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Diffusion Monte Carlo calculation of rate of elastic transmission of a helium vapor beam
through a slab of superfluid helium
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We present the results of diffusion Monte Carlo calculations of the elastic transmission of a low-energy
beam of helium atoms through a suspended slab of superfluid helium. These calculations represent a significant
improvement on variational Monte Carlo methods which were previously used to study this problem. The results
are consistent with the existence of a condensate-mediated transmission mechanism, which would result in very
fast transmission of pulses through a slab.
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I. INTRODUCTION

There are very few experimental confirmations1,2 of the
existence of a Bose condensate, first postulated by London,3 in
superfluid 4He. The most direct of such experiments are deep
inelastic neutron-scattering measurements.1,2 Several years
ago4–7 we proposed that observation of anomalous elastic
helium atom transmission would also be an experimental
signature of the existence of a condensate. We argued that
the quantum mechanical amplitudes for absorption and re-
emission of bosons (say from state λ) from a system in
which there are already nλ bosons present are respectively
enhanced by factors

√
nλ + 1 and

√
nλ. Because of this effect,

absorption and re-emission of helium atoms are strongly
enhanced. Further insight is obtained by consideration of the
one-body density matrix ρ1(�r,�r ′),8–10

ρ1(�r,�r ′) = 〈�N | ψ†(�r ′)ψ(�r) | �N 〉, (1)

where �N is the N -body ground state of the system and ψ†(�r ′)
and ψ(�r), respectively, create a particle at �r ′ and destroy
a particle at �r . The condensate fraction n0 is related8 to
the one-particle density matrix in the limit |�r − �r ′| → ∞ as
ρ1(�r,�r ′) → n0(N/V ), where V is the volume of the system.
Because the one-body density matrix is the overlap between a
wave function with one extra particle at �r ′ and a wave function
with one extra particle at a faraway point �r , one may expect that
processes in which a particle is added at �r and removed at �r ′ will
be observable with amplitudes essentially independent of the
distance between the two points. The proposed transmission
experiment would add and remove particles from the fluid in
this way in order to probe the structure of the one-particle
density matrix at large spatial separations. Transmission
takes place through a virtual quantum-mechanical process,
quantum mechanically mixing the state consisting of a free
particle and the N -particle Bose-condensed liquid ground
state and a (boosted) state consisting of N + 1 particles in
the Bose-condensed liquid ground state. These states differ in
energy by an energy of the order of the chemical potential
of about 7 K, so one expects a time delay of the order of
h̄/7 K ≈ 10−12 s for the re-emission of the incident atom.
We made previous estimates of the transmission amplitude
and phase for this process, both phenomenologically4 and
variationally,5 with results consistent with the uncertainty
principle estimate. The k dependence of the amplitude of the

condensate mediated transmission, if observed, might provide
some direct information about the structure of the condensate.

In the real system, other processes will compete with the
proposed condensate-mediated process when a low-energy
(≈1 K) helium atom is incident on the fluid. These include both
inelastic processes, such as those accompanied by the creation
of one or more ripplons which do not result in transmission,
as well as the elastic creation of a (real, not virtual) roton or
phonon with atomic absorption followed by roton or phonon
destruction together with atomic remission. We reviewed the
possible inelastic processes in Ref. 11. In the present paper
we only consider the elastic channel and do not obtain any
estimate of the relative magnitude of elastic and inelastic
channels. However, we point out that, as reviewed briefly in
what follows, there are both experimental and computational
indications that a substantial fraction of incident helium atoms
result in elastic transmission. What we do obtain from the
calculation described here is an estimate of the amplitude
and phase of the transmission coefficient of condensate
mediate transmission in the elastic channel. This permits
estimates of the relative probability of elastic transmission
and reflection as a function of incident momentum, as well
as the time delay associated with elastic transmission. Within
the context of studying only the elastic channel, there is also
the question of the relative probability of roton- and phonon-
mediated transmission and coherent, condensate-mediated
transmission. In principle, the methods described here can
address this question, but, as described in the Conclusion, the
implementation of the method in the calculation presented
here has not yet yielded a definitive answer to this last
question. (The competition between quasiparticle-mediated
transmission and condensate-mediated transmission has some
physical similarities to the competition between recoilless
emission of γ rays and emission accompanied by phonon
production in the Mössbauer effect.)

