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We combine the BCS self-consistency condition, a semiclassical expansion for the spectral density and
interaction matrix elements to describe analytically how the superconducting gap depends on the size and shape
of a two- and three-dimensional superconducting grain. In chaotic grains mesoscopic fluctuations of the matrix
elements lead to a smooth dependence of the order parameter on the excitation energy. In the integrable case we
find shell effects; i.e., for certain values of the electron number N a small change in N leads to large changes in
the energy gap. With regard to possible experimental tests we provide a detailed analysis of the dependence of
the gap on the coherence length and the robustness of shell effects under small geometrical deformations.
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Finite-size effects are well documented1 in fermionic
interacting systems such as atomic nuclei and atomic clusters.
It is also well established2,3 that the more symmetric the system
is, the stronger are these corrections. For instance, the existence
of magic numbers signaling the presence of a particularly
stable nucleus has its origin in the gap between the ground
state and the first excited states caused by the high degree of
symmetry of the system.

In the field of mesoscopic superconductivity, the study of
finite-size effects also has a long history. Already 50 years
ago, Anderson noted4 that superconductivity should break
down in small metallic grains when the single-particle-level
spacing at the Fermi energy is comparable to the bulk
superconducting gap. In the 1960s the size dependence of the
critical temperature and the superconducting gap were studied
for a rectangular grain in Ref. 5 and for a nanoslab in Ref. 6.
Thermodynamical properties of superconducting grains were
investigated in Ref. 7. Results of these papers are restricted to
rectangular grains, and superconductivity is described by the
Bardeen, Cooper, and Schriffer (BCS) theory.8

The experiments by Ralph, Black, and Tinkham in the mid-
1990s9 on Al nanograins of typical size L ∼ 3−13 nm showed
that the excitation gap is sensitive to even-odd effects. More
recently it has been observed10 that the critical temperature
of superconducting ultra-thin lead films oscillates when the
film thickness is slightly increased. These results have further
stimulated the interest in ultrasmall superconductors.11–16 For
instance, pairing, not necessarily BCS, in a harmonic oscillator
potential was investigated in Ref. 13. The critical temperature
and the superconducting gap for a nanowire were reported
in Ref. 14 by solving numerically the Bogoliubov-de Gennes
equations. In Ref. 15 the superconducting gap and low-energy
excitation energies in a rectangular grain were computed

numerically within the Richardson model.16 Shell effects in
superconducting grains with radial symmetry were studied in
Refs. 17 and 18. Moreover, recent experiments on Al grains
were interpreted19 as evidence that shell effects can drive
critical temperatures in these grains above 100 K. Mesoscopic
corrections to the BCS energy gap were also considered in
Refs. 20 and 21.

We note that if the mean single-particle-level spacing
is larger than the bulk superconducting gap, the BCS for-
malism breaks down. However, an analytical treatment is
still possible22 with the help of an exactly solvable model
introduced by Richardson16 in the context of nuclear physics.
In particular, finite-size corrections to the predictions of the
BCS theory have been recently studied in Refs. 23–27.

Despite this progress, a theory that accounts for all relevant
mesoscopic effects in superconducting grains has not emerged
so far. The Richardson model alone cannot provide the
foundation for such a theory as it does not allow for mesoscopic
spatial fluctuations of the single-particle states. In the present
paper, for the particular cases of chaotic and rectangular
shaped grains, we develop such a theory based on the BCS
theory and semiclassical techniques. This formalism permits
a systematic analytical evaluation of the low-energy spectral
properties of superconducting nanograins in terms of their
size and shape. Leading finite-size corrections to the BCS
mean field can also be taken into account in our approach;
see Ref. 28 for further details. Results for three-dimensional
(3d) grains were also previously published in Ref. 28. Here
we discuss both the two-dimensional (2d) and 3d cases as
well as provide a more detailed account of the techniques
utilized. Moreover, we study the dependence of the mesoscopic
BCS order parameter (superconducting gap) on the coherence
length and the robustness of shell effects.
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For chaotic grains, we show that the order parameter
is a universal function of the single-particle energy; i.e.,
it is independent of the particular details of the grain.
The mesoscopic fluctuations of the matrix elements of the
two-body interactions between single-particle eigenstates are
responsible for most of the deviations from the bulk limit.
For integrable grains, we find that the superconducting gap is
strongly sensitive to shell effects. Namely, a small modification
of the grain size or number of electrons inside can substantially
affect its value. Throughout the paper we study clean (ballistic)
grains. The mean field potential is thus an infinite well of
the form of the grain. We restrict ourselves to system sizes
such that the mean level spacing around the Fermi energy
is smaller than the bulk gap, so that the BCS formalism
is still a good approximation. For the superconducting Al
grains studied by Tinkham and coworkers,9 this corresponds
to sizes L > 5 nm.

Our results are therefore valid in the region kF L � 1
(limit of validity of the semiclassical approximation),4,23

δ/�0 < 1 (limit of validity of the BCS theory), and l � ξ � L

(condition of quantum coherence). Here kF , ξ = h̄vF /�0,
l, δ, �0 are the Fermi wave vector, the superconducting
coherence length, the coherence length of the single-particle
problem, the average single-particle level spacing, and the
bulk gap. The Fermi velocity is vF = h̄kF /m. Conditions
kF L � 1 and δ/�0 < 1 hold for Al grains of size L � 5 nm.
Further, in Al grains ξ ≈ 1600 ∼ nm and l > 104 ∼ nm
at temperatures T � 4 K.24 Therefore, this region is well
accessible to experiments.

I. THE SUPERCONDUCTING GAP IN THE BCS THEORY

Throughout the paper pairing between electrons is de-
scribed by the BCS Hamiltonian,

H =
∑
nσ

εnc
†
nσ cnσ −

∑
n,n′

In,n′c
†
n↑c

†
n↓cn′↓cn′↑,

where cnσ annihilates an electron of spin σ in state n,

In,n′ ≡ I (εn,εn′) = λV δ

∫
ψ2

n (	r)ψ2
n′ (	r) d	r (1)

are matrix elements of a short-range electron-electron interac-
tion, λ is the BCS coupling constant, and ψn and εn are the
eigenstates and eigenvalues of a free particle of effective mass
m in a clean grain of volume (area) V (A). Eigenvalues εn are
measured from the actual Fermi energy εF of the system. In this
notation the mean level spacing is δ = 1/νTF(0), where νTF(0)
is the spectral density at the Fermi energy in the Thomas-Fermi
approximation.

The BCS order parameter is defined as

�n ≡ �(εn) =
∑

n

In,n′ 〈c†n′↑c
†
n′↓〉.

Within BCS theory, it is determined by the following self-
consistency equation:25

�n = 1

2

∑
|εn′ |<εD

�n′In,n′√
ε2
n′ + �2

n′

, (2)

where εD is the Debye energy. This result is obtained
in the grand canonical approximation.8 Note that the

BCS order parameter �n is an explicit function of the
single-particle energy εn since the matrix elements I (ε,ε′)
are energy dependent.

Introducing the exact density of single-particle states
ν(ε′) = ∑

n′ δ(ε′ − εn′), one can write Eq. (2) in integral form:

�(ε) = 1

2

∫ εD

−εD

�(ε′)I (ε,ε′)√
ε′2 + �2(ε′)

ν(ε′)dε′. (3)

The gap equation (3) will be the main subject of our interest.
As soon as the order parameter �(ε) is known, the low-lying
(single-particle) excitation spectrum, E =

√
�(ε)2 + ε2, is

also determined.
In the large volume (area) limit, the spectral density, to

leading order, is given by the Thomas-Fermi expression:

νTF(ε′) = 2 ×
{

V
4π2

(
2m

h̄2

)3/2√
ε′ + εF for 3d,

A
4π

(
2m

h̄2

)
for 2d,

(4)

where the factor 2 in front stands for spin degeneracy. In
addition, in the bulk limit the matrix elements (1) for chaotic
grains are simply I (ε,ε′) = λδ as a consequence of quantum
ergodicity. The gap is then energy independent �(ε) = �0,
and Eq. (2) yields the BCS bulk result:

�0 = 2εDe− 1
λ . (5)

As the volume of the grain decreases, both ν(ε′) and I (ε,ε′)
deviate from the bulk limit. In this region a more general
approach to solve Eq. (3) is needed.

