z

]
.

(40)

The dependence of this result on the interface parameters
agrees with what was derived in Sec. II using general
considerations. Note that in the limit κ↓ → ∞, in which
the minority carriers are completely expelled from the half-
metal, the Andreev reflection amplitude rhe vanishes. The
appearance of the azimuthal magnetization angle φm as a
shift of the superconducting phase φ was found previously
in Refs. 20,29 for the interface between a magnetic multilayer
and a superconductor.

The divergence for ε → ±� in Eq. (40) is an artifact of
the expansion in the transmission amplitudes t and t↓ and has
to be cut off for 1 − (ε/�)2 � max(|t |4,|t t↓|2). This means
that the immediate vicinity of ±� has to be excluded from
the region of validity of Eq. (40), so that Eq. (40) is valid for
1 − (ε/�)2 � max(|t |4,|t t↓|2) only. The same condition will
be required for the validity of Eqs. (41) and (44) below, as well
as the expressions derived from them. (We note that similar
restrictions also apply to an expansion in the transmission
coefficient for a normal-metal–superconductor interface, see,
e.g., Ref. 39.)

A variation of the magnetization direction in which ∇θm

is parallel to the superconductor interface breaks the rotation
symmetry around an axis normal to the interface, thus allow-
ing, in principle, for a nonzero Andreev reflection amplitude
at the Fermi level ε = 0.32 Here we elaborate on our previous
calculation of this effect and generalize the results of Ref. 32
to the case of a finite minority wave function decay rate κ↓ in
the half-metal. Calculating the Andreev reflection amplitude
according to Eq. (38), we then find, again to leading orders in
|t | and |t↓|,

rhe(k‖; ε) = −e−i(φ−φm)�√
�2 − ε2

(∇θm · k‖)

×
[

|t |2
4k2

Sz

+ v↑zRe t t↓(
k2
↑z + κ2

↓z

)√
v↑zv↓z

]
. (41)

The first term in Eq. (41) comes from the overlap integral
in Eq. (38) inside the superconductor, whereas the second
term comes from the overlap integral in the half-metal.
The existence of a finite contribution to rhe from inside the
superconductor is responsible for the fact that rhe remains
nonzero in the limit κ↓ → ∞ if θm varies parallel to the
interface. In both cases, the amplitude for the conversion of
holes into electrons is given by

reh(k‖; ε) = rhe(−k‖; −ε)∗,

as discussed in Sec. II. For a general direction of ∇θm, the
Andreev reflection amplitudes are the sums of the contributions
of Eqs. (40) and (41) above.

We note that the presence of Andreev reflection at the Fermi
energy for a domain wall with ∇θm parallel to the interface is
accompanied by a nontrivial angle dependence of the Andreev
reflection amplitudes reh and rhe: If ∇θm is parallel to the
interface, rhe and reh are even functions of ε, but odd functions
of k‖. On the other hand, if ∇θm is normal to the interface, rhe

and reh are odd functions of ε, but even functions of k‖. Similar
behavior has been noticed previously for the anomalous Green
functions.27,46

B. Spin-active interfaces

As a second example of a spatially varying magnetization
direction, we now investigate a simplified model of a thin
ferromagnetic or half-metallic layer located at the interface,
the magnetization of which is misaligned with respect to the
bulk of the half-metal. In this model of what is more generally
referred to as a “spin-active interface,”24–27,38 we take the
magnetization direction to be the unit vector e3 in the entire
half-metal and consider a perturbation to the Hamiltonian Ĥ

of the form

V̂ = h̃m̃ · σ̂ δ(z), (42)

where

m̃ = (e1 cos φm + e2 sin φm) sin θm + e3 cos θm. (43)

Spin-flip Andreev reflection at such “spin-active” HS inter-
faces has been considered previously in Refs. 27–29. Using
Eq. (38) to calculate the Andreev reflection amplitude to
first order in h̃ and taking the limit of a tunneling interface,
|t t↓|2 	 1, we then find

rhe(k‖; ε) = − iε�h̃|t t↓|2e−i(φ−φm) sin θm

2h̄v↓z(�2 − ε2)
. (44)

The proportionality to the square of the tunneling probability
is in agreement with the general considerations of Sec. II.
The opposite limit of an ideal interface (|t | = |t↓| = 1) was
considered in Ref. 29.

