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The emission of terahertz electromagnetic waves from an intrinsic Josephson junction array (IJJA) embedded
in an LCR resonant circuit is studied theoretically. A bias current is applied to the electrodes at the top and bottom
of the array. In the voltage state, the ac Josephson current generates a displacement current in the IJJA, and both
the currents induce an oscillating current in the electrodes. We describe the whole system, including the array and
the environment around it, in terms of an LCR resonant circuit. When the Josephson frequency is in the resonance
frequency region of the LCR circuit, the amplitudes of the displacement current in the Josephson junction array
and the oscillating current in the electrodes both are strongly enhanced by a feedback process. We calculate the
emission power and the current-voltage (I-V) characteristic curve for the system. Inside the frequency region of
the LCR circuit resonance, stable and intense emission occurs in both the increasing and decreasing processes
of the high-bias current. In the emission region the I-V characteristic curve has a dip structure. These results are
consistent with those of the emission observed in a high-bias current region by using mesa-shaped samples of
Bi2Sr2CaCu2O8+δ . We also discuss the difference between the properties of the emission and the I-V characteristic
curve for intrinsic Josephson junctions embedded in and shunted by the LCR resonant circuit.
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I. INTRODUCTION

Since the intrinsic Josephson effects in high-temperature
superconductors were first investigated by R. Kleiner and
P. Müller, various kinds of new phenomena related to the
effects have been found.1–5 Recently, Ozyuzer et al. succeeded
in observing the emission of coherent continuous terahertz
electromagnetic (TEM) waves from mesa-shaped samples
of the high-temperature superconductor Bi2Sr2CaCu2O8+δ

(BSCCO) containing intrinsic Josephson junctions.6 When the
bias current is decreased in the voltage state, an emission is
observed near the retrapping point in a region of low bias
current.6,7 The mechanism of this emission is explained in
the following way: The ac Josephson current occurring in
the voltage state excites a transverse Josephson plasma wave
(TJPW). Simultaneously the mesa sample itself works as a
resonance cavity, and the amplitude of the resonance mode
of the TJPW is enhanced in the cavity. The emission in the
low bias-current region was confirmed to be caused by the
sample-cavity geometric resonance.6,7

Recently, by using samples prepared under different con-
ditions, emission with a different character was observed in
a high bias-current region.8–10 This emission is intense and
stable, and it occurs in both the increasing and decreasing
processes of the high bias current. The observed TEM wave
emission is influenced by the environment around the mesa
sample as well as the quality of the sample itself. Therefore,
we propose a new mechanism for emission in the region of
high bias current. We describe the whole system composed
of the BSCCO crystal, the electrodes, and the environment
around the sample in terms of inductance L, resistance R,
and capacitance C. That is to say, we consider a model
of the intrinsic Josephson junction array (IJJA) of BSSCO

embedded in an LCR resonant circuit.11 The mechanism of the
TEM wave emission from this system is briefly explained as
follows: When an external dc current is applied in the direction
of the z axis, the ac Josephson current in the voltage state
generates an oscillating electric field and thus a displacement
current. The Josephson and displacement currents both induce
an oscillating surface current in the electrodes. When the
frequency of the oscillation is inside the frequency region
of the LCR circuit resonance, the amplitude of the oscillating
current in the electrodes is strongly enhanced by a feedback
effect and the oscillating current generates an intense emission
of TEM waves, as discussed in Secs. II and III. In the
present mechanism for the high bias current, the whole system,
including the environment around the BSCCO sample, plays
an important role in the emission, different from the sample-
cavity geometric resonance of the transverse Josephson plasma
in the case of low bias current. In Sec. IV, it is shown that there
is an essential difference in the current-voltage characteristic
curves between Josephson junction arrays embedded in LCR
circuits and those shunted by LCR circuits.