Since we are interested in the regime of many particles
[νTF(0)εF � 1], an appropriate tool is the semiclassical ap-
proximation in general and periodic orbit theory29 in particular
(see the Appendix for an introduction). These techniques yield
closed expressions for ν(ε′) and I (ε,ε′) in terms of quantities
from the classical dynamics of the system, which allows us to
calculate analytically the resulting superconducting gap. Such
explicit expressions for the superconducting gap enable us to
study deviations from the BCS theory, the spatial dependence
of the gap, and the relevance of shell effects in realistic, not
perfectly symmetric grains.

Our general strategy can be summarized as follows:
(1) Use semiclassical techniques to compute the spectral

density ν(ε′) = ∑
n′ δ(ε′ − εn′) and I (ε,ε′) as series in the

small parameter 1/kF L, where kF is the Fermi wavevector
and L  V 1/3(A1/2) is the linear size of the grain (Sec. II
and the Appendix).

(2) Solve the BCS gap equation (2) order by order in 1/kF L

(Sec. III).
(3) Study the impact of small deformations of the shape of

a symmetric grain on the gap in realistic models of the grain
(Sec. IV).

Finally we stress that all the parameters in our model,
λ,kF ,εD,εF , are the actual parameters that characterize the
material at a given grain size and not necessarily the ones at
the bulk limit.
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II. SEMICLASSICAL APPROXIMATION FOR THE
DENSITY OF STATES AND INTERACTION MATRIX

ELEMENTS

The first step to solve the gap equation is to find explicit
expressions for the spectral density ν(ε′) and the interaction
matrix elements I (ε,ε′) as series in a small parameter
1/kF L. While the semiclassical approximation for the spectral
density has been known for a long time,29 the calculation
for the matrix elements has only recently attracted some
attention.28,30 Here we state the results and refer the reader
to the Appendix for details.

A. Spectral density

In the semiclassical approximation (see the Appendix), the
spectral density is given by

ν(ε′)  νTF(0)[1 + ḡ(0) + g̃l(ε
′)], (6)

with a monotonous ḡ(ε′) and oscillatory g̃(ε′) (as functions
of system size) parts. The notation ḡ(ε = 0) means that ḡ is
evaluated at the Fermi energy. This contribution is given by
the Weyl expansion,1

ḡ(0) =
{± Sπ

4kF V
+ 2C

k2
F V

3d,

± L
2kF A

2d,
(7)

for Dirichlet (−) or Neumann (+) boundary conditions. In
Eq. (7), S is the surface area of the 3d cavity and C its mean
curvature, while L is the perimeter in the 2d case.

The oscillatory contribution to the density of states is given
by the Gutzwiller trace formula:29

g̃l(ε
′) = �

⎧⎨
⎩

2π

k2
F V

∑l
p Apei(kF Lp+βp)ei ε′

2εF
kF Lp 3d,

2
kF A

∑l
p Apei(kF Lp+βp)ei ε′

2εF
kF Lp 2d.

(8)

The summation over classical periodic orbits (p) with length
Lp includes only orbits shorter than the quantum coherence
length l of the single-particle problem. The semiclassical
amplitude Ap and phase βp in Eq. (8) can also be computed
explicitly using the knowledge of periodic orbits. As was
mentioned previously, the parameters kF and εF in these
expressions refer to the Fermi wavevector and Fermi energy
of the system at a given grain size. Within the free Fermi gas
approximation it is possible to relate the bulk Fermi energy
with the one at a given finite size by simply inverting the
relation

1

2
N =

∫ μ

ν(ε)dε, (9)

where ν(ε) is the spectral density and N is the number of
particles.

B. Matrix elements

The calculation of the interaction matrix elements I (ε,ε′)
is more complicated as it requires information about classical

dynamics beyond periodic orbits. For a chaotic cavity the final
result (see the Appendix),

I (ε,ε′) =
⎧⎨
⎩

λ
V

[
1 + Ī short

3d (0) − π2S2

16k2
F V 2 + Ī

long
dg (0,ε − ε′)

]
3d,

λ
A

[
1 + Ī short

2d (0,ε − ε′) + Ī
long
dg (0,ε − ε′)

]
2d,

(10)

has two types of contributions. Identical pairs of short classical
trajectories hitting the boundary once give

⎧⎪⎪⎨
⎪⎪⎩

Ī short
3d (0) = πS

4kF V
3d,

Ī short
2d (0,ε − ε′) = L

kF A

[
C ′ + Si(4kF L)

π

]
2d,

+ L
2πkF A

{
Ci

[ 4(ε−ε′)kF L

εF

] − Ci
[ 2(ε−ε′)

εF

]} (11)

with C ′ = 0.339 . . . , a numerical constant given in the
Appendix, and Ci(x) the cosine-integral function.

In the so-called diagonal approximation (see the Appendix)
the contribution of longer classical trajectories is

Ī
long
dg (εF ,ε − ε′) =

{ 1
V

�l

(
ε−ε′
εF

)
3d,

1
A
�l

(
ε−ε′
εF

)
2d,

(12)

where

�l(w) =
∫ l∑

γ

D2
γ cos[wkF Lγ (	r)]d	r (13)

is an integrated sum over trajectories γ (	r) starting and ending
at position 	r . As detailed in the Appendix, due to the ergodicity
of the chaotic classical systems, in the limit l � L, Eq. (13)
simplifies to

�l�L(w) =
⎧⎨
⎩

4π2

k3
F

sin (wkF l)
w

3d,

4
k2
F

sin (wkF l)
w

2d.
(14)

For integrable grains there is no universal expression for
I (ε,ε′). We restrict ourselves to the rectangular geometry
where to a good approximation the matrix elements are energy
independent.

Using the knowledge of ν(ε′) and I (ε,ε′) as series in 1/kF L,
we solve the gap equation (3) in different situations of interest.
The resulting gap function, in general, depends the single-
particle energy ε, the size of the system, and the number of
particles (or, equivalently, Fermi energy εF ).

III. SOLUTION OF THE GAP EQUATION
IN THE SEMICLASSICAL REGIME

In this section we solve the gap equation (3) for �(ε).
For a rectangular box in two and three dimensions the gap
equation is algebraic, since �(ε) = � is energy independent.
In the chaotic case, however, we get an integral equation
due to the energy dependence of the interaction matrix
elements. As we will see, both cases can be solved analytically
order by order in 1/kF L.
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A. Rectangular box in two and three dimensions

For the rectangular box the matrix elements are

I (ε,ε′) =
∏

i=x,y,z

(1 + δεi ,ε
′
i
/2)/V, (15)

where εi ∝ k2
i , pi = h̄ki is the conserved momentum in the

i = x,y,z direction, and δ stands for Kronecker’s function. We
first investigate the role of these matrix elements on the energy
gap. Qualitatively we expect an enhancement as I (ε,ε′) >

1/V . This enhancement should not be large for δ/�0 � 1
as the spectrum of a rectangular grain has only accidental
degeneracy; namely, εi = ε′

i typically implies that i = i ′. For
a perfectly cubic grain the enhancement is expected to be larger
due to level degeneracy, although they will still relatively small
for δ/�0 � 1. The numerical results of Fig. 1 (upper plot) for
the gap as a function of the grain size confirm this prediction.
We compare the cases of trivial matrix elements I (ε,ε′) ≈ 1/V

and Eq. (15) (see caption for details). In the region in which our
results are applicable, δ � �0 (L � 6 nm), the enhancement
of both the gap average (upper plot) and fluctuations (lower
plot) due to Eq. (15) is small. We note that in the numerical
calculation the chemical potential is not the bulk Fermi energy,
but it is computed exactly for each grain size (see caption).
This induces an additional enhancement of the average gap
with respect to the bulk limit �0.

Since we are mainly interested in the study of gap fluctu-
ations (discussed later in this paper), we neglect in the rest
of this section the nontrivial part of Eq. (15) [I (ε,ε′) ≈ 1/V ].
Therefore to a good approximation the gap does not depend
on energy, �(ε) = �, and satisfies the equation

2

λ
=

∫ εD

−εD

1 + ḡ(0) + g̃l(ε′)√
ε′2 + �2

dε′, (16)

where ḡ(0) for a 3d rectangular box is given by Eq. (7) without
the curvature term.