C. Applications: Conductance and Josephson current

The Andreev reflection amplitudes rhe and reh enter directly
into the calculation of the subgap conductance G of an HS
junction and the Josephson current I of an SHS junction.
Below, we calculate G and I for the two special cases of a
magnetization gradient ∇θm that is perpendicular and parallel
to the interface considered above. To be precise, in the first
case we take θm to be a function of the coordinate z only, with
a finite derivative dθm/dz = l−1

d at the interface, whereas in
the second case we take θm to be a function of the coordinate
x only, with the x dependence given by the common domain
wall profile47

θm(x) = arctan[sinh(πx/ld)]. (45)

Thus, in both cases ld is the length scale related to the rate of
change of the magnetization angle θm.
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Even for our simplified model Hamiltonian, the number
of parameters in the expressions for the Andreev reflec-
tion amplitudes is so large, that no compact expressions
for the conductance can be obtained. We therefore make
the simplifying assumptions that mH = mS = m and that
w,�/h̄k↑ 	 v↑ 	 v↓, vS. In this limit, one has t ≈ 2

√
v↑z/vS

and t↓ ≈ 2
√

v↓vS/(iv↓ + vS), so that the interface transmis-
sion coefficients are much smaller than unity even in the
absence of the δ-function potential barrier.

The subgap conductance G(V ) is given by the expression42

G(V ) = 2e2

h

1

4π2

∫
dxdy

∫
k‖<k↑

dk‖|rhe(k‖,eV )|2, (46)

where the integration over the coordinates x and y extends
along the HS interface. (The appearance of a reflection
amplitude rhe that simultaneously depends on the momentum
k‖ and position at the interface is justified by the slow
variation of the magnetization direction with position—see
the discussion in Sec. IV A.) In the limit described in the
paragraph following Eq. (45), one then finds the subgap
conductance

G(V ) = g1WxWy

(
eV �

�2 − (eV )2

)2

(47)

for the first case of ∇θm perpendicular to the HS interface,
where

g1 = 2e2

h

1

l2
d

v4
↑

2π
(
v2

↓ + v2
S

)2 (48)

has the dimensions of conductance per area. For the second
special case of ∇θm parallel to the HS interface one finds

G(V ) = g2Wyldπ
�2

�2 − (eV )2
(49)

with

g2 = 2e2

h

1

l2
d

v6
↑

24πv4
↓v2

S

(
v2

↓
v2

S

+ 4v2
S

v2
↓ + v2

S

)2

. (50)

The main difference between the two cases is that G(V ) is
proportional to V 2 and to WxWy/l2

d in the former scenario,29,36

whereas in the second scenario G(V ) approaches a constant in
the limit V → 0, which is proportional to Wy/ld.32

For the first case of ∇θm perpendicular to the interface,
a deviation from this asymptotic voltage dependence occurs
in the limit of extremely low voltages or, alternatively, in
the limit of a strong tunnel barrier at the HS interface. In
that case, the Andreev reflection amplitude rhe is dominated
by the second term in Eq. (40), which diverges for angles
of incidence close to π/2. This divergence is an artifact
of the Andreev approximation, and the validity of Eq. (40)
is restricted to those angles of incidence for which ε 	
h̄2k2

↑z/2m. Cutting off the resulting logarithmic divergence of
the conductance divergence, while otherwise employing the
same approximations as before, gives

G ∼ 2g1WxWy

(eV �)2v2
S

μ2
↑(�2 − (eV )2)v2

↓
ln

μ↑
|eV | . (51)

S

H

S

S

x

z

H

S

z

x

(b)(a)

z= L/2

z=−L/2

FIG. 4. (Color online) Schematic of an SHS junction with a
magnetization gradient perpendicular to the HS interfaces (a) or
parallel to the HS interface (b). The magnetization angle θm is chosen
to be a symmetric function of z.

Equation (51) replaces Eq. (47) for voltages that are low
enough that the conductance of Eq. (51) exceeds that of
Eq. (47). However, it should be noted that effects not taken
into account here, such as scattering off impurities near the
HS interface, are expected to give rise to a finite value of G

in the limit V → 0, which will in all practical cases mask the
asymptotic logarithmic voltage dependence of Eq. (51).

The second application we consider is the Josephson current
in an SHS junction. We consider the geometry shown in
Fig. 4. The superconductors occupy the space z > L/2 and
z < −L/2, and the phases of the order parameters of the
two superconductors are φ/2 and −φ/2, respectively. We
consider the so-called “long-junction limit” of junction length
L � h̄v↑/� and restrict our discussion to the temperature
range h̄v↑/L 	 kBT 	 �. In this case, the Josephson current
in an SHS junction without impurity scattering is given by the
expression40,41