II. FORMULATION

We formulate equations for calculating the radiation power
of the TEM wave and for obtaining the I-V characteristic curve.
For this purpose we use a model of the IJJA of the BSSCO
crystal with electrodes at the top and bottom of the crystal
as shown in Fig. 1. A dc current is injected from an external
current source.

For this model we set up an equation for the gauge-invariant
phase difference of the superconducting order parameter
between the neighboring superconducting layers. We write
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FIG. 1. (Color online) Model of intrinsic Josephson junction
array of BSCCO crystal with electrodes. Brown, green, and yellow
show the superconducting layers, the insulating layers, and the
electrodes, respectively. E(t) and H(t) represent, respectively, the
oscillating electric and magnetic fields very near the BSCCO sample
with the electrodes.

the phase difference between superconducting layers l+1 and
l as Pl+1,l . The inductive and capacitive interactions between
the superconducting layers were introduced in Refs. 12 and 13
respectively. Taking account of the interactions and following
the calculation procedure given in Refs. 12–16, we obtain the
equation for the phase difference:

(1 − ζ�(2))

[
Jc(1 − α�(2)) sin Pl+1,l

+ h̄σ

2ed
∂tPl+1,l + h̄ε

8πed
∂2
t Pl+1,l

]
= Il+1,l . (1)

In Eq. (1), Il+1,l shows the total current density flowing
between superconducting layers l+1 and l . The first, second,
and third terms in the bracket on the left-hand side of Eq. (1)
show the contributions from the Josephson, quasiparticle,
and displacement current densities, respectively. The variable
t and the parameter d indicate, respectively, time and the
thickness of the Bi-Sr-O insulating layer in the BSCCO crystal.
The parameter Jc denotes the critical current density, and σ

and ε, respectively, show the normal conductivity and the
dielectric constant along the z axis. The parameters α and ζ

indicate, respectively, the capacitive and inductive coupling
constants between the superconducting layers, and these
parameters are defined as α = (εμ2/(sd) and ζ = λ2

ab/(sd),s
being the thickness of the superconducting layer.13,15 The
parameter λab is the penetration depth of the magnetic field
applied along the x or y axis, measured from the interface
between the BSSCO crystal and the electrode, and μ is
the Debye screening length. The operator �(2) is defined as
�(2)fl+1,l = fl+2,l+1 − 2fl+1,l + fl,l−1.

There have been intensive studies on the phase synchroniza-
tion of conventional Josephson junction arrays shunted by LCR
circuits.17–28 In some of the papers the third term in the brackets
of Eq. (1) is neglected. In BSCCO crystal the insulating
Bi-Sr-oxide layers are much thicker than the superconducting
Cu-oxide layers, and the electric polarization in the insulating
layers is very large. In this case, the contribution of the
displacement current cannot be neglected, and the current
plays an important role in phase synchronization. In the region
where the Josephson frequencies of the sample are within the
frequency width of the LCR circuit resonance, the phases are

strongly locked11,23 and Pl+1,l can be replaced by P, which is
independent of the layers. In this case, if the operators ζD(2)

and αD(2) operate on the terms in Eq. (1), these terms vanish.
The width Lx of the samples used in the experiments is

much narrower than 2λc, λc being the penetration depth of
the magnetic field applied along the y axis and measured from
the yz surface. Since the lengths Lx and Ly of the samples
used in the experiments are much longer than the height Lz

of the samples, the feedback effect due to the electrodes may
predominate over the effect of the boundary conditions at the
side surfaces. Therefore, we assume that the phase difference P
is spatially uniform along the x and y axes. The current Il+1,l in
Eq. (1) should be equal to the total surface current density in the
electrodes because of the current conservation law; therefore,
we can replace Il+1,l by the sum of the external current density
Iext and the oscillating surface current density ∂tQ/S at the
electrodes. The quantities Q and S indicate, respectively, the
surface charge at the electrodes and the area of the wider
surface of the electrodes. Thus, we may approximate Eq. (1)
by

Jc sin P + h̄σ

2ed
∂tP + h̄

2ed

ε

4π
∂2
t P = Iext + ∂tQ

S
. (2)

The external dc current flows almost uniformly inside the
electrodes along the z axis. On the other hand, the oscillating
current in the electrodes will flow inside the electrodes or
at the side surfaces of the electrodes, depending on whether
the thickness of the electrodes is smaller or larger than the
penetration depth.