Three helium atom transmission experiments have been
reported: Wyatt and co-workers12 carried out an experiment
on an array of superfluid helium tubes and reported roton-
mediated atomic transmission. Incident atomic energies were
up to 4.5 K above the vacuum level. Lidke and co-workers
reported an experiment13 on a film of superfluid suspended
in a cesium-coated orifice and reported transmission which
they attributed to phonon-mediated transmission. Neither of
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these papers reported a prompt signal of the sort expected
for condensate mediation. Of the various possible reasons for
this, one is that, in both experiments, the superfluid sample is
strongly coupled to its environment (a tube or an orifice) and
this may make the envisioned current carrying “boost” of the
superfluid in the virtual intermediate state difficult to achieve.
A third experiment by Harms and Toennies14 measured energy
and momentum transfers from an essentially stationary 4He
vapor to moving superfluid 4He droplets. The lowest internal
excitation energy (in the reference frame of the droplet and
relative to the ground state energy of the droplet) of 4He
atoms entering the droplet was around 12 K (about 5 K
relative to vacuum), which is around the “maxon” feature in
the helium superfluid excitation spectrum. At such energies,
inelastic multiple quasiparticle excitation dominates elastic
transmission.

A correlated basis function calculation of transmission
amplitudes arising from quasiparticle creation and annihilation
was reported in Ref. 15. The method appears to explicitly
exclude a virtual condensate mediated mechanism, but allows
inelastic processes. Substantial fractions (of order 10% or more
depending on wave vector) of incoming beams were predicted
to be transmitted elastically in those calculations.

The variational Monte Carlo calculations which we re-
ported earlier5 gave a large condensate-mediated transmission
amplitude consistent with earlier calculations and arguments.
However, all variational calculations of that type depend
on the choice of variational wave function and one could
argue that the results might have arisen because the choice
of variational wave function was too constrained. In that
calculation, as in the one reported here, one is calculating
properties of an excited scattering state, so the usual variational
methods need to be modified to assure that the variational
procedure does not simply take the calculation back to the
ground state. In principle, this is not a problem, because the
scattering boundary conditions constrain the wave function
not to describe the ground state, but, for strongly interacting
systems, there are no standard, generally accepted methods
for carrying out such calculations. In previous work5 we
used a variational method called “minimizing the fluctuations
of the local energy” by Krotscheck et al.16 to estimate the
transmission coefficients.

Here we describe a nonstandard application of the fixed-
node approximation in diffusion Monte Carlo to fix the
boundary conditions and calculate the properties of the
required excited state. This is similar in spirit to the approaches
of Carlson, Pandharipande, and Wiringa,17 Alhassid and
Koonin,18 and Shumway and Ceperley19 for three-dimensional
scattering problems in small systems. However, it is important
to emphasize that the method we are using is different in
important details from the ones used in the cited papers. For
example, we do not use the methods of Ceperley and Bernu20

to calculate a convergent spectrum of excited states, as done in
Ref. 19. Instead, we determine the phase shifts by requiring that
the lowest energy consistent with a given boundary condition
fixed by the phase shifts be equal to the value of the energy
required for elastic transmission. [See Eq. (16), which is an
implicit equation for the phase shift at wave vector k.] This
method can only be used for the elastic channel, whereas the
method of Ref. 19 also yields estimates for inelastic channels.

On the other hand, as we show, we can use our method to obtain
results (albeit only for the elastic channel) for substantially
larger systems.

Diffusion Monte Carlo (DMC) calculations are, in prin-
ciple, exact and represent an improvement on our previous
variational Monte Carlo methods. For practical application,
DMC calculations require a “trial function” which plays a role
somewhat like the variational function in variational Monte
Carlo calculations. However, DMC calculations can give final
results for the wave function which are very different from
the trial wave function, whereas in variational Monte Carlo
calculations, the variational function fixes the form of the final
calculated result. In practice, in our fixed node approach, the
trial function does impose some constraints on the final DMC
result, but the result will be much closer to the exact one than
that resulting from a variational Monte Carlo calculation.

In the next section we describe the methods. In the third
section we present results, and in the last section we provide
conclusions and discussion.