I = −4ekBT

h̄

1

4π2

∫
dxdy

d

dφ

∫
k‖<k↑

dk‖e−2πkBT L/h̄v↑z

× Re reh(k‖,iπkBT )r ′
he(k‖,iπkBT ), (52)

where reh is the Andreev reflection amplitude for the upper HS
interface and r ′

he is the Andreev reflection amplitude for the
lower HS interface. In Eq. (52), the Andreev reflection ampli-
tudes are taken at the interface positions (x ± Lkx/2k↑z,y ±
Lky/2k↑z, ± L/2)T. We take periodic boundary conditions in
the x and y directions, which is a good approximation if
the junction length L 	 Wx , Wy . We further assume that the
magnetization profile is symmetric with respect to a reflection
in the plane z = 0, θm(z) = θm(−z). With this assumption,
r ′

he(k‖,ε) = rhe(k‖,ε)eiφ . We then find the Josephson current

I = 8(πkBT )2h̄v↑g1WxWy

e�2L2
e−2πkBT L/h̄v↑ sin φ (53)

for the first case (∇θm perpendicular to the interface, as in
Fig. 4(a), where we omitted corrections that are small in the
limit kBT � h̄v↑/L. For the second case (∇θm parallel to the
interface, as in Fig. 4(b), one finds

I = −24(h̄v↑)2g2Wyld

ekBT L2
e−2πkBT L/h̄v↑

× F
(
h̄v↑πL/kBT l2

d

)
sin φ, (54)
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where the function F is defined as

F (a) = 2√
πa3

∫
dζ

ζ 3e−ζ 2/a

sinh ζ
(55)

and has the limits F (0) = 1 and F (a) ∼ π7/2/2a3/2 for a � 1.
The qualitatively different temperature and junction length
dependences of these expressions clearly distinguish the two
different magnetization profiles in the half-metal.

V. THIN FILM GEOMETRY

A. Andreev reflection amplitudes

A modification of the scattering problem arises in a
lateral contact geometry as in Fig. 1(a). For this geometry
a formulation with scattering states describing quasiparticles
moving in the plane of the half-metallic film is more relevant
than the formulation of the previous sections in terms of
scattering states of quasiparticles incident on the HS interface.

The geometry we consider is shown in detail in Fig. 5. As
before, the half-metal–superconductor interface is the plane
z = 0. The superconductor occupies the half-space z > 0,
whereas the half-metallic film is in the region −d < z < 0.
The Hamiltonian is given by Eq. (9), and hard-wall boundary
conditions are applied at z = −d. We choose our coordinates
such, that (locally) the magnetization direction does not
depend on the coordinate y, so that the wave-vector component
ky is conserved. As in the previous sections, we consider the
limit of a tunneling interface, and present our results to leading
order in the transmission probability.

We first construct the scattering states in the presence of
a uniform magnetization direction m = e3. With the help of
periodic boundary conditions in the y direction with period
Wy , the scattering states are normalized to unit flux in the x

direction. There are electron-like and hole-like scattering states
|k⊥s; e〉 and |k⊥s; h〉, each labeled by the discrete wave-vector
components k⊥ = (0,ky,k↑z,e)T and k⊥ = (0,ky,k↑z,h)T of the
majority quasiparticles in H and by the integers s = ±1 for
indicates scattering states propagating in the positive (s = 1)
and negative (s = −1) x direction. Because of the hard-wall
boundary conditions at z = −d, only k↑z > 0 need to be
considered. In the limit κ↓d � 1 the hard-wall boundary
conditions at z = −d are inconsequential for the minority
carriers, and the corresponding wave functions read

	k⊥s,e(r) = −i

√
v↑z

2v↑xWyd
	k‖,e(z) eikx (ε)sx+ikyy,

(56)

	k⊥s,h(r) = i

√
v↑z

2v↑xWyd
	k‖,h(z) e−ikx (−ε)sx+ikyy,

S

H d
x

z

FIG. 5. (Color online) Illustration of the thin-film geometry. The
coordinates are chosen such that the magnetization direction does not
change in the y direction (perpendicular to the plane of the drawing).

where 	k‖,e(z) and 	k‖,h(z) are given in Eq. (32),

kx(ε) =
√

k2
↑ − k2

↑z − k2
y + ε/h̄v↑x, (57)

and the allowed wave numbers k↑z are determined from the
condition that the wave functions vanish at z = −d, which
implies the condition [compare with Eq. (31)]

2k↑z,ed + π − arg

(
r + t2

e2iηr ′
↓ − r ′

)
= 2πnz, (58)

for electron-like scattering states, and analogously for hole-
like states

2k↑z,hd + π − arg

(
r∗ + t∗2

e2iηr ′∗
↓ − r ′∗

)
= 2πnz, (59)

where nz = 1,2, . . .. In the limit of a tunneling interface, one
has r → −1 and |t | 	 1, so that these conditions simplify to

k↑z = πnz

d
+ O(|t |), nz = 1,2, . . . . (60)

For the purposes of our calculations, higher-order terms in |t |
need to be kept in order to find a finite overlap between the
different scattering states, however. The normalization factors
in Eq. (56) are valid in the limit of a tunneling interface only.