In order to determine the values of P and Q we need another
equation. We consider the whole system, which includes the
electrodes, the BSCCO crystal, and the environment around
the sample, and describe the system in terms of an LCR circuit.
The charge oscillation induced in the electrodes generates
an oscillating voltage between the electrodes. The voltage is
composed of the three terms shown on the left-hand side (LHS)
of Eq. (3):

L∂2
t Q + R∂tQ + Q

C
= N

h̄

2e
∂tP + 2

3

D2

c3
∂3
t Q. (3)

The oscillating currents in the electrodes induce an oscillating
magnetic flux in the whole space. The first term on the LHS
of Eq. (3) indicates the voltage given by the time derivative
of the magnetic flux. The second term on the LHS of Eq. (3)
shows the voltage generated by energy dissipation, including
dissipation in the electrodes. The charges in the electrodes
generate an electric field in the whole space. The third term
on the LHS of Eq. (3) expresses the voltage induced by the
electric field.

The voltage of the LCR circuit should be equal to the sum of
the voltage between the top and bottom of the BSCCO crystal
and the voltage induced by radiation damping.29 In Eq. (3),
the parameter D indicates the distance between the electrodes,
and c is the velocity of light. The first term on the right-hand
side (RHS) of Eq. (3) is the voltage generated between the top
and bottom of the BSCCO crystal. In this term, h̄(2e)−1∂tP

indicates the voltage between the neighboring superconducting
layers. N denotes the number of intrinsic Josephson junctions
in the BSCCO sample. The second term on the RHS of Eq. (3)
denotes the voltage due to radiation damping, which is derived
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from the radiation power. Since the total oscillation current
is spatially uniform in the sample, the total radiation power
emitted from the sample is expressed by use of the dipole
emission formula:29

Radiation power = 2

3

D2

c3

〈[
∂2
t Q

]2〉
t
. (4)

In this paper, 〈A〉t denotes the time average of a quantity A.

III. NUMERICAL CALCULATIONS AND RESULTS

We obtain the time dependence of P and Q by numerically
solving the coupled Eqs. (2) and (3). For this purpose, we
rewrite Eqs. (2) and (3) in terms of nondimensional quantities.
The rewritten equations are given by

sin P + β∂τP + ∂2
τ P = iext + ∂τ q, (5)

∂2
τ q + r∂τ q + ω2

LCq = η∂τP + γ ∂3
τ q. (6)

In Eqs. (5) and (6) the nondimensional quantities for t,Iext,
and Q (τ,iext, and q, respectively) and the other parameters are
defined as

τ = ωpt, iext = Iext

Jc

, q = ωp

SJc

Q,

β = h̄ωp

2edJc

σ, r = R

Lωp

, ωLC = 1

ωp

√
LC

, (7)

η = Nh̄

2eLSJc

, γ = 2

3

ωp

c3L
D2.

In Eq. (7), ωp denotes the angular frequency of the Josephson
plasma at zero wave number. The radiation power [Eq. (4)] is
rewritten in terms of nondimensional quantities as

Radiation power = 2

3

V 2

c3
ω2

pJ 2
c

〈[
∂2
τ q

]2〉
τ
. (8)

