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Phase diagram of vortex matter of type-II superconductors
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We propose a model to construct the phase diagram for type-II superconductors through molecular-dynamics
simulation. In this model, the Abrikosov vortices interact with long-range repulsion and short-range attraction.
We are able to obtain the phase diagrams consisting of the vortex lattice, the intermediate-mixed phase (IMP),
and the disordered vortex phase in the B-T , B-κ , and B-q planes, where B is induction, κ is the Ginzburg-Landau
parameter, and q is the relative strength of the attraction to repulsion interactions between vortices. The IMP is in
the form of a superlattice of either vortex bubbles or parallel vortex stripes, agreeing excellently with experimental
results that have not yet been explained by existing models.

DOI: 10.1103/PhysRevB.83.014501 PACS number(s): 74.25.Dw, 74.25.Uv

Type-II superconductors exhibit a set of interesting phases
including the Shubnikov phase, which has attracted a
large amount of experimental and theoretical attention.1 In
the phenomenological Ginzburg-Landau-Abrikosov-Gor’kov
(GLAG) theory, it is proposed that the Shubnikov phase is the
Abrikosov vortex lattice (the mixed phase) in superconductors
with a high Ginzburg-Landau (GL) parameter, κ , which has
been well confirmed by experiments.2–4 Further study shows
that the Shubnikov phase can be either the mixed phase or the
intermediate-mixed phase (IMP), consisting of a combination
of the mixed phase and the Meissner phase for low-κ type-
II superconductors. Therefore, type-II superconductors are
divided into two kinds: type II/1, which exhibits the IMP, and
type II/2, which exhibits the mixed phase.4 The Abrikosov
vortex lattice is found in the limits of high temperatures
(T ≈ Tc, the critical temperature), high fields (B ≈ Bc2, the
upper critical field), and for a very short electron mean free
path (κ � 1 ) based on the GLAG theory, which is widely used
to study type-II/2 superconductors. Great efforts have been
devoted to overcoming these restrictions. Substantial progress
has indeed been made. For example, the calculation of the
vortex lattice and its elastic properties at arbitrary fields and κ

has been reported.4 However, one still expects a more generic
theory.

With the discovery of new high-κ oxide superconductors,
the vortex liquid phase was observed.5,6 An interesting feature
of the vortex liquid is so-called reentrance, in which the vortex
liquid phases occur at both high- and low-field regions at a
constant temperature. This reentrant behavior has also been
observed in the low-κ classical superconductor NbSe2.7,8 Sim-
ulations have suggested that the reentrance phenomenon can
result from the disorders in the anisotropic and layered high-κ
type-II superconductors,9 but the nature of the reentrance of
vortex melting is still a matter of controversy.

As a new vortex phase, the IMP was initially observed
in low-κ type-II superconductors such as Nb, V, Tc, and
Pb alloys with κ ≈ 1/

√
2.10–13 Although the IMP has been

associated with the existence of the short-range attractive
interaction between vortices in addition to the long-range
repulsive interaction,12,14 a comprehensive understanding of
the physics of the IMP is still lacking. For example, to the
best of our knowledge, no numerical phase diagram of the

type-II/1 superconductors, that is, the phase diagram for the
IMP, has been reported. It should be noted that a rich variety of
physical and chemical systems display the so-called modulated
structures similar to the IMP, originating from a compromise
of the competing interactions.15–17 For instance, the presence
of a short-range attraction and of a screened electrostatic
repulsion leads to the formation of aggregates (bubbles) in
charged colloidal suspensions.18 For other areas, note the
following: (i) The effective interaction (short-ranged attraction
and long-ranged repulsion) between two solute particles in a
subcritical liquid solvent can stabilize clusters of nanometer
sizes.19 (ii) Spontaneous patterning of quantum dots at the
air-water interface occurs due to the competition between
an attraction and a longer-ranged repulsion.20 Therefore, by
studying the consequences of the presence of the competing
interactions in a system of superconducting vortices, it may
be possible to gain insight into the nature of vortex phases
including the IMP.

An important prediction of the GLAG theory is that there
exist two kinds of superconductors: a superconductor with
κ < 1/

√
2 belongs to type I, and one with κ > 1/

√
2 belongs

to type II. Now that the IMP was observed only for low-
κ type-II superconductors (κ ≈ 1/

√
2 ), a complete theory

should be able to predict the IMP at low κ and the mixed
phase at high κ . To the best of our knowledge, there is no such
work published. Thus, it is still a long-standing challenge to
understand the previously mentioned vortex phases in a unified
frame, especially at the microscopic level.