We now consider the effect of a region in which the
magnetization direction is not spatially uniform. In this case,
scattering between the electron-like and hole-like quasiparticle
states is possible. To lowest order in the rate of change of the
magnetization direction, the Andreev reflection amplitudes reff

he
and reff

eh for a quasiparticle incident on a region of nonuniform
magnetization can be calculated in perturbation theory as

reff
he (k′

⊥s ′,k⊥s; ε) = − i

h̄
〈k′

⊥s ′; h|V|k⊥s; e〉,
(61)

reff
eh (k′

⊥s ′,k⊥s; ε) = − i

h̄
〈k′

⊥s ′; e|V|k⊥s; h〉,

where V is given in Eqs. (37) and (39) above. With these
equations, the problem of calculating Andreev reflection
coefficients is brought into a form similar to that of the previous
section.

In principle, the perturbation V depends on the coordinate
z, even if the magnetization angle θm does not. [This can be
seen from Eq. (37).] Because of this, the scattering matrix
need not be diagonal in the transverse wave vector k⊥.
However, if the length scale ld for variations of the gradient
∇θm in the x direction (i.e., in the plane of the thin film)
is large in comparison to the film thickness d, the resulting
conservation of the momentum components kx and ky up to
shifts of order 1/ld 	 1/d, together with energy conservation,
constrains the possible values of the transverse momentum
k↑z. If, in addition, the film thickness d is much smaller
than the superconducting coherence length ξS = h̄vS/�, one
then finds that the off-diagonal elements of the Andreev
reflection amplitude reff

he (k′
⊥s ′,k⊥,s; ε) are much smaller than

the diagonal elements, so that one may set

reff
he (k′

⊥s ′,k⊥s; ε) = reff
he (k⊥,s; ε)δk′

⊥,k⊥δs ′,−s ,
(62)

reff
eh (k′

⊥s ′,k⊥s; ε) = reff
eh (k⊥,s; ε)δk′

⊥,k⊥δs ′,−s .
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(The Kronecker delta δs ′,−s follows from the conservation of kx

in this limit.) This is the case that we consider in the remainder
of this section.

We now give explicit expressions for the case that the
magnetization direction m has the spatial dependence (33)
with θm a function of x and z only. In that case one finds

reff
he (k⊥s; ε) = v↑z

2v↑xd

∫
dxrhe(x; k‖; ε)e2iεsx/h̄v↑x , (63)

where rhe(x; k‖; ε) is the Andreev reflection amplitude of
Sec. IV, evaluated with the magnetization gradient ∇θm at
position x. The prefactor v↑z/2v↑xd in Eq. (63) expresses
the geometric enhancement of the reflection amplitude from
the coherent superposition of multiple reflections at the half-
metal–superconductor interface.32 The complex exponential
factor accounts for the phase differences acquired by electrons
and holes between these reflections. The in-plane wave vector
k‖ = skx(0)ex + kyey ; the small difference between the wave
number kx(ε) of the incoming electron and the wave number
kx(−ε) of the Andreev reflected hole is inconsequential for
the calculation of rhe in the Andreev approximation kSξS � 1.
The corresponding hole-to-electron amplitude reh is

reh(k⊥s; ε) = rhe(k̄⊥s; −ε)∗, (64)

where k̄⊥ = (0, − ky,kz)T.
We now discuss the cases of a magnetization gradient ∇θm

parallel and perpendicular to the HS interface separately, see
Fig. 6 . If ∇θm is parallel to the HS interface, as is relevant for
a domain wall in H, the range of x coordinates for which ∇θm

differs appreciably from zero typically has a finite size ∼ ld. In
this situation the effective Andreev reflection amplitudes reff

he
and reff

eh describe the Andreev reflection of quasiparticles off
the region of nonuniform magnetization (i.e., off the domain
wall). If ld is much smaller than the superconducting coherence
length ξS, the x dependence of the complex exponential
e2iεx/h̄v↑x in Eq. (63) can be neglected. Since rhe(x; k‖; ε) is
proportional to dθm/dx, the integral over x gives the total
change δθm of the magnetization angle θm, and one finds32

reff
he (k⊥s; ε) = −v↑ze

−i(φ−φm)skx(0)�

2v↑xd
√

�2 − ε2
δθm

×
[

|t |2
4k2

Sz

+ v↑zRe t t↓(
k2
↑z + κ2

↓z

)√
v↑zv↓z

]
. (65)

In this limit, the Andreev reflection amplitude no longer
depends on the size ld of the domain wall, nor on the precise
x dependence of the magnetization angle θm.32 In the opposite
limit that the domain wall size ld is large in comparison to the
superconducting coherence length, the reflection amplitude at

xWxW

S

z

x

S

Hd

FIG. 6. (Color online) Illustration of a lateral HS contact with a
magnetization gradient that is perpendicular to the HS interface (left)
or perpendicular to the HS interface (right).