Using Eq. (7) for ḡ(0) and Eq. (8) for g̃l(ε′) (henceforth
we drop the subscript l to simplify the notation), and taking
into account the scaling of each contribution with 1/kF L as
described in the Appendix, we look for a solution of the gap
equation (16) for the 3d case in the following form:

� = �0(1 + f (1) + f (3/2) + f (2)), (17)

where f (n) ∝ 1/(kF L)n. Substituting � into Eq. (16), expand-
ing in powers of 1/kF L, and equating the coefficients at each
power, we obtain an explicit expression for f (i):

λf (1) =
[
ḡ(0) + λ

2

∫ εD

−εD

g̃(3)(ε′)√
ε′2 + �2

0

dε′
]
,

(18)

λf (3/2) =
3∑

i,j �=i

λ

2

∫ εD

−εD

g̃
(2)
i,j (ε′)√

ε′2 + �2
0

dε′,

10 15 20
L(nm)

0

0.5

1

1.5

2

Δ(
L

)/
Δ 0

10 15 20
L(nm)

0.1

0.2

σ(
Δ(

L
))

/Δ
av

e

FIG. 1. (Color online) Upper figure: The energy gap � in units
of the bulk gap �0 for a cubic grain of side L with λ = 0.3, εD =
32 meV, εF ≈ 11.65 eV, kF = 17.5 nm−1 as a function of the grain
size L. The chemical potential was computed exactly as a function
of N by inverting the relation 1

2 N = ∫ μ
ν(ε) dε where ν(ε) is the

spectral density. Similar results (not shown) are obtained for other
values of λ. Red circles stand for the exact numerical solution of
the gap equation (2) with matrix elements (15). The black curve is
its average value �ave. Blue squares are the numerical solution of
Eq. (2) for trivial matrix elements I (ε,ε ′) = 1/V . The green curve
is its average value. Lower figure: The standard deviation of the
gap σ (L) in units of the average gap �ave, a typical estimation of
the average fluctuation, as a function of the grain size. The black
(green) curve is the typical deviation for the case of nontrivial matrix
elements given by Eq. (15) [I (ε,ε ′) = 1/V ]. As can be observed,
in the region δ/�0 � 1 (Al L � 6 nm), in which our semiclassical
formalism is applicable, the nontrivial matrix element (15) does not
modify substantially the average gap or the typical fluctuation. We
note that the average fluctuation (see also Fig. 2) is in reasonable

agreement with the theoretical prediction, �̃

�0
≈

√
πδ

4�0
.20

λf (2) =
3∑
i

λ

2

∫ εD

−εD

g̃
(1)
i (ε′)√

ε′2 + �2
0

dε′ + f (1)[f (1) − ḡ(0)]

− f (1)
∑

i

�2
0

2

∫ εD

−εD

g̃
(1)
i (ε′)(

ε′2 + �2
0

)3/2 dε′, (19)

where g̃(k) ∝ (kF L)−k denotes the oscillating part of the
spectral density. Explicit expressions for g̃(k), g̃

(k)
i , and g̃

(k)
i,j

014510-4



BCS SUPERCONDUCTIVITY IN METALLIC NANOGRAINS: . . . PHYSICAL REVIEW B 83, 014510 (2011)

for a rectangular box in terms of periodic orbits can be found
in the Appendix and in Ref. 1.

Equations (18) and (19) can be further simplified by the
following argument. After we express g̃(3), g̃(2), and g̃(1) in
terms of a sum over periodic orbits, the integration over ε′ can
be explicitly performed. The resulting expression is again an
expansion in terms of periodic orbits with two peculiarities:
(1) the spectral density is evaluated at the Fermi energy, and
(2) in the limit εD � �0 the contribution of an orbit of period
Lp is weighted with the function

W (Lp/ξ ) = λ

2

∫ ∞

−∞

cos(Lpt/ξ )√
1 + t2

dt. (20)

This cutoff function is characteristic of the BCS theory as
opposed to the smoothing due to temperature or inelastic
scattering (recall that in this paper we assume that the single-
particle coherence length l is much larger than superconduct-
ing coherence length ξ ). In a similar fashion, the last term in
f (2) is weighted with

W3/2(Lp/ξ ) = �2
0

2

∫ ∞

−∞

cos(Lpt/ξ )

(1 + t2)3/2
dt.

The effect of W3/2(Lp/ξ ) is, again, to exponentially suppress
the contribution of periodic orbits longer than ξ . Therefore the
sum over periodic orbits in the definition of the spectral density
is effectively restricted to orbits with lengths of the order or
smaller than the superconducting coherence length ξ .

Following standard semiclassical approximations, we intro-
duce g̃ξ (0) as a spectral density evaluated at the Fermi energy
with a cutoff function that suppresses the contribution of orbits
of length Lp > ξ . With these definitions, we get

λf (1) = [
ḡ(0) + g̃

(3)
ξ (0)

]
, λf (3/2) =

3∑
i,j �=i

g̃
(2)
i,jξ (0), (21)

λf (2) =
3∑
i

g̃
(1)
iξ (0) + f (1)

[
f (1) − ḡ(0) −

3∑
i

g̃
(1)
iξ (0)

]
.

Equation (21) is our final result for the finite-size corrections
to the gap function for a 3d rectangular box. As expected, it is
expressed in terms of classical quantities such as the volume,
surface, and periodic orbits of the grain.

In Fig. 2 we compare the analytical expression for the gap
(17) and (21) (solid blue line) to the numerical solution of
the gap equation using the exact one-body spectrum (circles)
and the semiclassical prediction for the spectral density (red
squares). It is observed that the analytical expression for the
gap is in fair agreement with the exact numerical results.
Moreover it is also clear from the figure that the semiclassical
formalism provides an excellent description of the numerical
results. We note that the small differences observed for small
values of the gap are a consequence of the finite l ∼ 50R

single-particle coherence length entering into the semiclassical
expression of the spectral density (6). Since our motivation
here is to test the validity of the semiclassical formalism, we
are assuming for simplicity that the chemical potential is fixed
at the bulk Fermi energy.

The following argument can shed light on our results. The
density of states cannot be pulled out of the energy integration

4.22×10
5

4.24×10
5

4.26×10
5

4.28×10
5

N

0

0.5

1

1.5

Δ(
N

)/
Δ 0

FIG. 2. (Color online) The energy gap � in units of the bulk gap
�0 for a cubic grain with λ = 0.3, εD = 32 meV, εF ≈ 11.65 eV,
kF = 17.5 nm−1 as a function of the number of particles N (L ≈
13.23–13.32 nm) inside the grain. The solid line is the analytical
prediction from (17) and (21). Black circles (red squares) are results
from a numerical evaluation of the gap equation using the exact
[semiclassical Eq. (6)] spectral density. The semiclassical formalism
provides an excellent description of the exact numerical results for
the gap. We stress that, for the sake of simplicity, it has been assumed
that I = 1/V .

in the gap equation (16) unless it is smoothed. However, this is
exactly what our result (21) means, since truncating the sums is
equivalent to smoothing the energy dependence. We conclude
that our result (16) should be similar to the standard BCS
solution in the bulk, �0 = 2εDe−1/λ, with the substitution λ →
λ[1 + ḡ(0) + g̃ξ (0)]. Indeed, an expansion of this expression
in 1/kF L gives exactly Eq. (21).

In order to simplify notation henceforth we will drop the
subscript ξ in the spectral density g̃ξ smoothed by the cutoff
function W (Lp/ξ ). In two dimensions we find

� = �0(1 + f (1/2) + f (1)), (22)

with

λf (1/2) = g̃
(2)
1,2(0),

(23)

λf (1) = ḡ(0) +
∑
i=1,2

g̃
(1)
i (0) + 1 − λ

λ

[
g̃

(2)
1,2(0)

]2
.

The sums implicit in g̃i ,g̃i,j are smoothly truncated by the same
weight function W (Lp/ξ ). Similar to the 3d case, this result
can also be obtained by expanding the bulk expression for the
gap with the full density of states in 1/(kF L). We note that,
contrary to the 3d case, in 2d grains, oscillatory contributions
to the density of states are of leading order.

B. 3d chaotic cavity

The energy dependence of the interaction matrix elements,
I (ε,ε′), in this case is given by Eqs. (10)-(14), i.e.,

I (ε,ε′) = λ

V

[
1 + πS

4kF V
− π2S2

16k2
F V 2

+ 1

V
�l

(
ε − ε′

εF

)]
,

where

�l(w) = 4π2

k3
F

sin(kF lω)

ω
. (24)
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The details of the calculation based on the semiclassical
approximation for Green’s functions can be found in the
Appendix.