II. DIFFUSION MONTE CARLO METHOD

The DMC method for determining the properties of strongly
interacting quantum systems (for which there is no convergent
perturbation expansion) was was proposed by Anderson21,22

and developed in the 1970s and 1980s with the addition of im-
portance sampling, fixed-node, and node-release methods.23–28

To find the properties of the ground state of a system, DMC
iterates the operator e−(H−Eref )τ on an initial wave function
�I until contributions from all the excited states vanish,
leaving only a term e−(E0−Eref )τ φ0, where the ground-state
wave function φ0 has energy E0. The resulting τ dependence
can be used to determine the ground-state energy and other
ground-state properties. To describe the method in more detail,
let φn(X) be the (unknown) energy eigenstates of the system’s
Hamiltonian (here X denotes a set of coordinates of all the
particles in the system):

Hφn(X) = Enφn(X).

Then, in principle, it is possible to expand

�I =
∑

n

〈�I |φn〉φn(X) =
∑

n

Anφn(X), (2)

defining An. Let a function f (X,τ ) be defined as

f (X,τ ) = �T (X)e−(H−Eref )τ�I (X)

= �T (X)
∑

n

exp[−(En − Eref)τ ]Anφn(X). (3)

�T is usually taken to be real. In most cases one also takes
�I = �T . Apart from the factor eEref τ , the function f (X,τ ) is
�T times the evolution of �I in imaginary time.

If the reference energy Eref is equal to the ground-state
energy, then

lim
τ−→∞ f (X,τ ) = �T (X)A0φ0(X),

so that

1

�T (X)
lim

τ−→∞ f (X,τ ) ∝ φ0(X), (4)

014504-2



DIFFUSION MONTE CARLO CALCULATION OF RATE OF . . . PHYSICAL REVIEW B 83, 014504 (2011)

because the exponential factors in the sum will cause all terms
in Eq. (3) for which En > E0 to vanish in the limit of large
τ . It is said that excited states are projected out of the initial
�I . If Eref �= E0, then f (X,τ ) either vanishes or diverges at
large τ . Therefore, if a value is found for Eref such that f

neither vanishes nor diverges, then the ground-state energy
E0 = Eref and the ground-state wave function is given by (4).
(It is assumed that �T has nonzero overlap with the ground
state φ0 so that A0 �= 0.) In order to compute f (X,τ ) one
computes its time derivative with respect to τ using (3),

∂

∂τ
f (X,τ ) = −�T (X) (H − Eref)

f (X,τ )

�T (X)
.

Using the explicit form of the kinetic energy in the Hamiltonian
for a nonrelativistic collection of particles, the evolution of f

can be rewritten as

∂f

∂τ
=

∑
i

h̄2

2mi

[∇2
i f − ∇i(f ∇i ln |�T |2)

]

−
(H�T

�T

− Eref

)
f. (5)

One interprets the last equation by regarding f as a density
function in the multidimensional (3 × the number of particles)
configuration space in which each “system point,” is a set
of coordinates for all the particles in the system. (This is
only possible if �T is real.) We represent this function by
an ensemble of system points. The first term corresponds to
diffusion, the second term (under the sum) corresponds to drift
of the points representing f with a velocity field ∇ ln |�T |2,
and the last (branching) term represents a source or sink for
system points. The value of Eref at which the number of system
points is not changing during the simulation is the ground-state
energy. At this same value of Eref the distribution of system
points represents the ground-state wave function (4).

To use DMC for an excited state requires some modifica-
tion. In the case of the problem at hand, we impose a constraint
on the imaginary time evolution, such that the density f

describes a wave function consistent with elastic scattering
boundary conditions which exclude the ground state. We will
show that an appropriate constraint can be imposed by use of
an appropriate trial function.

For the transmission problem, the boundary conditions on
the many-body wave function for N + 1 particles (of which 1
may be considered to be the incident particle and N to be in the
target superfluid) for the elastic scattering and transmission of a
low-energy atom incident normally with energy ε�k = h̄2k2/2m

on a slab containing N particles are described as follows:

�(�r⊥
1 , . . . ,�r⊥

N+1,z1, . . . ,zN+1)

−→
zi→±∞ ψ±

k (zi)�N (�r1, . . . ,�ri−1,�ri+1, . . . ,�rN+1). (6)

[These are 2(N + 1) conditions.] Here

ψ+
k (zi) = Tke

ikzi (7)

and

ψ−
k (zi) = eikzi + Rke

−ikzi . (8)