ε = 0 is still given by Eq. (65) above, but Andreev reflection is
suppressed for excitation energies ε above the Thouless energy
Eld = h̄v↑x/ ld of the domain wall. The precise functional form
of the suppression depends on the domain wall profile. For
the domain wall profile of Eq. (45) the suppression at finite
excitation energy ε is by a factor 1/ cosh(εld/h̄v↑x).

If, on the other hand, ∇θm is perpendicular to the interface,
as is the case, e.g., if the interface anisotropy at the HS interface
differs from the bulk anisotropy in H, or for a spin-active
interface, the region of nonuniform magnetization typically
extends along the entire length Wx of the contact. For energies
ε below the Thouless energy h̄v↑/Wx of the contact one then
finds the effective Andreev reflection amplitudes

reff
he (k⊥s; ε) = − iεe−i(φ−φm)v↑zWx�(∂θm/∂z)

2κ↓zv↑xd
√

�2 − ε2

×
[

|t t↓|2
8
√

�2 − ε2
+

(
v2

↓z − v2
↑z

)
Re t t↓

h̄k↑z

(
v2

↓z + v2
↑z

)√
v↑zv↓z

]

(66)

for the case of interface anisotropy and

reff
he (k⊥s; ε) = − iεh̃v↑zWx�|t t↓|2e−i(φ−φm) sin θm

4h̄v↓zv↑xd(�2 − ε2)
(67)

for the case of a spin-active interface. At finite excitation
energy ε, the Andreev reflection amplitudes are suppressed
by a factor (h̄v↑x/εWx) sin(Wxε/h̄v↑x)eiεWx/h̄v↑x with respect
to the expressions shown above.

B. Applications: Conductance and Josephson current

As an application, we again consider the conductance of
a lateral HS junction and the Josephson current in a lateral
SHS junction. We again consider a setup in which that the
magnetization angle θm depends on the x and z coordinates
only, and present results for the cases that the gradient ∇θm is
perpendicular and parallel to the interface, see Fig. 6.

The expressions for conductance and Josephson current are
the same as those in Sec. IV C, but with the Andreev reflection
amplitudes rhe and reh replaced by reff

he and reff
eh , respectively.

For the subgap conductance, one thus finds

G(V ) = 2e2

h

Wyd

4π2

∫
k⊥<k↑

dk⊥
∣∣reff

he (k⊥,eV )
∣∣2

, (68)

where the Andreev reflection amplitude reff
he (k⊥; ε) is for

quasiparticles incident from the right, see Fig. 6. Considering
the same magnetization profiles and the same limiting case for
the parameters appearing in the microscopic expressions for
rhe as in Sec. IV C, we find that the subgap conductance of a
lateral HS junction is

G(V ) = g1Wyl
2
d

32d

[
h̄v↑�

ld(�2 − (eV )2)

]2

(69)

with g1 given by Eq. (48) above, if ∇θm is perpendicular
to the HS interface. Equation (69) is valid for voltages
eV � h̄v↑/Wx that are above the Thouless energy of the
contact. We note that in a sufficiently wide lateral contact (such
that the condition eV � h̄v↑/Wx is met for all bias voltages
of interest), there is no suppression of the subgap conductance
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FIG. 7. (Color online) Illustration of a lateral SHS junction
with a spatially nonuniform magnetization in the half metal. Two
magnetization profiles are considered in the text: the gradient ∇θm of
the magnetization angle perpendicular to the HS interface (top) and
parallel to the HS interface (bottom).

at low bias because of the constructive interference of multiple
reflections off the HS interface, even if the magnetization
gradient is perpendicular to the interface. For the case that
∇θm is parallel to the interface we find

G(V ) = 3π2g2Wyl
2
d

16d

�2

�2 − (eV )2
F (eV ld/h̄v↑). (70)

Here g2 is given by Eq. (50) above and the function F is
defined as

F (a) = 6
∫ ∞

1
dζ

(ζ 2 − 1)2

ζ 7 cosh2(aζ )
, (71)

and has the limits F (0) = 1 and F (a) ∼ 24e−2a/a3 if a � 1.
For the Josephson current we consider a lateral junction

as shown schematically in Fig. 7 . In terms of the effective
reflection amplitudes reff

eh and reff
he , the Josephson current at

high temperatures h̄v↑/L, h̄v↑/Wx 	 kBT 	 � is given by
the expression

I = −4ekBT

h̄

Wyd

4π2

d

dφ

∫
k⊥<k↑

dk⊥e−2πkBT L/h̄v↑x

× Re reff
eh (k⊥,iπkBT )reff

he (k⊥,iπkBT )′, (72)