The expression for I (ε,ε′) together with the semiclassical
expression for the spectral density (8) are the starting point
for the calculation of the superconducting order parameter.
The energy dependence of the matrix elements implies a gap
equation of integral type and, most importantly, that the order
parameter itself depends on the energy. Based on the 1/kF L

dependence of the different contributions to I (ε,ε′), we write

�(ε) = �0[1 + f (1) + f (2) + f (3)(ε)] (25)

for a 3d chaotic grain. Substituting this expression into the gap
equation (3) and comparing powers of 1/kF L, we get a simple
algebraic equation for f (1) with the solution

λf (1) = (1 ± 1)
Sπ

4kF V
. (26)

It shows that for Dirichlet (−) boundary conditions, the
superconducting order parameter for a chaotic 3d cavity
does not have mesoscopic deviations of order 1/kF L. This
suppression is a hallmark of the chaotic case and appears
due to the fluctuations of the interaction matrix elements.
It can be also found by substituting λ → λ(1 + Sπ/4kF V )
into Eq. (5), which accounts only for the surface contribution
to the density of states, and expanding the modified �0 to first
order in 1/kF L.21

The second-order correction reads as

λf (2) = 2C
k2
F V

+ 2

(
∓1 + 1 ± 1

λ

)(
πS

4kF V

)2

+ g̃(0), (27)

with

g̃(0) = 2π

k2
F V

∑
p

ApW (Lp/ξ ) cos(kF Lp + βp), (28)

where the contribution of periodic orbits Lp longer than the
coherence length ξ is exponentially suppressed.

Equating terms of order (kF L)−3, we obtain for
f (3)(ε) an integral equation of the form f (3)(ε) = h(ε) +∫

K(ε′)f (3)(ε′) dε′, which is solved with the ansatz f (3)(ε) =
h(ε) + c, where c is a constant. We obtain

f (3)(ε) = πλδ

�0

(
�0√

ε2 + �2
0

+ π

4

)
. (29)

Note that (1) since δ/�0 � 1 is an additional small parameter
the contribution (29) can be comparable to lower orders in
the expansion in 1/kF L and (2) the order parameter �(ε) has
a maximum at the Fermi energy (ε = 0) and decreases on
an energy scale ε ∼ �0 as one moves away from the Fermi
level. One can also show that mesoscopic corrections given by
Eqs. (26) and (27) always enhance �(0) as compared to the
bulk value �0. A couple remarks are in order: (1) the energy
dependence of the gap is universal in the sense that it does not
depend on specific grain details and (2) the matrix elements
I (ε,ε′) play a crucial role; e.g., they are responsible for most
of the deviation from the bulk limit. Finally we briefly address
the interplay of mesoscopic fluctuations and parity effects (see
Ref. 28 for a more detailed account). The Matveev-Larkin
(ML) parity parameter �p,23 a experimentally accessible

observable, accounts for even-odd asymmetries in ultrasmall
superconductors. While the ML parameter coincides with the
standard superconducting gap in the bulk limit, in Ref. 23 it
was found that its leading finite-size correction is given by

�p ≡ E2N+1 − 1

2
(E2N + E2N+2) = �(0) − δ

2
, (30)

where EN is the ground-state energy for a superconducting
grain with N electrons.

We see that these corrections to the BCS mean field
approximation are comparable to mesoscopic fluctuations
but have an opposite sign. For Al it seems that mesoscopic
corrections are larger than those coming from Eq. (30).

C. 2d chaotic cavities

In this section we study a 2d superconducting chaotic grain
of area A, perimeter L, and linear size L = √

A. Our starting
point is the gap equation (3) together with the semiclassical
expressions for the spectral density [Eqs. (7) and (8)] and the
matrix elements, I (ε,ε′) [Eqs. (10)–(14)], namely,

I (ε,ε′) = λ

A

(
1 + L

kF A

[
C ′ + Si(4kF L)

π

]

+ L
2πkF A

{
Ci

[
4(ε − ε′)kF L

εF

]
− Ci

[
2(ε − ε′)

εF

]}

+�l

(
ε − ε′

εF

))
, (31)

where C ′ ≈ 0.339 . . . and Si(x),Ci(x) are the sine and cosine
integral functions, respectively. For l � L, the chaotic classi-
cal dynamics leads to a universal form for the function �l(w):

�l(w) = 4

k2
F

sin(kF lω)

ω
. (32)

As in the 3d case, the energy dependence of matrix elements
implies that the equations to be solved for the gap are of integral
type and that the gap itself is energy dependent. However,
unlike the 3d case, we have logarithmic corrections coming
from the contribution of the matrix elements. Based on the
expansion in powers of 1/kF L of the spectral density and
I (ε,ε′) [see also Eqs. (A34) and (A44)] we propose for a 2d
chaotic grain the expansion

�(ε) = �0[1 + f (log) + f (1) + π−1f (2)(ε)]. (33)

Following the same steps to solve the gap equation as in the
3d case, we get to leading order:

λf (log) = L log 2kF L

2πkF A
. (34)

Similar logarithmic corrections to residual interactions in 2d
chaotic quantum dots in the Coulomb blockade regime were
reported in Ref. 30.

The next order correction is given by

λf (1) = (C ′ ± 1)
L

2kFA
+ g̃(0), (35)

with (−) for Dirichlet and (+) for Neumann boundary
conditions, respectively. The truncated spectral density g̃(0)
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FIG. 3. (Color online) Superconducting order parameter �(ε),
Eq. (33), in units of the bulk gap �0 for 2d chaotic Al grains
(kF = 17.5 nm−1, δ = 7279/N, �0 ≈ 0.24 meV) as a function
of the energy ε with respect to the Fermi level, ε = 0. Different
curves correspond to grain sizes (top to bottom) and boundary
conditions: L = 6 nm, kF L = 105, δ/�0 = 0.77) (Dirichlet and
Neumann boundary conditions), L = 8 nm, kF L = 140, δ/�0 =
0.32 (Dirichlet), and L = 10 nm, kF L = 175, δ/�0 = 0.08 (Dirich-
let). The leading contribution comes from the energy-dependent
matrix elements I (ε,ε ′).

is defined as in the 3d case, with semiclassical amplitudes
corresponding to 2d systems.

Finally, the energy-dependent correction to the gap in 2d
chaotic grains f (2)(ε) is given by the same function (29) as in
3d grains.

We note that (1) in two dimensions the leading finite-size
contribution comes from the interaction matrix elements, not
from the spectral density, (2) finite-size effects are stronger
than in three dimensions and the leading correction does not
vanish for any boundary condition, and (3) since effectively
there are two expansion parameters 1/kF L � 1 (ensuring the
validity of the semiclassical approximation) and δ/�0 < 1
(in order to apply the BCS formalism) it can happen that
in a certain range of parameters the contribution f (2)(ε) is
dominant.

In Fig. 3 we plot the gap as a function of the energy in units
of the bulk gap �0 for Al grains (kF ≈ 17.5 nm−1, λ ≈ 0.18,
and δ ≈ 7279/N meV, where N is the number of particles),
of different sizes L. Note the single peak at the Fermi energy.
For the smallest grains the leading contribution is f (2)(ε).
This is yet another indication that the matrix elements play
a dominant role in the finite-size effects in superconducting
metallic grains.

IV. ENHANCEMENT OF SUPERCONDUCTIVITY IN
NANOGRAINS: IDEAL VERSUS REAL GRAINS

According to the findings of previous sections the super-
conducting gap is an oscillating function of the system size
and the number of electrons inside the grain. Even for grains
with N ∼ 104 − 105 electrons considerable deviations from
the bulk limit are observed. For a fixed grain size, the deviations
from the bulk limit are larger the more symmetric the grain
is. This is a typical shell effect similar to that found in other
fermionic systems, such as nuclei and atomic clusters.1 These

shell effects have their origin in the geometrical symmetries
of the grain. Symmetries induce degeneracies in the spectrum
and, consequently, stronger fluctuations in the spectral density.
The superconducting gap is enhanced if the Fermi energy is in
a region of level bunching (large spectral density). Likewise,
if the Fermi energy is close to a shell closure (small spectral
density) the superconducting gap will be much smaller than in
the bulk limit.