�N (�r1, . . . ,�ri−1,�ri+1, . . . ,�rN+1) is the ground state of the
N -particle slab system with the indicated coordinates. Here

we chose a system of coordinates in which the z axis is
perpendicular to the slab surface, that is in the transmission
direction, and we label the remaining transverse coordinates
as �r⊥, so that individual particle’s coordinates can be written
as �ri ≡ (�r⊥

i ,zi) and the entire set of atomic coordinates
comprising a coordinate of a system in the configuration space
as X ≡ ({�ri}) ≡ ({�r⊥

i },{zi}). The notation zi → ±∞ denotes
the many-body limit,

z1, . . . ,zN+1 −→ z1, . . . ,zi−1, ± ∞,zi+1, . . . ,zN+1, (9)

for any i and all �r⊥
i . We employ periodic boundary conditions

with respect to all the transverse directions, so that the wave
function is periodic with respect to all the transverse compo-
nents �r⊥

i . Note that not more than one atomic coordinate may
be allowed to approach infinity at a time, as long as the energy
of the incoming particle is insufficient to knock out more than
one atom from the slab, and therefore the wave function must
tend to zero for configuration-space coordinates with more
than one zi far from the slab. Similarly, a state in which none
of the zi’s is allowed to extend infinitely from the slab cannot
describe an elastic transmission process. (As discussed in the
Introduction, we are restricting attention to wave functions
describing elastic processes.) In the elastic scattering problem
the energy is constrained to be h̄2k2/2m + EN , where EN is
the ground-state energy of the target superfluid slab. In the
method we use, which is not the same as that used in Ref. 19,
for a given k we fix the phase of the incoming and out going
wave, use DMC to calculate the resulting energy, and then
vary the phase until the resulting energy is the correct one
for the elastic channel as given earlier. [Also, see Eq. (16).]
In that way we determine the phase for that k. However, to
implement the method we needed to use real-valued wave
functions as scattering states. We describe the resulting even
and odd state boundary conditions next.

To apply the DMC method to this problem one cannot
use precisely the boundary conditions used in Ref. 5 and
described in the preceding paragraph because the wave
functions involved are not real. We can obtain information
about the wave function satisfying these boundary conditions
by reformulating the problem in terms of scattering states
which are eigenstates (even and odd) of the operation of
reflection about the center of the slab, extending a method
used by Poulson and Molmer for the analogous problem in
the case of a weakly coupled Bose gas.29 In empty space at
fixed k, single-particle eigenstates with the required even and
odd character are simply cos(kz) and sin(kz). In the scatter-
ing problem the corresponding single-particle phase-shifted
states are

ψe
k = cos[kz + δe(k) sgnz] = cos[k|z| + δe(k)],

(10)
ψo

k = sin[kz + δo(k) sgnz] = sgn(z) sin[k|z| + δo(k)],

which are easily seen to have even and odd parity and
correspond to appropriately phase-shifted versions of cos(kz)
and sin(kz) with phase shifts δe(k) and δo(k). [These phase-
shifted functions have discontinuities at the origin but the
discontinuities are irrelevant to our discussion because the
functions Eq. (10) are only used to establish boundary
conditions at z → ±∞.] It is straightforward to show that

ψk(z) = eiδeψe
k (z) + ieiδoψo

k (z) (11)
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gives

ψk(z) =
{
eikz + Rke

−ikz for z < 0,

Tke
ikz for z > 0,

(12)

with coefficients given by

Rk = 1
2 (e2iδe − e2iδo ),

(13)
Tk = 1

2 (e2iδe + e2iδo ).

Therefore, if we solve the many-body Schrödinger problem
with the boundary conditions

�e,o(�r⊥
1 , . . . ,�r⊥

N+1,z1, . . . ,zN+1)

−→
zi→±∞ ψ

e,o
k (zi)�N (�r1, . . . ,�ri−1,�ri+1, . . . ,�rN+1) , (14)

with an appropriately symmetrized wave function and the
energy E = h̄2k2/2m + EN , then the resulting even and odd
phase shifts can be used to determine the transmission and re-
flection coefficients for the elastic scattering and transmission
problem using (13). The advantage of proceeding in this way
is that �e,o are real, permitting an adaptation of the DMC.