Here, we study the equilibrium phase diagram of type-II
(type-II/1 and type-II/2) superconductors by Langevin
molecular-dynamical simulation. The molecules are two-
dimensional Abrikosov vortices interacting with each other,
showing long-range repulsion with short-range attraction. We
study the vortex phases with a unified model as a function of
vortex density, temperature, κ , and the relative strength of the
attraction to repulsion, q. In the B-T plane, we find that the
vortex system with competing interactions forms the vortex
lattice at high fields, the IMP at intermediate fields, and the
disordered vortex phase in high temperatures and low fields;
in the B-κ and B-q planes, a disordered vortex phase occurs
in lower fields, and the IMP and the vortex lattice occur in
higher fields. This indicates that we have calculated all vortex
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phases observed experimentally for type-II/1 and type-II/2
superconductors.

Our main assumption is that the effective interaction force
between two vortices is as follows:21,22

F vv(r) = (
φ2

0s
)
(2πμ0λ

3)−1[λ/r − q exp(−r/ξ )], (1)

where φ0 is the flux quantum, s is the length of the vortex,
μ0 is the vacuum permeability, λ is the London penetration
depth, and ξ is the effective coherence length. The first term is
a long-ranged repulsion via the logarithmic form potential,23

the second term is the short-ranged vortex attraction of an
exponential form,11 and the parameter q reflects the relative
strength of the attraction to repulsion interactions. Then we
use the overdamped Langevin equation of motion for a vortex
at position ri ,24

Fi =
Nv∑

j

Fvv(ri − rj ) +
Np∑

k

Fvp
(
ri − rp

k

) + FT
i = η

dri

dt
,

where Fi is the total force acting on vortex i, Fvp are
the forces due to vortex-pin interactions, FT is the thermal
stochastic force, η is the Bardeen-Stephen friction coeffi-
cient, Nv is the number of vortices, Np is the number of
pinning centers, and rp

k is the position of the kth pinning
center. We employ periodic boundary conditions and cut off
the vortex-vortex interaction potential smoothly.25 Pinning
centers exert an attractive force on the vortices: Fvp(ri −
rp
k) = −fpv(rik/rp) exp[−(rik/rp)2]r̂ik , where fpv tunes the

strength of this force and rp determines its range. We assume
rp = 0.5λ and fpv ∝ B2

c2(1 − B/Bc2)ξ 2/κ2 as core pinning is
considered,26 where κ = λ/ξ , and Bc2, λ, and ξ depend on the
temperature via Bc2(T ) = Bc2(0)[1 − (T/Tc)2], λ(T )/λ(0) =
(1 − T/Tc)−1/2, and ξ (T )/ξ (0) = (1 − T/Tc)−1/2.27 The ther-
mal fluctuation force is implemented with a Box-Müller
random number generator and has properties 〈F T

i 〉 = 0 and
〈F T

i (t)F T
j (t ′)〉 = 2ηkBT δij δ(t − t ′) at a given temperature

T . We normalize lengths by λ0 = λ(0) and time by τ0 =
2πμ0η0λ

4
0/(φ2

0s). The equation of motion is integrated by an
Euler scheme with a normalized time step of 
t = 0.005.28

The total number of vortices Nv = 900 (unless specified
otherwise) is used in the calculations presented here. For
larger systems, similar results are observed. We employ q =
2.3, Np = Nv, fpv = 0.1f0 (unless specified otherwise), ξ0 =
200 Å, λ0 = 200 Å, s = 12 Å, and η0 = 1.4 × 10−17 kg/s.
In all cases, the vortices are randomly distributed for the
initial state of the superconducting system. Pinning centers
are randomly distributed in the simulation box. In addition,
we calculated the vortex phases by replacing the logarithmic
form vortex-vortex potential with the modified Bessel function
of the second kind [K0(r/λ)], and found that the simulating
results for the modified Bessel function are in qualitative
agreement with those for the logarithmic function. Thus,
the simulation results in this work are applicable to two-
dimensional systems (thin films, stack of superconducting lay-
ers) and quasi-two-dimensional systems (rigid vortex lines).