In Eq. (8), V denotes the volume of the parallelepiped sample.
The values of the parameters in Eqs. (5) and (6) are chosen

in the following way: The parameter β is chosen to be 0.1,
as shown in Ref. 30. When the calculated radiation power is
expressed as a function of the voltage normalized by h̄ωP /2e,
the half-width of the radiation peak is equal to the value
of the resistance r, which depends strongly on the samples and
the environment. As a test we take r to be 0.6. The radiation
damping constant γ is estimated to be approximately 0.01
by using the expression for γ in Eq. (7) and an approximate
value of the inductance L as shown in Ref. 31. We choose
a value of 7 for the normalized voltage corresponding to the
normalized LCR resonant frequency ωLC . We use this value for
ωLC , the values for β, r, and γ mentioned earlier, and choose
the coupling constant η to be 20. Then, using Eqs. (5) and
(6) and the parameter values just described, we calculate the
radiation power. Then, we obtain the radiation peak appearing
at the external current 0.52 (the external current is normalized
by Jc) in the high bias current region. The radiation peak
appears in both the increasing and decreasing processes of the
external current.

Figure 2 shows the I-V characteristic curve. The letter
v in Fig. 2 indicates the voltage between the neighboring
superconducting layers in the BSCCO crystal. The voltage is
normalized by h̄ωP /2e, and is equal to the Josephson angular

FIG. 2. I-V characteristic curve: iext = external static current
density measured in units of critical current density Jc; v = voltage
between neighboring superconducting layers, normalized by h̄ωp/2e.
The solid and dashed lines show the I-V curves inside and outside the
resonance region, respectively. The parameter values r = 0.6, ωLC =
7, β = 0.1, η = 20, and γ = 0.01 are used.

frequency measured in units of the plasma angular frequency
ωp. A dip structure in the I-V characteristic curve appears
around the normalized voltage v = 6.98.

The occurrence of the dip structure is explained as follows:
By using Eq. (5) and the energy conservation law, the
normalized external current density is expressed as

iext = i0
ext + (1/v)〈(β∂τP

os − ∂τ q)∂τP
os〉τ , (9)

where i0
extdenotes the external current density in the absence

of the LCR circuit and P os indicates the oscillating part of
the phase difference. The time dependence of β∂τP

osand
∂τ q at the normalized dip voltage 6.98 is shown in Fig. 3.
The amplitude of ∂τ q is much larger than that of β∂τP

os.
Although ∂τ q and ∂τP

os do not have the same phase in time,
the quantity 〈∂τ q∂τP

os〉τ is much larger than 〈β(∂τP
os)2〉τ .

From this fact, we see that the second term on the right-hand
side of Eq. (9) has negative values in the resonance region of the
LCR circuit, causing the dip structure in the I-V characteristic
curve.

The radiation power in units of 2V 2ω2
pJ 2

c /(3c3) is shown as
a function of the normalized voltage in Fig. 4. We see that the
radiation peak appears at a normalized voltage of 6.98. The
radiation power at the peak is estimated to be approximately
500 μW for the 100 × 300 × 1.5 μm3 BSCCO sample.

If the value of the resistivity r is decreased, the half-width of
the radiation power becomes smaller and the radiation power
at the peak gets stronger. Therefore, to increase the radiation
power, we should decrease the load resistance, including
the contact resistance. The mechanism of this radiation is
explained as follows: As seen in Eq. (8), the radiation
power is proportional to the square of the time derivative of
the surface current density ∂τ q in the electrode. The surface
current density is almost equal to the sum of the Josephson
current density sin P and the displacement current density
∂2
τ P , since the oscillating normal current density is negli-

gibly small compared with the Josephson and displacement
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FIG. 3. (a) Time dependence of quasiparticle current density for
peak voltage v = 6.98; τ denotes ωpt, ωp being the Josephson plasma
angular frequency. (b) Time dependence of surface current density in
the electrodes at peak voltage v = 6.98. All the current densities are
normalized by Jc. The values of the parameters are the same as those
used in Fig. 2.

current densities. Figures 5(a), 5(b), and 5(c) show the time
dependences of the Josephson, displacement, and surface
current densities, respectively, at the voltage v = 5.6 in the left
tail region of the radiation power. As seen in Figs. 5(a) and 5(b),
the phases of the Josephson and displacement current densities

FIG. 4. Radiation power as a function of static voltage. The
radiation power is measured in units of 2V 2J 2

c ω2
p/(3c3), where V

is the volume of the parallelepiped sample. The static voltage is
normalized in the same way as in Fig. 2. The solid and dashed lines
show the radiation power inside and outside the resonance region,
respectively. The values of the parameters are the same as those used
in Fig. 2.