To enforce the boundary conditions (14) on the wave
functions during the DMC evolution, we use a trial function
of form

�
e,o
T (r⊥

1 , . . . ,r⊥
N+1,z1, . . . ,zN+1)

=
N+1∑
i=1

ψ
e,o
k (zi)�N+1;i(r1, . . . ,rN+1). (15)

Here �N+1;i(�r1, . . . ,�rN+1) is a nodeless function, localized in
the neighborhood of the slab and specified in what follows.
These trial functions will satisfy the boundary conditions as
long as

�N+1;i (�r1, . . . ,�rN+1) → �N (�r1, . . . ,�ri−1,�ri+1, . . . ,�rN+1)

in the limits zi → ±∞ described earlier. The nodes of �
e,o
T are

then fixed by the factors ψ
e,o
k (zi). These nodes, in turn, fix the

boundary conditions because, in the limit of large (positive or
negative) zi , the wave function of an isolated particle far from
the slab with nodes fixed by ψ

e,o
k (zi) will necessarily be a sine

or cosine function with the phase of ψ
e,o
k (zi). Because, in the

fixed node approximation which we use, the system points of
the DMC evolution cannot cross the nodal configuration space
hypersurfaces of the trial function, the boundary conditions
will be preserved during the DMC evolution with these trial
functions.

In outline, our calculational procedure is then as follows:
For a given value of k we solve the implicit equation for
the phase shifts given in (16) by choosing a series of trial
values of the phase shifts δe(k) and δo(k) and performing a
DMC calculation for each choice with the corresponding trial
function. (We do two DMC calculations, one even and one
odd, for each candidate choice of the trial phase shifts, for
each value of k.) Evaluating the resulting energies E[δe,o(k)]
from the DMC calculations for a series of phase shifts, we
then determine the correct phase shifts by solving the implicit
relations

E[δe,o(k)] = h̄2k2/2m + EN. (16)

-148

-147

-146

-145

-144

-143

-142

-1.0 -0.5 0.0

E
ne

rg
y(

K
)

Phase/ π

FIG. 1. An example of a calculation of an even phase shift.
k = 0.65 Å

−1
. The plot shows the DMC determined energy of the

scattering state for a series of possible phase shifts. Each energy
value is the result of a separate simulation using a different phase
shift in the trial function given by Eq. (15). The correct even phase
shift for this k is that for which the calculated energy is equal to
the known energy at this k [the right-hand side of Eq. (16)] which is
−142.9 K for this k, as indicated by the horizontal line. The error bars
on the DMC points show the statistical error in the energy. The figure
illustrates how the implicit Eq. (16) for the even phase shift is solved.
For this value of k the right-hand side of Eq. (16) is −142.9 K and the
phase δe(k = 0.65 Å

−1
) is thus determined to lie between −0.65π

and −0.85π . Such “phase scans” were repeated for each wave vector
for both symmetries.

(For each k there is one relation for the even phase and a
second relation for the odd phase). This imposes the correct
requirement on the energy as described earlier. The process
of solving Eq. (16) is illustrated in Figs. 1 and 2 . The DMC
results for the various trial phase shifts are the data points
and the value of the right-hand side of Eq. (16) is shown as
a horizontal line. A correct phase shift for the wave vector is
then estimated from the data by estimating the point at which
a curve through the data points passes through or touches
the horizontal line. If there were more than one channel for
elastic transmission and reflection, this process could give,
in principle, multiple solutions for the phase shifts. If we
succeed in finding a scattering state by this procedure, then,
if the DMC is fully converged, it will be an eigenstate at the
excited-state energy and will therefore be orthogonal to all
lower energy states, as required. States describing inelastic
scattering channels will have different boundary conditions.

For a full description of the procedure, it remains to specify
the functions �N+1;i(r1, . . . ,rN+1) which we so far said needed
to be nodeless, localized near the slab, and obeying the limit
�N+1;i(r1, . . . ,rN+1) → �N (r1, . . . ,ri−1,ri+1, . . . ,rN+1). We
have chosen the form

�N+1;i (r1, . . . ,rN+1)

= [1 − f (z∗
i )]

∏
j �=i

f (z∗
j )�N+1

Jastrow(r1, . . . ,rN+1), (17)

in which z∗
i = zi − ∑N+1

s=1 zs/(N + 1) and

f (zi) =
(

1

e(zi−a)/b + 1

) (
1

e(−zi−a)/b + 1

)
, (18)
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FIG. 2. An example of a calculation of an odd phase shift for
the same k value k = 0.65 Å

−1
used to obtain the results shown in

Fig. 1 , but using the scattering state trial function with odd symmetry.
Phases δo and δe are determined only to within a multiple of π , as can
be seen by examining Eq. (15).