where reff
he (k⊥,ε)′ is the Andreev amplitude for the right

contact, see Fig. 7. As in Sec. IV C, we consider a symmetric
spatial dependence of the magnetization angle, θm(x) =
θm(−x), so that the Andreev reflection amplitudes at the right
and left contacts are related as reff

eh (k⊥; ε)′ = reff
eh (k⊥; ε). If the

magnetization gradient is perpendicular to the HS interface,
one then finds

I = 3Wyg1(h̄v↑)5

8π2de(kBT )2L3�2
e−2πkBT L/h̄v↑ sin φ, (73)

whereas

I = 9g2Wyl
2
d(h̄v↑)3

2de(kBT )2L3
e−2πkBT L/h̄v↑ sin φ (74)

if the magnetization gradient is parallel to the HS surface,
where g1 and g2 are given in Eqs. (48) and (50). The length
L in Eq. (73) is the distance between the superconducting
contacts, while the length L in Eq. (74) is the distance
between the domain walls, which may be slightly larger.
Equation (74) is derived for the temperature range h̄v↑/L 	
kBT 	 h̄v↑/ld. (If kBT � h̄v↑/ld, the Josephson current is
dominated by the tail of the domain wall at the edge of the

lateral contact, and no simple expression can be given.) We
thus conclude that in a lateral contact the cases of parallel and
perpendicular magnetization gradients results in remarkably
similar temperature and length dependences of the Josephson
current in the long junction limit.

VI. GREEN FUNCTIONS

Most of the existing theoretical literature on the super-
conducting proximity effect in ferromagnets and half-metals
makes use of the Green function approach, with or without a
quasiclassical approximation. In the Green function approach,
the induced superconducting correlations in the half-metal
are characterized using the “anomalous Green function”. The
symmetries of this Green function in the spin, orbital, and,
in particular, frequency domains are used to classify the
various forms of the proximity effect.3,6,27,46 In this section,
we investigate the relation between the scattering approach
used here and the Green function approach. (The symmetry
in the frequency domain does not play an important role for
the scattering approach, because all information is encoded in
“retarded” structures in the scattering approach.)

The fundamental equation for the Green function
G(r,r′; i�) is the Gorkov equation

(i� − H)G(r,r′; i�) = δ(r − r′), (75)

where H is the Bogoliubov-de Gennes Hamiltonian of Eq. (9)
and � the Matsubara frequency. Like the Hamiltonian H, the
Green function G has a 4 × 4 matrix structure, corresponding
to the electron/hole and majority/minority spin degrees of
freedom. The anomalous Green function is the electron-hole
(eh) block of G. In a half-metal, only the majority component
is relevant, so one has

F (r,r′; i�) = Ge↑,h↑(r,r′; i�). (76)

We first calculate the anomalous Green function F (r,r′; i�)
in the vicinity of the interface between a semi-infinite half-
metal and a superconductor. This is the geometry considered in
Sec. IV. In order to calculate F (r,r′; i�) we Fourier transform
the Gorkov equation (75) to the coordinates x and y, and solve
the remaining one-dimensional problem using the solutions of
the Bogoliubov–de Gennes equation calculated in Sec. IV.
For � > 0 and coordinates z, z′ < 0 (i.e., for coordinates
inside the half-metal), this procedure expresses the anomalous
Green function F (r,r′; i�) in terms of the (outgoing) electron
component of the exact hole-like retarded scattering state, and
one finds

F (r,r′; i�) = 1

(2π )2

∫
dkxdky

× e−ikz(z−z′)+ikx (x−x ′)+iky (y−y ′)−|�|(|z|+|z′|)

ih̄v↑z

× reh(k; i�), � > 0, (77)

where

kz =
√

k2
↑ − k2

x − k2
y. (78)

Similarly, for � < 0, the anomalous Green function
F (r,r′; i�) is found to be proportional to the (incoming)
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electron component of the exact hole-like advanced scattering
state,

F (r,r′; i�) = − 1

(2π )2h̄

∫
dkxdky

× eikz(z−z′)+ikx (x−x ′)+iky (y−y ′)−|�|(|z|+|z′|)

ih̄v↑z

× rhe(k‖; i|�|)∗, � < 0. (79)

These expressions can be cast in the form

F (r,r′; i�)= 1

2(2π )2i

∫
dkeik·(r−r′)f (k,R; i�)δ(εk−μH↑),

(80)

where R = 1
2 (r + r′), εk = h̄2k2/2mH, and

f (k,R; i�) = 2e−2|�||R·ez|/h̄v↑z

×

⎧⎪⎨
⎪⎩

reh(k‖; i|�|) if kz < 0 and � > 0,

−rhe(k‖; i|�|)∗ if kz > 0 and � < 0,

0 otherwise.