FIG. 5. (a) Time dependence of Josephson current density at
voltage v = 5.6. (b) Time dependence of displacement current density
at the same voltage. (c) Time dependence of surface current density
at the same voltage. All the currents densities are normalized by
Jc. The values of the parameters are the same as those used in
Fig. 2.

are almost out of phase. Therefore, the amplitude of the surface
current density is small, as seen in Fig. 5, causing the radiation
power to be very weak. When the voltage increases toward that
of the radiation peak, the phases gradually get closer to each
other and the amplitude of the displacement current increases.
When the voltage reaches that of the resonance peak, the
phases of the Josephson and displacement current densities
are almost in phase and the amplitude of the displacement
current density becomes much larger than that of the Josephson
current density, as seen in Figs. 6(a) and 6(b). Therefore, the
amplitude of the surface current density becomes very large,
as shown in Fig. 6(c), and it generates an intensive emission
of TEM waves. As discussed earlier, the mechanism of the
radiation in a high bias current region differs from that of the
radiation caused by the cavity-geometric resonance in a low
bias current region. The radiation at the high-bias region occurs
in both the increasing and decreasing processes of the bias
current.

Figure 7 shows the peak value of the radiation power as a
function of the coupling constant η. The values of the other
parameters are the same as those in Fig. 2. When the value
of η is fixed, the radiation peak appears approximately at the
voltage corresponding to the LCR resonant frequency ωLC .
As shown in Fig. 7, this system starts to radiate TEM waves
at approximately η = 1, and the radiation power at the peak
increases as the value of η increases. For large values of η the
radiation power drastically increases.
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FIG. 6. (a) Time dependence of normalized Josephson current
density at peak voltage v = 6.98. (b) Time dependence of displace-
ment current density at the same voltage. (c) Time dependence of the
surface current density at the same voltage. All the current densities
are normalized by Jc. The values of the parameters are the same as
those used in Fig. 2.

IV. DISCUSSION AND CONCLUSIONS

In the present study, we use a model in which an
array of intrinsic Josephson junctions is embedded in an
LCR resonant circuit. On the other hand, most studies on
synchronization (phase locking) of Josephson junctions have
been done by using models of Josephson junction arrays
shunted by LCR circuits.17–28,32 Using two-dimensional arrays
of Nb/Al/AlOx /Nb Josephson tunnel junctions, P. Barbara
et al. observed the strong and coherent emission of 0.15 TEM
waves due to phase locking triggered by a resonance in the
array structure.33

Recently, Zhou et al. pointed out that there is an intrinsic
difference between the phase-locking properties of a Joseph-
son junction array directly shunted by an LCR circuit and
an array embedded in the circuit.11 We show that there is
also a remarkable difference between the properties of the I-V
characteristic curve for these two models. The equations for
the array directly shunted by an LCR circuit are given just by
changing plus signs in front of ∂tQ/S in Eq. (2) and ∂τ q in

FIG. 7. Radiation power at peak voltage as a function of coupling
constant η. The radiation power is normalized as in Fig. 4. The values
of the parameters are the same as those used in Fig. 2.

Eq. (5) to minus signs, and by changing the minus sign in front
of ∂τ q in Eq. (9) to a plus sign. The sign changes are explained
in the following way: In the case of IJJAs embedded in an
LCR circuit, the current flowing in the BSCCO crystal is equal
to the sum of the external current and the oscillating current
in the electrodes, as seen in Fig. 1 and discussed in Sec. II. On
the other hand, in the case of IJJAs shunted by an LCR circuit,
the external current is equal to the sum of the currents in the
BSCCO crystal and in the LCR circuit, as seen in Fig. 8.