The equilibrium phase diagram of type-II superconductors
in the B-T plane is shown in Fig. 1, and the details of the
phases in regimes I, II, II, and IV in Fig. 1 can be seen in
Fig. 2. The phase diagram demonstrates all the well-known
vortex phases for type-II/1 and type-II/2 superconductors,

FIG. 1. (Color) Phase diagram of vortex matter as a function of
field and temperature. The insets show the structures of the vortex
phases in regimes I–IV.

including the vortex lattice, the IMP (the ordered bubble and
stripe phases), and the disordered or amorphous vortex phase.

In the high-field regime [IV in Fig. 1 and Fig. 2(a)],
the vortices form the hexagonal Abrikosov lattice. As was
mentioned earlier, the vortex lattice was initially predicted by
the phenomenological GLAG theory for type-II/2 supercon-
ductors with κ � 1, T ≈ Tc, and H ≈ Hc2. In contrast, there
are no restrictions on κ , T , and B that are needed to obtain
this lattice in our simulation. It is well known that experiments
indeed confirm the existence of the vortex lattice for type-II/2
superconductors at T < Tc and B < Bc2. This result shows
that our model is suitable for studying the vortex states for
type-II/2 superconductors.28,29

In the intermediate-field regime, that is, regimes II and III in
Fig. 1, the vortex system displays two interesting superlattice
patterns: (i) a hexagonal lattice of bubbles of vortices and
(ii) parallel stripes of vortex collections. The details of the
superlattices are shown in Figs. 2(c) and 2(b). As equilibrium
vortex phases, these structures are, of course, the result
of competition between the long-range repulsive interaction
and the short-range attractive interaction at different vortex
densities. These numerical superlattices coincide well with
the experimental observation; see, for example, Fig. 4(c) in

(a) (b)

(d)(c)

FIG. 2. Vortex phases for different magnetic fields at fixed
temperature T = 0 and Nv = 400. Panel (a) shows the vortex lattice
for B = 0.8Bc20. Panels (b) and (c) show the superlattice of vortex
stripes for B = 0.59Bc20 and the superlattice of vortex bubbles for
B = 0.43Bc20, respectively. Panel (d) shows the disordered phase for
B = 0.04Bc20.
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(a) (b) (c)

FIG. 3. Structures of the IMP as a function of temperature at
B = 0.43Bc20: (a) superlattice of vortex bubbles at T = 0.5Tc; (b)
vortex stripe phase at T = 0.6Tc; (c) liquid phase at T = 0.75Tc.

Ref. 11. To the best of our knowledge, this is the first report of
reproducing the IMP through simulation. The intermediate-
mixed state has been explained by the appearance of a
long-range vortex attraction that causes an S-shape (unstable)
magnetization curve from which the equilibrium states are
obtained by a Maxwell construction.30,31 Note that we claim
a long-range repulsion potential that is important for the
formation of long-range order between vortex domains, such
as stripes or bubbles [see Fig. 4(c) in Ref. 11]. This result
shows that our model is also suitable for studying the vortex
states for type-II/1 superconductors.

In regime I in Fig. 1, the vortex system displays a disordered
phase. The details of the corresponding patterns are shown in
Figs. 2(d) and 3(c). At high temperatures for both low and high
field, thermal fluctuation is important, so the vortices form a
vortex liquid. We call it the high-T liquid. This high-T liquid
state has been observed for both high- and low-temperature
superconductors using various experimental techniques.32

While in the low-field regime for low temperature, the vortices
are dilute and the disorders become important, and thus
the vortex system manifests itself as an amorphous state.33

This result is consistent with the prediction from the elastic
theory.5,6 We also calculated the low-field vortex phase for the
system without quenched disorders, and found that the vortex
system will form an ordered vortex lattice after waiting for
a very long relaxation time. This indicates that the formation

of a low-field disordered phase indeed results from the effect
of quenched disorders. The existence of the disordered phases
at both low temperatures (corresponding to low field) and
high temperatures is reminiscent of the interesting reentrance
melting phenomenon in vortex matter. It is clear that in
the low-B regime of Fig. 1, the vortex phase experiences
a transition from the IMP into the low-B disordered phase
with decreasing field. In the high-B or intermediate-B regime,
the vortex phase has a transition from the vortex lattice
or the IMP into the high-T liquid upon increasing field
or temperature; see also Fig. 3. In fact, the reentrance of
vortex melting has been predicted by theory and confirmed by
experiments.5–9