(81)

The function f may be identified with the anomalous Green
function in the quasiclassical theory.48 Note that f is nonzero
only if the wave vector k points away from the superconductor
interface if � > 0 (corresponding to a hole moving toward
the superconductor, retarded case), or if k points toward the
superconductor if � < 0 (corresponding to an electron moving
toward the superconductor, advanced case).

Because of the δ function in Eq. (80), the function f is
meaningful for wave vectors k with |k| = k↑ only. Following
the literature, we analyze moments of f , taken with respect
to its angular dependence on k, and determine whether these
are even or odd functions of the Matsubara frequency �. The
moments are defined through the relation

f (k,R; i�) =
∑
l,m

Ylm(ek)flm(R; i�), (82)

where Ylm is a spherical harmonic and ek = k/k the unit vector
in the direction k. We restrict the discussion below to l = 0
and l = 1.

In order to determine the parity of the moments flm, we
note that

reh(k‖,i|�|) = rhe(−k‖,i|�|)∗,

see Sec. II. If the magnetization gradient is perpendicular to the
half-metal–superconductor interface, rhe(−k‖,i|�|) is an odd
function of frequency, proportional to � for small frequencies,
but an even function of k‖, see Eq. (40). Hence f00 is an odd
function of �, proportional to � for small frequencies.36,46

The moment f10 is an even function of �, proportional to |�|
for small �. The functions f1m with m = ±1 are both zero.

If the magnetization gradient is parallel to the half-metal–
superconductor interface, rhe(−k‖,i|�|) is an even function of
frequency, with a finite value for � → 0, but an odd function
of k‖, see Eq. (41). This implies that f00 and f10 are both zero,
whereas f1m with m = ±1 are even functions of �, with a
finite nonzero value in the limit � → 0.

The moments flm calculated via the scattering approach
obey the general symmetries imposed by the Pauli principle:
For proximity effects induced by an s-wave, spin-singlet
superconductor, the anomalous Green function flm(i�) in a
half-metal is an odd function of � for even l and an even
function of � for odd l.27,46 Although f00(i�) → 0 for � → 0
in the two cases discussed above, the requirement that the
s-wave amplitude f00(i�) be an odd function of � does not
necessarily imply that f00(i�) always vanishes in this limit.
Indeed, in junctions between a superconductor and a standard
(not half-metallic) ferromagnet, it is known that the triplet
component of f00(i�) approaches a finite value if � → 0. [To
be precise, the triplet component of f00(i�) ∝ sign (i�) for
small � for a ferromagnet, in order to satisfy the antisymmetry
constraint.3,26,46] For junctions involving a half-metal, an
example of such a singular frequency dependence is given
by the case of a lateral contact to a thin half-metallic film case,
which we now discuss.

As in Sec. V, we consider the case that the magnetization
direction does not depend on y, and that the region of
nonuniform magnetization is limited to the vicinity of x = 0.
We assume that the inequalities described in the paragraph
following Eq. (61) are obeyed, so that the thin-film reflection
matrix reff

he is diagonal in the transverse-mode indices n and
n′. We calculate the anomalous Green function F (r,r′; i�) for
the case that the coordinates r and r′ are on the positive-x side
of the region with nonuniform magnetization. Expanding the
Green function in transverse modes, one then finds

F (r,r′; i�) = 1

4π2i

∫
dk sin(kzz) sin(kzz

′) eik‖·(r−r′)

× fn(k‖,R; i�)δ(εk − μH↑), (83)

where

fn(k‖,R; i�) = 2e−2|�|(R·ex )/h̄v↑x

×

⎧⎪⎨
⎪⎩

reff
eh (k⊥; i|�|) if kx > 0 and �> 0,

−reff
he (k⊥; i|�|)∗ if kx < 0 and �< 0,

0 otherwise.

(84)

The moments flm with m + l odd vanish in the thin film
geometry because they are odd in kz. Hence, we expand
fn(k‖,R; i�) in moments as

fn(k‖,R; i�) =
∑

l+m even

Ylm(ek)flm(R; i�), (85)

where ek is the unit vector pointing in the direction of k.
In the thin-film geometry, the lowest moment f00 is not
only nonzero for magnetization gradients perpendicular to
the surface, but also for magnetization gradients parallel to
the surface. In both cases f00 is an odd function of the
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frequency �, but f00 is discontinuous at � = 0, f00 ∝ sign(�).
[For the case of magnetization gradient perpendicular to the
HS interface, the � dependence of f00(i�) is modified for
energies below the Thouless energy h̄v↑/Wx of the lateral
contact.]