where a and b are parameters roughly describing the width
and position of the edges of the slab. Notice that the function
is chosen to be a function of particle position relative to the
center of mass of the slab. �N+1

Jastrow(r1, . . . ,rN+1) is the Jastrow
function for the ground-state bulk helium problem with N + 1
particles in the McMillan form:

�N+1
Jastrow(r1, . . . ,rN+1) =

N+1∏
i,j=1 i �=j

exp[−(c/rij )5]. (19)

The resulting trial functions are essentially the same as the
first term in the variational function used in our previous
variational Monte Carlo calculations5 (after resummation to
form the appropriate incident, scattered and transmitted plane
waves as described earlier.) The Fermi-function like forms
are known to describe helium surfaces well.25,30 The main
defect in this trial function is that it does not locally conserve
current in the center of the slab. In Ref. 5 we used a second
term in the variational wave function to correct this defect.
In the calculations presented here we depend on the DMC
evolution toward a correct wave function to assure local current
conservation. We discuss this further in the final section.

III. CALCULATIONS AND RESULTS

In this section we present results of 32-particle transmis-
sion simulations. In fixed node approximation, the bound-
ary conditions are fixed by the trial function specified in
Eqs. (15), (17), (18), and (19). The interaction between helium
atoms is assumed to be of two-body Lennard-Jones type
with de Boer-Michels coefficients31: V (rij ) = 4ε[(r0/rij )12 −
(r0/rij )6], with ε = 10.22 K and r0 = 2.556 Å. More accurate
two-body potentials32–35 could be used within the method
without serious complications but were deemed unnecessary
at this stage of the work. We used c = 2.235 Å . Box transverse
dimensions were 6.15 × 6.15 Å and film parameters were set
at a = 19.7 Å (half thickness) and b = 0.49 Å (corresponding
to 10%–90% surface layer width of 1.8 Å). We used an
imaginary time step of 10−4 K−1 for 5 × 105 steps, resulting in

a total projection time of 50 K−1. Each simulation involved an
average of 500 system points, but no more than 1000. We used
a second-order integration method as proposed by S. Chin.36

This method, classified as DMC 2a in Ref. 36, has been tested
on helium37 and on systems with nodal wave functions.38

The method provided good convergence for our problem. The
system was allowed to equilibrate from the initial conditions
for the first one-fifth of the run. Equilibration was monitored
by recording energy and density histograms and the system
was found to be well equilibrated within the allotted period.

It is unusual to calculate an excited state with as many as
32 particles using this type of method. It was possible39 by our
use of the method described earlier, which is different from
others cited in the Introduction. The price we paid for this
advantage is that we could only study the elastic transmission
channel. However, even with 32 particles the results suffered
from finite size effects.

The energy that corresponds to the correct scattering phase
as described previously is given by the right-hand side of
Eq. (16). It includes the energy of an N -particle film (while
the entire transmission system involves N + 1 particles). In the
case of a 32-particle transmission, this calls for a simulation of
the ground state of a 31-particle film. Such a simulation may be
biased because of suboptimal filling of the simulation volume.
In the vicinity of N = 32, however, we find nearly linear
variation of the ground-state film energy with the number of
particles. The level of nonlinearity determines the possible
filling effects, which we estimate to be smaller than 1 K.
This is comparable to our typical statistical uncertainty of
about half a degree. Assuming linearity with particle number
we have estimated the ground-state energy of a 31-particle
film as (31/32) times our calculated ground-state energy of
a 32-particle film and used that value in Eq. (16). Other
reasonable estimates for EN give the same values for the
scattering phases within our statistical uncertainties.

Phases were extracted from each such calculation as
described earlier (see the final paragraph of the preceding
section) and a range of admissible ranges for the amplitude
and phase of the transmission coefficients as a function of
k were calculated with the help of Eqs. (13) and (16) with
results shown in Figs. 3 and 4. [Note that in Figs. 1 and 2, the

FIG. 3. (Color online) Absolute value of the transmission coef-
ficient vs the impact particle’s wave vector during elastic scattering
events. Bars indicate uncertainty.
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FIG. 4. (Color online) The phase of the transmission coefficient
determined from the even and odd phase shifts using Eq. (13).
The phases have been shifted to lie in the interval 0 to −2π . The
bars indicate the uncertainty. The phase as a function of k changes
rapidly, forming a repeating stripe pattern. Same data is shown
in Fig. 5.

only physically significant phase shifts are those which solve
Eq. (16). These figures illustrate the method used for solving
the implicit Eq. (16) for the correct phases for this k.] The
magnitude of the transmission coefficient turned out to be very
close to unity, implying nearly complete elastic transparency
at most incident wave vectors. There is some structure and
diminution of the calculated |Tk| at low wave vectors. This may
be an artifact of the fact that the wavelength of the incoming
particle becomes commensurate with the size of the slab at
these k’s.