Using the equations for IJJAs shunted by an LCR circuit and
the parameter values in Fig. 2, we calculate the current-voltage
characteristic curve and the radiation power for the system of
the Josephson junction array shunted by an LCR circuit. The
results are shown in Fig. 9. A hump structure appears in the
resonance region of the LCR circuit, instead of the dip structure
in Fig. 2. The appearance of this hump structure is explained
as follows: When the minus sign in front of ∂τ qin Eq. (9) is
changed to a plus sign, the normalized external current for
the array shunted by the LCR circuit is expressed as iext =
i0
ext + (1/v)〈(β∂τP

os + ∂τ q)∂τP
os〉τ . The second term on the

right-hand side of this equation gives a positive contribution
to the external current in the voltage region of the LCR circuit
resonance, causing the hump structure in the I-V characteristic

FIG. 8. (Color online) Model of Josephson junction array shunted
by LCR resonant circuit. Brown and green show superconducting
layers and insulating layers, respectively. L, C, and R show the
inductance, capacitance, and resistance, respectively, of the external
impedance. Iext indicates an external static current density.
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FIG. 9. (a) I-V characteristic curve for IJJA shunted by LCR
circuit. The normalizations of the external current and voltage are the
same as in Fig. 2. (b) Radiation power at peak voltage for IJJA shunted
by LCR circuit as a function of the static voltage. The normalization of
the radiation power is the same as in Fig. 4. In Figs. 9(a) and 9(b) the
solid and dashed lines show the I-V curves and the radiation power,
respectively, inside and outside the resonance region. The parameter
values are the same as those used in Fig. 2.

curve in Fig. 9(a) As seen in Fig. 9(b), the radiation peak
appears very near the normalized voltage corresponding to the
normalized resonance frequency of the LCR circuit, ωLC = 7.
The radiation power at the peak is smaller than that for the
array embedded in the LCR circuit, shown in Fig. 4. When
the coupling constant η is increased from η = 0, the system

starts to radiate TEM waves at approximately η = 1.2 and the
radiation power increases as η increases.

The conclusion of this paper is as follows: When the
frequency of the ac Josephson current in the voltage state
is inside the frequency region of the LCR circuit resonance,
the displacement current in the BSCCO crystal is greatly
enhanced. The enhanced current generates charge oscillations
with a large amplitude in the electrodes. The oscillating
charges give rise to an intense emission of TEM waves.
The emission occurs in both the increasing and decreasing
processes of the high bias current. This behavior of the
emission is consistent with experimental results for the high
bias current region.8–10

When the load resistance is decreased, the width of the
emission power with respect to the voltage becomes narrower
and the power at the emission peak increases. To obtain this
intensive radiation power, it is important to decrease the load
resistance, including the contact resistance.

The BSCCO crystals used in experiments are not spatially
uniform, and thus the values of the parameters α, ζ , σ , ε, and
Jc in Eq. (1) change layer by layer. The inhomogeneity of
the parameter values causes a broadening of the radiation fre-
quency width. However, due to the strong phase-locking effect
occurring between the superconducting layers, as discussed in
Sec. II, the frequency width caused by the inhomogeneity is
narrowed compared with the frequency width of the resolution
limit of the spectrometers commonly used in the experiments.

In most of the experiments, mesa-shaped samples of
BSCCO crystal have been used. Since the thermal conductivity
of BSCCO crystals is poor, overheating occurs in the crystal
when a high bias current is applied.34 This may cause an inho-
mogeneous distribution of temperature in the BSCCO crystals.
This heating phenomenon might break the synchronization
of the phase differences between the superconducting layers,
reducing the radiation power. To avoid heating, it is desirable
that samples such as those shown in Fig. 1 be used.
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