The fact that the s-wave amplitude f00(i�) may have a
finite limit in the limit � → 0 is a striking difference between
the thin-film geometry and the regular geometry with a half-
infinite half-metal. Thus, our calculation identifies geometry
as an important second factor in determining the symmetries
of the anomalous Green function—in addition to the Pauli
principle.

VII. CONCLUSION

In this article we have calculated the Andreev reflection
amplitudes of a half-metal–superconductor (HS) junction
with a spatially nonuniform magnetization direction in the
half-metal. General symmetry considerations enforce that the
Andreev reflection amplitude rhe is zero at the Fermi level
ε = 0, except if inversion symmetry around the normal to the
HS interface is broken.29,32 On the other hand, if that is the
case, rhe is an odd function of the wave-vector component k‖
parallel to the interface. These general results were confirmed
by explicit calculations of rhe for magnetization gradients
parallel and perpendicular to the interface, and they were
applied to calculations of the subgap conductance and the
Josephson effect in impurity-free HS and SHS junctions. With
one exception, the voltage and temperature dependences of the
conductance and the Josephson current showed remarkable
differences between the cases with and without inversion
symmetry, where the precise form of these differences depends
on the contact geometry. (The exception is the Josephson
current in a lateral SHS junction, which shows little differences
between the scenarios with and without inversion symmetry.)

Impurity scattering has not been included in the calculations
presented here. As discussed in the Introduction, this is not a
serious shortcoming for the microscopic Andreev reflection
amplitude reh (the amplitude for a single reflection of a
quasiparticle incident on the HS interface) if the disorder
is weak (mean free path l much larger than the Fermi
wavelengths in the superconductor or in the half-metal, and
than the wave-function decay length in the half-metal), because
Andreev reflection is a process that takes place on these
microscopic length scales.2 Hence, the microscopic reflection
amplitudes reh of Sec. IV can be used as a valid starting
point for a scattering theory of a disordered HS junction. The
same situation occurs at normal-metal–superconductor (NS)
interfaces, where the Andreev reflection amplitudes of a clean
NS interface are combined with standard theoretical methods
for disordered normal metals in order to construct a theory of
a disordered NS junction.42

However, disorder has a profound effect on the type and
magnitude of the induced superconducting correlations in
the half-metal, which are mediated by the effect of multiple
Andreev reflections. This includes the calculation of the
effective Andreev reflection amplitude reff

he in the thin-film
geometry, which represents the coherent effect of multiple
Andreev reflections. In the absence of disorder, the wave-
vector component k‖ parallel to the HS interface is conserved,

and multiple Andreev reflections at the HS interface always
add constructively.32 With disorder, k‖ is no longer conserved.
Because the sign of the Andreev reflection amplitudes reh

depends on the angle between k‖ and the gradient of the
magnetization angle, interference between multiple reflection
events need no longer be constructive. In particular, the p-
wave superconducting correlations induced by a magnetization
gradient parallel to the HS interface are strongly sensitive
to disorder, and unable to survive for large distances away
from the superconductor.49 A detailed study of disorder effects
in a lateral contact between a thin half-metallic film and a
superconductor is left for a future publication.

We close by noting that very recently half-metal–
superconductor hybrid systems have garnered attention as
possible candidates for the creation of Majorana fermion
excitations,50 which are considered promising candidates to
implement topological quantum computing.51,52 While the
system considered here is too elementary to be useful for
quantum computation, the fundamental ingredients present
here—spin-flip scattering, half-metallicity, and s-wave super-
conducting order—are precisely the same as those appearing
in the proposals for Majorana fermion excitations.50 Further
analysis of common and distinguishing features is thus
desirable.
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APPENDIX: EXPLICIT CALCULATION OF THE
GAUGE TRANSFORMATION

In this Appendix we consider a general variation the
magnetization direction, described by variations of both polar
angles θm and φm. If both θm and φm are position dependent, the
transformation given in Eq. (35) leads to the gauge potential

A = h̄

2
[(σ2 cos φm − σ1 sin φm)∇θm

− (σ1 cos φm sin θm + σ2 sin φm sin θm)∇φm

− σ3(1 − cos θm)∇φm] . (A1)

In the calculation of Sec. IV only the terms proportional to ∇θm

were included. There are three terms proportional to ∇φm.
Of these, the term proportional to σ3 does not contribute to
spin-flip Andreev reflection. Repeating the calculation of Sec.
IV with the two remaining terms proportional to ∇φm gives the
results (40) and (41) for gradients perpendicular and parallel
to the interface, respectively, with the replacement ∇θm →
∇θm + i sin θm∇φm. In the general case that the magnetization
gradient has components parallel and perpendicular to the
interface, the Andreev reflection amplitudes of Eqs. (40) and
(41) must be added.
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