Calculated results for the phase of the transmission coeffi-
cient are shown in Fig. 4. In Fig. 5 the calculated phases have
been shifted by factors of 2π to produce a phase which varies
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FIG. 5. The phase of the transmission coefficient, shown here
with the phases shifted by multiples of 2π to form a continuous
function, using the same data (including the same error bars) which
were used to plot Fig. 4. The line is a polynomial fit to all the data
except for the outlier point at k = 0.53 Å

−1
, as described in the text.

smoothly with k. The shifted phases are seen to very nearly
fall on a straight line with negative slope.

IV. DISCUSSION AND CONCLUSIONS

The phase of the transmission coefficient can be used
to extract some information about transmission times which
we can use to infer something about probable transmission
mechanisms. If we form a wave packet using the emitted
waves, it is of form

ψ(z,t) =
∫

dk

(2π )
g(k) exp[i(�k · �r − (h̄k2/2m)t + φ(k)],

where φ(k) is the phase of T (k). (We assume that the wave
packet is of infinite extent in the direction parallel to the slab
surface.) We expand the phase to second order in k,

φ(k) = φ0 + kdφ/dk|0 + (1/2)k2d2φ/dk2|0,

which clearly works over the range for which we measured
φ(k) (Fig. 5). The origin of the expansion can be taken to
be k = 0, as is done here. Now we assume that g(k) varies
more slowly about its maximum than the rate of variation of
the phase with k near the maximum in g(k). To evaluate this
assumption we note that g(k) is a product of |T (k)| and a
factor arising from the shape of the incoming incident wave
packet. The factor |T (k)| clearly varies much more slowly
than the phase over the range of k for which it was calculated
(Fig. 3). The variation of the factor associated with the
incoming wave-packet shape depends on the experimental
preparation of the incoming beam. Normally, from thermal
sources, one obtains a Gaussian wave packet in the moving
frame with a spatial width of the order of the thermal
wavelength associated with the temperature in the moving
frame. In the pulses used in some recent experiments40 the
temperatures in the moving frame varied between 0.01 and
1 K, corresponding to thermal wavelengths from about 10
to 100 Å. In the low end of this range the packet shape
is varying more slowly with wave vector than the phase in
the present calculation, for which dφ/dk ≈ −40 Å though
not in the high end of the range, corresponding to internal
pulse temperatures of 10 mK. However, under experimental
conditions dφ/dk will be of the order of the slab width,
which is likely to be considerably larger than 40 Å and in
such cases the assumption of a slowly varying envelope in
k space should be valid. With that assumption we obtain by
evaluation of the integral by steepest descent that the spatial
peak of the emerging wave packet will occur at the position at
which the derivative of the phase in the preceding equation is
zero, namely,

z + dφ/dk|0 + k0d
2φ/dk2|0 − (h̄k0/m)t = 0,

where k0 is the position of the peak, in k, of the incident wave
packet. For comparison with a freely propagating wave packet
with a peak in k at the same wave vector value k0 in the absence
of the slab of superfluid helium, we take the origin of z far to
the left of the left (incident) edge of the slab and consider z far
to the right of the right edge of the slab. Denoting vk0 = h̄k0/m
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the group velocity of the freely propagating wave packet,
we have

t = (z + dφ/dk|0)/vk0 + (m/h̄) d2φ/dk2|0
for the arrival time t of the spatial peak of the transmitted wave
packet at z, whereas the spatial peak of the freely propagating
wave packet leaving the origin at the same time would arrive
at the same value of z at time t ′ given by

t ′ = z/vk0 .

In close analogy to the definition of scattering length in
low-energy scattering from central potentials,41,42 we define
the scattering width of the slab as L = −dφ/dk|0. Then the
difference between the arrival time t in the presence of the slab
and the arrival time t ′ in the absence of the slab is

t − t ′ = −L/vk0 + (m/h̄) d2φ/dk2|0.