Therefore, thanks to shell effects, one can adjust the
gap value by adding or removing few electrons in such a
way that the Fermi energy moves into a region of high or
low spectral density. In fact, shell effects in metallic grains
of different geometries have recently attracted considerable
attention.14,15,17–19,32,33 A superconducting spherical shell and
a rectangular grain were studied numerically in Ref. 15, a
similar analysis was carried out in Ref. 14 for a nanowire,
and a qualitative analysis of a spherical superconductor was
reported in Ref. 17.

Discrepancies with experiments are expected because
factors such as decoherence, deformations of the shape of the
grain, and surface vibrational modes are not taken into account
in the theoretical analysis. In this section we discuss the impact
of small deformations of the grain and of decoherence effects
that shorten the coherence length. We will see that weakly
deformed grains can be modeled as symmetric ones but with
an effective coherence length that incorporates the details of
the deformation. The semiclassical formalism utilized in this
paper is especially suited to tackle this problem.

A. Superconductivity and shell effects

We study the dependence of the gap on the number of
electrons N inside the grain and compare the gap between two
grains with a slightly different degree of symmetry. We focus
on 3d rectangular grains where deviations from the bulk results
are expected to be larger. In this case the chemical potential
can be computed exactly as a function of N by inverting the
relation

1

2
N =

∫ μ

ν(ε)dε, (36)

where ν(ε) is the spectral density.
As is shown in Fig. 1 matrix elements do not

affect the gap oscillations. Therefore we can solve
the gap equation (3) following the steps of Sec. III with
the spectral density given by Eqs. (A7), (A8), and (A10)
and I ≈ 1/V . The spectral density depends on the cutoff,
namely, on the number of periodic orbits taken into account.
This cutoff is set by the single-particle coherence length l.
Here we take l ∼ 12L where L, is the length of the longest
side of the parallelepiped, and study the differences between a
cubic and a rectangular grain. The cutoff is chosen to be much
larger than the system size in order to observe fluctuations
but considerably smaller than the superconducting coherence
length ξ in order to accommodate other effects (discussed
later in this paper) that might reduce the typical single-particle
coherence length in realistic nanograins. We study a range of
N such that the BCS theory is still applicable but deviations
from the bulk limit are still important.
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FIG. 4. (Color online) The superconducting gap � in units of
�0 ≈ 2.286 meV, as a function of the particle number N for a cubic
(circles), of side L, and a parallelepiped-shaped (1.0288 : 0.8909 :
1.0911) (squares) grain. Fluctuations are on average stronger in the
cubic grain due to its larger symmetry. The parameters utilized are λ =
0.3, εD = 32 meV, εF ≈ 11.85 eV, kF = 26 nm−1. The energy gap
was obtained by solving Eq. (16) with the semiclassical expression
of the spectral density given by by Eqs. (A7), (A8), and (A10) and a
single-particle coherence length l ∼ 12L.

In Fig. 4 we plot �, from Eq. (3), as a function of N for a
cube an a parallelepiped with aspect ratio 1.028:0.89:1.091.
For both settings we observe strong fluctuations with respect
to the bulk value. The fluctuations are clearly stronger in the
cubic case since the grain symmetry is larger. We also observe
that a slight modification of the grain size (or equivalently
N ) can result in substantial changes of the gap. The observed
differences between the cube and the parallelepiped are due
to the different symmetry of these grains. In the cube the
overall symmetry factor in the spectral density is ∝N1/2.
The parallelepiped has only two symmetry axis and therefore
the symmetry factor ∼N1/3.

In addition to the fluctuations due to periodic orbits, we also
expect smooth corrections to the bulk limit Sdue to the surface
and perimeter term of the spectral density. These corrections
will be clearly observed as the coherence length is shortened,
and the contribution of periodic orbits is therefore suppressed.

B. Finite-size effects in real small grains

Highly symmetric shapes are hard to produce in the
laboratory. It is thus natural to investigate to what extent small
deformations from a perfect cubic shape weaken the finite-size
effects described in previous sections. For applications it is
also important to understand the dependence of the results on
the single-particle coherence length l. In order to study this
dependence, we assume that the superconducting coherence
length ξ is the largest length scale in the system. This is the
most interesting region because in the opposite case l � ξ the
results for the gap (21) are to a great extent independent of l.
By contrast, in the limit ξ � l, the cutoff (20) induced by ξ

has little effect as the contribution of periodic orbits Lp � ξ

is already strongly suppressed by the cutoff induced by l. If
l ∼ ξ both cutoffs must be taken into account.

2.9×10
4

3.0×10
4

3.1×10
4

N

0.8

0.9

Δ/
Δ 0

l = 10 L
l = 6 L
l =  2.25 L

FIG. 5. (Color online) Superconducting gap � for a cubic grain
(volume N/181 nm3) for different single-particle coherence lengths
l = 2.25L, l = 6L, l = 10L in units of �0 ≈ 0.228meV as a function
of the number of particles N . The parameters utilized are λ = 0.3,
εD = 32 meV, εF ≈ 5.05 eV, kF = 18 nm−1. The energy gap was
obtained by solving Eq. (16) with the semiclassical expression of
the spectral density given by Eq. (6). As the coherence length is
reduced, less periodic orbits contribute to the spectral density, and
fluctuations are smaller. Fluctuations are strongly suppressed for
coherence lengths l � 2L. In this limit the gap is still smaller than
�0 as a consequence of the surface and curvature terms in Eq. (16).

We now address these two related issues. We note that
not only the effect of a finite coherence length l but also
small deviations from symmetric shapes can be included in
our analytical expressions for the gap by adding an additional
cutoff D [besides Eq. (20)], which suppresses the contribution
of periodic orbits longer than D. The details of D depend
strongly on the source of decoherence or the type of weak
deformation. Indeed, in certain cases D may modify not only
the amplitude but also the phase of the contribution of the
periodic orbit to the trace formula used to compute the spectral
density. For instance, the effect of small multipolar corrections
to an otherwise spherical grain34 is modeled by adding an
additional D cutoff in term of a Fresnel integral that smoothly
modulates the amplitude and phase of the periodic orbits of
the ideal spherical grain.

If the deformation is in the form of small, nonoverlapping
bumps,35 the cutoff is exponential and affects only the
amplitude. The numerical value of the cutoff depends on the
original grain and is directly related to the typical size of
the bump. If the source of decoherence is due to finite temper-
ature effects,36 D = Lp/l

sinh(Lp/l) with l inversely proportional to
the temperature.

In Fig. 5 we show the effect of a finite coherence length l in
the superconducting cubic grain investigated previously. The
gap equation (3) was solved exactly with the semiclassical
spectral density given by Eqs. (A7), (A12), and (A10) and
I = 1/V . For simplicity we use D = Lp/l

sinh(Lp/l) as a cutoff with
l now the single-particle coherence length. This is enough for
a qualitative description of the suppression of shell effects as
a consequence of decoherence or geometrical deformations.

The cutoff (20), related to the superconducting coherence
length, does not affect the calculations as it is much longer
(∼1600 nm) than the ones employed in Fig. 5. Similar results
are obtained if the analytical result (21) is utilized.
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As expected, the amplitude is reduced, and the fine structure
of the fluctuations is washed out as the coherence length is
shortened. We did not observe any gap oscillations with N

for l � 2.5L. This can be regarded as an effective threshold
for a future experimental verification of shell effects in super-
conductivity. Smooth nonoscillatory corrections depending on
the S (or perimeter L in two dimentions) term in the spectral
density are not affected by the coherence length and should
be clearly observed in experiments. Note that � in Fig. 5 is,
on average, below �0 even for the maximum N investigated.
This is a direct consequence of the negative sign of the surface
term in the spectral density for Dirichlet boundary conditions
used in the numerical calculations [f (1) in Eq. (17)].

V. CONCLUSIONS

We have determined the low-energy excitation spectrum,
E =

√
�(ε)2 + ε2, of small superconducting grains as a

function of their size and shape by combining the BCS mean
field approach and semiclassical techniques. For chaotic grains
the nontrivial mesoscopic corrections to the interaction matrix
elements make them energy dependent, which, in turn, leads
to a universal smooth energy dependence (29) of the order
parameter �(ε); see Fig. 3. In the integrable (symmetric)
case we found that small changes in the number of electrons
can substantially modify the superconducting gap; see, e.g.,
Fig. 4. Due to its potential relevance for experiments, we have
investigated how these shell effects decrease (Fig. 5) when the
grain symmetry and/or the single-particle coherence length is
reduced.
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APPENDIX: SEMICLASSICAL APPROXIMATION FOR
THE DENSITY OF STATES AND THE INTERACTION

MATRIX ELEMENTS

Semiclassical techniques such us periodic orbit theory1 are
not a common tool in the study of superconductivity; however,
they are a key ingredient in our analytical treatment. In order
to solve the gap equation (3) we first need a closed expression
for the spectral density and the interaction matrix elements
I (ε,ε′). In this Appendix we describe in detail how these
quantities are computed using a semiclassical approximation
for 1/kF L � 1, where kF = k(εF ) =

√
2mεF

h̄
is the momentum

at the Fermi energy εF and L is the linear system size. The
resulting semiclassical expansion will be organized in powers
(possibly fractional) of the small parameter 1/kF L.