Thus, the predicted propagation time is reduced by the time
required for a free wave packet to pass through a region having
a width equal to the slab scattering width plus a contribution
from the curvature term. If the curvature term were zero, we
could interpret this to mean that the time for propagation
through the region of width equal to the scattering width
was zero. Hence, the curvature term may be interpreted as
the “time delay” experienced by a particle upon transmission
through the slab.

We find that the data in Fig. 5 can be very accurately fit to
a quadratic form in k if the point at 0.53 Å−1 is omitted. We
find a slope of −40.1 Å corresponding to a scattering width of
40.1 Å and a curvature corresponding to (m/h̄) d2φ/dk2|k0 =
1.4 × 10−15 ± 4.9 × 10−13 s (goodness of fit 0.496, reduced
χ2 of 0.9). The fit is much worse if the point at 0.53 Å−1 is
included and we believe that this point may represent some
effects of roton-mediated transmission, though we do not
have sufficient data to confirm this. The value of the scattering
width obtained is very close (equal within the uncertainties)
to the slab width which we obtain by other, less precisely
defined, procedures. The value found for the curvature term
is consistent within the uncertainty principle estimates cited
earlier and with the results of Ref. 5 (and also with zero
“time delay”).

During some of the simulations we observed very large
error bars or obtained energy values which were clearly not
consistent with a differentiable dependence of the energy on
the phase shifts in (16). In these cases configurations in which
one particle was far from the slab were dominant. When
the fixed trial phase was far from the correct physical one,
these states contributed negligibly to energy averages in long
calculations. In cases in which the fixed phase was close to
the correct one, the contribution of such states was harder to
eliminate by extended calculation. This is understood and in
fact expected. In such cases, the energy at the fixed phase,
involving an ensemble of configurations with the scattered
particle near as well as far from the slab, has an energy quite
close to the energy of a configuration in which one particle is
far from the slab. Therefore, in an imaginary time simulation,
though the state with a particle far from the slab will be

eventually eliminated in favor of the correct one, the difference
between the decay rate of that state and the correct one will
be small and will get smaller as the fixed phase gets closer to
the correct one. This is exactly the qualitative behavior which
we observe in the calculations.

In conclusion, we have developed a version of the DMC
method for study of the problem of transmission of an incident
low-energy beam of helium atoms in vapor phase through
a suspended slab of superfluid helium. To fix the scattering
boundary conditions and avoid decay of the imaginary time tra-
jectories of the DMC method to the ground state, we fix nodes
of the trial wave function outside the slab. By doing successive
calculations with varying positions of these nodes, we obtain
the energy as a function of the scattering wave function phase
shift. We then obtain the physical phase shift by numerically
solving the equation which requires the energy to be the
physical energy of the ground state of the slab plus the kinetic
energy of the incident particle when it is far from the slab. The
procedure is carried out for both even and odd scattering states
and the results are used to compute the scattering amplitude
and to estimate the time delay for the transmission event. This
appears to be the first DMC calculation on such a scattering
problem.

From 32-particle simulations, we find very large trans-
mission coefficients (near 1 in amplitude) and very short
transmission times, consistent within the accuracy of the cal-
culation with our earlier estimates (a fraction of a picosecond).
These results are consistent with previous suggestions of
a condensate-mediated mechanism for transmission, which,
however, has not yet been observed experimentally.

There may be some indications in the results of the
competitive, quasiparticle-mediated transmission mode, but
these require further study, and it may require a different trial
function to easily access the part of the Hilbert space describing
quasiparticle mediation using DMC.

As discussed earlier, the trial function used here does not
locally conserve current, and it is very advisable to repeat
these calculations including a term, used earlier in variational
Monte Carlo calculations on the same problem, which allows
better local current conservation in the trial function. This
would check the assumption, made in the present work, that
local current conservation is adequately restored by the DMC
drift-diffusion processes.

Finally, there is evidence of finite size effects in the present
calculations and it would be desirable to repeat them with
a larger system. However, our earlier VMC calculations,5

which gave results very similar to the ones reported here, were
done for two slab thicknesses and larger numbers of particles,
giving us some confidence that the results obtained from the
DMC simulations on 32 particles reported here will not be
qualitatively different from those which would be obtained in
larger systems.
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