In order to observe deviations from the bulk limit, the
single-particle coherence length must be larger than the system
size, l � L. The time scale, τ ≈ l/vF , associated with l has a

meaning of the lifetime of states near the Fermi energy. The
condition l � L means that the Cooper pairs are composed
of quasiparticles with a lifetime longer than the flight time
through the system.

A. Density of states

We start with the analysis of the density of states. The
semiclassical expression for ν(ε) for a given grain geometry is
already known in the literature:1

ν(ε′)  νTF(0)[1 + ḡ(ε) + g̃l(ε
′)]. (A1)

The spectral density gets both monotonous ḡ(ε) and oscillating
g̃(ε) corrections. The monotonous correction at the Fermi
energy is given by the Weyl expansion:

ḡ(0) =
{± Sπ

4kF V
+ 2C

k2
F V

3d,

± L
2kF A

2d,
(A2)

for Dirichlet (−) or Neumann (+) boundary conditions. In
Eq. (A2), S is the surface area of the 3d cavity, C is its mean
curvature, while L is the perimeter in the 2d case.

The oscillatory contribution to the density of states is
sensitive to the nature of the classical motion. For a system
whose classical counterpart is fully chaotic it is given to the
leading order by the Gutzwiller trace formula:29

g̃l(ε
′) = �

⎧⎨
⎩

2π

k2
F V

∑l
p Apei[kF Lp+βp]ei ε′

2εF
kF Lp 3d,

2
kF A

∑l
p Apei[kF Lp+βp]ei ε′

2εF
kF Lp 2d,

(A3)

where we used k(ε′)  kF + e′kF /2εF . The summation is
over a set of classical periodic orbits (p) of lengths Lp < l.
Only orbits shorter than the quantum coherence length l

of the single-particle problem are included. The amplitude
Ap increases with the degree of symmetry of the cavity1

(discussed later in this Appendix). In the chaotic case
Ap = Ap(εF ) is given by

Ap(εF ) = Lp

|det(Mp − I)|1/2
, (A4)

with the monodromy matrix Mp taking into account the
linearized classical dynamics around the periodic orbit. The
classical flow also determines1 the topological index βp in
Eq. (A3).

Note that Eqs. (A3) and (A4) indicate that the scaling of g̃

in terms of the small parameter

ζ = 1/kF L (A5)

is

g̃l(ε
′) ∝

{
ζ 2 3d,

ζ 2d.
(A6)

1. Rectangular grain

Consider a rectangular box of sides ai with i = 1, . . . ,d in
d dimensions. For these systems the sum over periodic orbits
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is exact and given by1,3

g̃(ε′) =
⎧⎨
⎩

g̃(3)(ε′) − 1
2

∑
i

∑
j �=i g̃

(2)
i,j (ε′) + 1

4

∑
i g

(1)
i (ε′) 3d,

g̃
(2)
1,2(ε′) − 1

2

∑
i g

(1)
i (ε′) 2d.

(A7)

Here g̃(3) is a sum over families of periodic orbits. Each family
is parametrized by three (nonsimultaneously zero) integers
	n = (n1,n2,n3):

g̃(3)(ε′) =
l∑

L	n �=0

j0

(
kF L	n + e′

2εF

kF L	n

)
, (A8)

where L	n = 2
√

a2
1n

2
1 + a2

2n
2
2 + a2

3n
2
3 is the length of an orbit in

the family and j0(x) = sin x/x is the spherical Bessel function.
We see that

g̃(3) ∝ ζ. (A9)

In the same spirit, g̃
(2)
i,j is written as a sum over families of

periodic orbits parallel to the plane defined by sides ai,aj . In
this case the families are labeled by two integers 	n = (n1,n2)
and

g̃
(2)
i,j (ε′) =

{ aiaj π

kF V

∑l
L	n�=0 J0

(
kF L

i,j

	n + e′
2εF

kF L
i,j

	n
)

3d,

aiaj

A

∑l
L	n �=0 J0

(
kF L

i,j

	n + e′
2εF

kF L
i,j

	n
)

2d,

(A10)

where L
i,j

	n = 2
√

a2
i n

2
1 + a2

j n
2
2 is the length of the orbit (n1,n2)

and J0 is a Bessel function. Using the asymptotic expression
for J0, we find that this contribution scales with ζ as

g̃
(2)
i,j (ε′) ∝

{
ζ 3/2 3d,

ζ 1/2 2d.
(A11)

Finally, for g̃
(1)
i we have periodic orbits labeled by a single

integer n:

g̃
(1)
i (ε′) =

{ 4πai

k2
F V

∑l
Li

n
cos

(
kF Li

n + e′
2εF

kF Li
n

)
3d,

4ai

kF A

∑
n cos

(
kF Li

n + e′
2εF

kF Li
n

)
2d,

(A12)

with lengths Li
n = 2nai . The dependence on ζ in this case is

g̃
(1)
i (ε′) ∝

{
ζ 2 3d,

ζ 2d.
(A13)

It is important to note that depending on the classical dynamics
and the spatial dimensionality there are different types of
scaling with ζ . The amplitude of the spectral fluctuations
increases with the degree of symmetry of the cavity. It is
maximal in spherical cavities and minimal in cavities with
no symmetry axis.1 The latter typically includes chaotic
cavities, namely, cavities such that the motion of the classical
counterpart is chaotic.

This relation between symmetry and fluctuations can be
understood as follows. In grains with one or several symmetry
axis there exist periodic orbits of the same length. As a result of
taking all these degenerate orbits into account, the amplitude
of the spectral density is enhanced by a factor ζ−1/2 for each
symmetry axis.37,38 For instance, a spherical cavity has three

symmetry axes, so the symmetry factor is proportional to
ζ−3/2 � 1. Periodic orbits in chaotic cavities are not in general
degenerate, and the symmetry factor is therefore equal to one.
For the range of sizes L ∼ 5–10 nm studied in this paper the
difference between a chaotic and an integrable grain can be
orders of magnitude.

B. Interaction matrix elements

1. Semiclassical approximation to the average density

Unlike the case of the density of states, there is no general
semiclassical theory for quantities, such as the interaction
matrix element I (ε,ε′), involving the spatial integration of
more than two eigenfunctions in clean systems. For integrable
systems the ergodic condition

I (ε,ε′) = λ

�
(A14)

with � = V or A in three and two dimensions, respectively, is
typically not met due to the existence of constants of motion.
The constraints imposed by conservation laws effectively
localize the eigenfunctions in a smaller region of the available
phase space.

On the other hand, for chaotic systems Eq. (A14) is well
justified as a result of the quantum ergodicity theorem.39 The
vast majority of the eigenfunctions spread almost uniformly
over the whole volume (area) due to the lack of constants of
motion besides the energy. If the position 	r is far enough from
the boundaries, we have

|ψ2
n (	r)|2 = 1

�
[1 + O(ζ )] (A15)

for almost all states close to the Fermi energy. In order to
evaluate explicitly deviations from Eq. (A14), we propose the
replacement

|ψ2
n (	r)|2 → 〈|ψ(	r)|2〉εn

. (A16)

The average is over a small window of states around εn.
The width of this window is controlled by an energy scale
h̄/τ related to the single-particle coherence length l ≈ vF τ .
This averaging procedure is justified since eigenfunctions
of classically chaotic systems have well-defined statistical
properties.41

This average is exactly given by

〈|ψ(	r)|2〉ε = 1

g(ε)

∑
εn

w(ε − εn)|ψen
(	r)|2

= 1

πg(ε)

∫
w(ε′)�G(	r,	r,ε′ − ε + i0+) dε′,

(A17)

where G(	r,	r ′,z) is the Green function of the noninteracting
system at complex energy z, w(x) is a normalized window
function of width h̄/τ centered around x = 0, and g(ε) is the
density of states smoothed by w(x).

Next, we express the Green function as

G = G0 + G̃, (A18)
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where G0 is given by the free propagator

G0(	r,	r ′,ε + i0+) =
{

− m

2πh̄2
eik(ε)|	r−	r′ |
|	r−	r ′ | 3d,

− im

2h̄2 H
+
0 [k(ε)|	r − 	r ′|] 2d,

(A19)

and H+
0 is the Hankel function. The corresponding contri-

bution to the average intensity, obtained by taking the limit
	r → 	r ′ of the imaginary part of G0 on Eq. (A19), is then
spatially uniform and given by

〈|ψ(	r)|2〉0
ε = 1

�
. (A20)

The effect of such so-called zero-length paths joining 	r with
	r in zero time is then to produce a constant background
independent of the position (see, for example, Ref. 42). This
result should not come as a surprise, as zero-length paths are
responsible for the leading-order terms in the Weyl expansion
of the density of states.

In the semiclassical approach29 the other part of the Green
function G̃ is expressed in terms of nonzero paths γ going
from 	r to 	r in a finite time τγ as

G̃(	r,	r,ε) =
∑

γ

Dγ e i(kF Lγ + ε
2εF

kF Lγ +βγ )
. (A21)

This contribution is responsible of the typical spatial oscil-
lations of the average intensity. The classical properties of
each trajectory are encoded in its topological phase βγ (equal
to π/4 times the number of conjugate points reached by the tra-
jectory) and the smooth function Dγ = Dγ (	r,	r ′,εF )|	r=	r ′ :1,29

Dγ (	r,	r ′,εF ) =

⎧⎪⎨
⎪⎩

1
kF

∣∣det ∂2Lγ (	r,	r ′)
∂qi∂q ′

j

∣∣1/2
3d,√

2
πkF

∣∣ ∂2Lγ (	r,	r ′)
∂q∂q ′

∣∣1/2
2d.

(A22)

Here qi and q ′
j are local coordinates transverse to the trajectory

γ at points 	r , respectively, and 	r ′, and Lγ (	r,	r ′) is its length.
In three dimensions we have two perpendicular components,
while in two dimensions there is only one.

After substitution of Eq. (A21) into Eq. (A17), the inte-
gration over energies can be carried out explicitly provided
that, consistently with the stationary phase approximation
used to derive the semiclassical Green function, all smooth
functions of the energy are evaluated at εF . The resulting
Fourier transform of the window function acts as a cutoff for
the sum. We finally obtain, after using the expression for the
density of states and factorizing the Thomas-Fermi density:

〈|ψ(r)|2〉ε = 1

�

1 + R̃(	r,ε)

1 + ḡ(εF ) + g̃(ε)
. (A23)

In both three dimensions and two dimensions, R̃(	r,ε) is simply
obtained form the Green function as a sum over classical paths
γ (	r) = γ starting and ending at point 	r with finite lengths
Lγ (	r) = Lγ < l and actions Sγ (	r) = h̄k(ε)Lγ :44

R̃(	r,ε) =
l∑
γ

Dγ cos

(
kF Lγ + ε

2εF

kF Lγ + βγ

)
. (A24)

Inspection of Eq. (A22) shows that R̃ scales as

Dγ ∝
{

ζ 3d

ζ 1/2 2d
. (A25)

Furthermore, the normalization condition implies

1

�

∫
R̃(	r,ε)d	r = ḡ(ε) + g̃(ε). (A26)

Equation (A26) can also be used as the definition of the density
of states without the Thomas-Fermi contribution.

The separation between smooth, ḡ(ε)  ḡ(0), and os-
cillatory terms g̃(ε) in Eq. (A26) is as follows. Smooth
contributions come from trajectories starting and ending
at 	r after hitting the boundary only once, Lγ < L. On
the other hand, trajectories hitting the boundary more than
once will have in general Lp > L, and their contribution to
the spatial integral can be evaluated using the stationary phase
approximation to give g̃(ε).

Using Eqs. (A2), (A6), (A25), and (A26) the interaction
matrix elements have the following semiclassical expansion:

I (ε,ε′) =
⎧⎨
⎩

λ
V

[
1 + Ī (εF ,ε,ε′) − S2π2

16k2
F V 2

]
3d,

λ
A

[
1 + Ī (εF ,ε,ε′) − L

2kF A
+ g̃l(εF )

]
2d,

(A27)

where

Ī (ε,ε′) = 1

�

∫
R̃(	r,ε)R̃(	r,ε′) d	r. (A28)

2. Evaluation of Ī(ε,ε′)

As we will see, Ī (ε,ε′) is a smooth function of both ε and ε′;
it does not oscillate as rapidly as eiS/h̄ where S is the classical
action. The key point in carrying out the spatial integration
in Eq. (A28) is the separation of R̃ = R̃short + R̃long into short
and long classical trajectories. A similar separation leads to the
smooth and oscillatory contributions to the density of states
discussed in the previous section. In other words, our approach
to evaluating Ī (ε,ε′) is similar to the Weyl expansion for the
density of states.

To calculate R̃short, we note that in the regime l � L, the
short trajectories of length Lγ < L are insensitive to the
smoothing, and hence their contribution to the imaginary
part of the Green function in (A17) can be pulled out from
the energy integration. This means that R̃short is simply
proportional to the imaginary part of the Green function
associated with the short paths.

Following Balian and Bloch37 the basic idea of the
subsequent calculation is that the boundary of the grain can
be locally approximated as a plane in three dimensions and
a straight line in two provided that the observation point is
close enough to it. Within this approximation, the exact Green
function representing a single reflection off an infinite wall
can be calculated using the method of images. For the 3d case
Eq. (A22) is quantum mechanically exact and gives the same
result.
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Following this idea, we construct the Green function for an
infinite straight boundary by means of the method of images
to obtain

Gshort(	r,	r ′,ε + i0+) = ±G0[	r,T (	r ′),ε + i0+], (A29)

where the action of the linear operator T is to map the position
	r ′ into its image point on the other side of the boundary. The
plus and minus sign give Neumann and Dirichlet boundary
conditions, respectively.

It is easy to see that when 	r → 	r ′, the function Gshort

depends only on the distance between 	r and the boundary,
which we denote by x. Since this distance is still of the
order of the system linear size, it is possible to perform the
energy average in Eq. (A17) with the Green function given by
Eq. (A29). As a result,

R̃short(	r,ε) = ±
{

sin 2k(ε)x
2k(ε)x 3d,

J0[2k(ε)x] 2d.
(A30)

After R̃short is inserted into Eq. (A28), the integral along
directions parallel to the plane simply yields a factor of S
in three dimensions and L in two. The integration in the
perpendicular direction is naturally truncated at the system
linear size L.In three dimensions, using

∫ L

0 = ∫ ∞
0 − ∫ ∞

L
, we

obtain

Ī short
3d (ε,ε′) = − S

8k2
F LV

+ πS
4V

Min[k(ε),k(ε′)]
k(ε)k(ε′)

,

which, as expected, is a smooth function of ε and ε′. The second
term in this expression was previously obtained in Ref. 21 via
a slightly different method which misses the first term of the
right-hand side of Eq. (A31).

A similar analysis in two dimensions is more subtle due to
divergence of the integration in the direction perpendicular
to the boundary. However, there is a natural upper limit
for this integration given by the linear system size L.
Upon using k(ε)  kF (1 + ε/2εF ) and introducing the scaled
perpendicular distance to the boundary y = 2kF x:

Ī short
2d (ε,ε′)

= L
2kF A

∫ 2kF L

0
J0

[(
1 + ε

2εF

)
y

]
J0

[(
1 + ε′

2εF

)
y

]
dy.

(A31)

Employing the asymptotic expression for the Bessel functions,
we find

Ī short
2d (ε,ε′)

= L
2kF A

[
C + 1

π

∫ 2kF L

1

sin 2y + cos 2(ε − ε′)y/εF

y
dy

]
(A32)

valid for kF L � 1. In Eq. (A32) the constant C =∫ 1
0 J 2

0 (y) dy  0.850 . . . . We see that, contrary to the 3d case,
Ī short

2d depends on energy (through the difference ε − ε′). This
implies that in 2d chaotic systems the superconducting gap is
energy dependent even to leading order in ζ .

The integrals in Eq. (A32) can be expressed in terms of the
sine-integral (Si) and cosine-integral (Ci) functions. Our final
result is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Ī short

3d (εF ) = πS
4kF V

3d,

Ī short
2d (εF ,ε − ε′) = L

kF A

[
C ′ + Si(4kF L)

π

]
2d,

+ L
2πkF A

[
Ci

( 4(ε−ε′)kF L

εF

) − Ci( 2(ε−ε′)
εF

)
]
,

(A33)

with C ′ = C − Si(2)/π = 0.339 . . . . Thus for fixed ε and ε′,
Ī short scales with ζ = 1/kF L � 1 as follows:{

Ī short
3d (εF ) ∝ ζ + bζ 2 3d,

Ī short
2d (εF ,ε − ε′) ∝ ζ + b′ζ log ζ 2d,

(A34)

where b and b′ are constants independent of the system size.
Note the nonalgebraic dependence on ζ in the 2d case. The
constant b turns out to be much smaller than all other second-
order contributions to the gap and will be dropped henceforth.

Now we focus on the contribution of long paths, R̃long, to
the spatial integral (A28). We use the expression for R̃ as a
sum over classical closed paths γ (	r) starting and ending at 	r
with length Lγ (	r). Now we impose the condition

Lγ (	r) � L, (A35)

expressing the fact that the paths are long; namely, they hit
the boundary several times. As is standard in these cases, we
evaluate the smooth functions Dγ in R̃long at the Fermi energy
and expand k(ε)  kF + k(ε)2/2kF to get

Ī long(ε,ε′) = �
∫ l∑

γ,γ ′
Dγ Dγ ′

e i�+
γ,γ ′ + e i�−

γ,γ ′

4
d	r. (A36)

The phases involved in the spatial integration are (we do not
include topological indexes for simplicity)

�±
γ,γ ′ (ε,ε′,	r) = kF (Lγ ± Lγ ′) + kF

2εF

(Lγ ε ± Lγ ′ε′), (A37)

where Lγ = Lγ (	r) is the length of the trajectory γ .
In chaotic systems different trajectories, in general, will

have lengths differing by at least L (see, however, Ref. 45).
This means that since the first term in Eq. (A37) scales as
1/ζ � 1, the integral over r in �+

γ,γ ′ (ε,ε′,	r) and �±
γ,γ (ε,ε′,	r)

can be evaluated by the stationary phase method. Within this
approximation, oscillatory integrals of the form∫

f (x)e iλh(x) dx

are given to leading order in 1/λ by

∫
f (x)e iλh(x) dx  f (x∗)

e iλh(x∗)

√
2πλh′′(x∗)

,

where h′(x∗) = 0, and therefore each spatial integration in
Eq. (A36) yields an extra factor ∝ 1/ζ 1/2. Combining this
with the prefactors (A25), we find that the contribution of
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pairs γ �= γ ′ (the so-called nondiagonal contribution) Ī
long
ndg ) is

of order

Ī
long
ndg (ε,ε′) ∝

{
ζ 5/2 3d,

ζ 2 2d.
(A38)

On the other hand, terms that involve �−
γ,γ (ε,ε′,	r) do not

oscillate rapidly, because in this case the highly oscillatory
terms in the phase cancel each other, leaving the second term
in Eq. (A37), which scales as ζ and not as 1/ζ :

�−
γ,γ (ε,ε′,	r) = kFLγ (	r)

2εF
(ε − ε′). (A39)

This contribution involves coherent double sums over classical
trajectories and is usually referred to as the diagonal contribu-
tion Ī

long
dg . Taking γ = γ ′ in Eq. (A36), we easily find

Ī
long
dg (εF ,ε − ε′) =

∫ l∑
γ

D2
γ cos �−

γ,γ (ε,ε′,	r) d	r, (A40)

which can be cast in a very compact form by introducing the
purely classical function

�l(w) =
∫ l∑

γ

D2
γ cos wkF Lγ (	r) d	r (A41)

as follows:

Ī
long
dg (εF ,ε − ε′) =

{ 1
V

�l

(
ε−ε′
εF

)
3d,

1
A
�l

(
ε−ε′
εF

)
2d.

(A42)

Keeping also in mind the ζ dependence of the coefficients
Dγ , we have

Ī
long
dg (εF ,ε − ε′) ∝

{
ζ 2 3d,

ζ 2d.
(A43)

Equations (A33), (A38), and (A42) complete the evaluation
of Ī . Restricting ourselves to the first two orders in ζ (ζ and
ζ log ζ in the 2d case), we finally obtain

I (ε,ε′) =
⎧⎨
⎩

λ
V

[
1 + Ī short

3d (εF ) − π2S2

16k2
F V 2 + Ī

long
dg (εF ,ε − ε′)

]
3d,

λ
A

[
1 + Ī short

2d (εF ,ε − ε′) + Ī
long
dg (εF ,ε − ε′)

]
2d.

(A44)

Equations (A44) together with the definitions (A33) and
(A42) allow for the calculation of interaction matrix elements
in 3d and 2d chaotic grains. In general, the explicit evaluation
of �l(w) requires the precise knowledge of all classical paths
up to lengths of the order of the single-particle coherence
length l that have a crossing at 	r for every point inside the
cavity. However, if l is large enough compared to L (in practice
l  5L suffices), ergodic arguments can be invoked, and a
closed expression for the interaction matrix elements can be
found. In situations when l  L one must carry out the explicit
system-dependent calculation.

Classical ergodicity of chaotic systems can be formulated
in various ways,46 and we are going to give only a brief
sketch of its consequences here. The main mechanism behind
universality in the quantum mechanical description of classi-
cally chaotic systems resides in the behavior of typical (in the

sense of measure theory) classical trajectories. By definition, a
typical trajectory of a chaotic system will explore in an uniform
way the available phase space, thus implying the equivalence
between temporal and microcanonical averages.

This uniformity extends, in a nontrivial way, to the periodic
orbits as well. The key concept here is the classical probability
of return, defined as

P (	x0,t,e) = 1

Z(e,t)
δ[	x0 − 	x(	x0,t)]δ[H (	x0) − e], (A45)

where 	x0 = (	r0, 	p0) is a point in phase space mapped at time t

into 	x(	x0,t) by the solution of the classical equations of motion.
Clearly, the function δ[	x0 − 	x(	x0,t)] is nonzero only when the
classical flow maps an initial point into itself after a time t and
plays the role of a probability of classical return. Moreover,
in case we want to select a fixed energy, we use an extra
condition given by the value of the Hamiltonian function along
the trajectory. Finally, the probability must be normalized such
that ∫

P (	x0,t,e) d 	x0 = 1, (A46)

thus fixing Z(t,e). The key observation here is that, by
definition, the set of points where P (	x0,t,e) is different from
zero belongs to periodic orbits with period t . Although the
original ergodicity criteria were given in terms of typical
trajectories, the theory of dynamical systems provides a strictly
equivalent definition of ergodicity in terms of periodic orbits:

P (	x0,t,e) → const. for t → ∞. (A47)

That means that not only typical trajectories but also periodic
orbits uniformly fill the available phase space. We remark
that the left-hand side of this equation, a set of delta peaks
at the periods of the classical periodic orbits, must be
understood in the sense of distributions; namely, both sides are
assumed to be integrated over a smooth function of time and
phase-space position.

In order to make contact with the coordinate representation
used so far, we use the uniformity of periodic orbits in phase
space expressed by Eq. (A47) and integrate out the momentum.
This integral can be exactly calculated.47 It involves a Jacobian
of the form ∂ 	p(t)∂(	r0), which is indeed proportional to the
semiclassical prefactors Dγ . In summary, in the present context
classical ergodicity leads to the following sum rule47 for
classical closed orbits:

l�L∑
γ

D2
γ δ[l − Lγ (	r)] =

{
4π2

k2
F V

3d,

4
kF A

2d.
(A48)

As was mentioned previously, integration over lengths up to l

on both sides with a smooth weight function is also assumed.
Using this result and noting that the right-hand side of Eq.
(A48) is independent of the position 	r , we get

�l�L(w) =
⎧⎨
⎩

4π2

k3
F

sin wkF l
w

3d,

4
k2
F

sin wkF l
w

2d.
(A49)

In the ergodic regime, l � L, these results enable us to evaluate
explicitly the energy dependence of the interaction matrix
elements in chaotic cavities.
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