We then study the vortex phases as functions of field B

and κ (and/or q). In Fig. 4(a), the B-κ phase diagram shows
four typical vortex phases: a disordered vortex phase forms in
lower fields, while in high fields, with increasing κ , vortices
form a hexagonally ordered bubble phase and an ordered stripe
phase, as well as a vortex lattice. The structures of these
phases can be seen in Fig. 2. To understand the reason for the
formation of these vortex phases as a function of κ , we show the
representative intervortex interaction force F vv(r) curves for
different κ , as shown in the inset of Fig. 4(a). For a larger κ , it is
seen that F vv(r) is positive, meaning the intervortex interaction
is pure repulsion. So vortices form an ordered lattice. For a
smaller κ , F vv(r) becomes negative in a shorter range while
still positive in a longer range. That is, this sort of interaction
between particles (vortices) is of long-range repulsive with
short-range attractive type. It has been well known that such
types of interaction can lead to spatially periodic modulated
structures in various condensed systems.15 For the supercon-
ducting vortex system studied here, the formation of vortex
clusters such as bubblelike or stripelike structures is induced by
short-range attraction. Additionally, the creation of intercluster
order and intracluster order results from long-range repulsion
and short-range repulsion respectively. On the other hand, the
average distance between vortices in the initial stage is mainly
controlled by vortex density B. For lower B corresponding
to larger vortex-vortex separation, the intervortex interaction
is so weak that vortices can only form a disordered or
amorphous phase. For higher B, the short-range repulsion may
be dominant, leading to an ordered lattice phase.

(a) (b)

FIG. 4. (Color) (a) Phase diagram of vortex matter as function of field B and κ , (b) phase diagram of vortex matter as function of B and
q for T = 0, Np = 2Nv, fpv = 0.15f0, and rp = 0.2λ. The phases in both (a) and (b) are the disordered vortex phase (I), the hexagonally
ordered bubble phase (II), the ordered stripe phase (III), and the vortex lattice (IV). The inset in (a) shows the intervortex interaction force
F vv (r) as a function of the distance r between vortices for different κ (see text for a more detailed discussion).
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(a) (b) (c)

FIG. 5. Vortex phases for different q for B = 0.65Bc20, T = 0,
Np = 2Nv, fpv = 0.15f0, and rp = 0.2λ: (a) the vortex lattice for
q = 0; (b) the vortex stripe phase for q = 2.3; (c) the vortex bubble
phase for q = 3.

The nature of the vortex system can also be examined
by tuning the relative strength of the attraction to repulsion
interactions q. Figure 5 shows three typical vortex phases for
different q at a fixed field (B = 0.65Bc20). For q = 0, the

vortex system displays an ordered hexagonal lattice due to the
dominant long-range repulsion [Fig. 5(a)]. With increasing q,
the intervortex attraction becomes important. The long-range
repulsion competes with the short-range attraction, resulting
in the occurrence of a new characteristic length scale (the
modulation period) relating to two kinds of spatially modulated
structures: the vortex stripe phase and the bubble phase:
for relatively small q (=2.3), the vortex system exhibits
two-dimensional symmetry [Fig. 5(b)], and for relatively large
q (=3), the vortex system shows three-dimensional symmetry
[Fig. 5(c)]. In fact, the symmetry of two modulated structures
is determined not only by q but also the vortex density B,
because B controls the average vortex-vortex separation and
thus the interaction between vortices. In Fig. 4(b), we show
the vortex phase diagram as a function of B and q, displaying
four typical vortex phases mentioned earlier. In addition to
disordered phase in low fields, vortices form the vortex lattice,
the ordered stripe phase, and the hexagonally ordered bubble
phase depending on B and q.

One marked advantage of the molecular-dynamics sim-
ulation is that the time evolution of the formation of the
previously mentioned phases can be studied. For simplicity,

kky x
(g)

kky x
(h)

kky x
(i)

kky x
(j)

kky x
(k)

kky x
(l)

(a) (b) (c)

(d) (e) (f)

FIG. 6. (Color) Time evolution of the formation of the ordered bubble phase, starting from a random disordered state, as shown in
(a), and the corresponding structure factors with B = 0.43Bc20 and T = 0. The vortex configurations are (b) t = 2, (c) t = 10, (d) t = 20,
(e) t = 30, and (f) t = 50. The corresponding structure factor S(k) are (g) t = 0, (h) t = 2, (i) t = 10, (j) t = 20, (k) t = 30, and (l) t = 50.
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here we only show the formation of the superlattice of
bubbles. The snapshots illustrated in Fig. 6 are the typical
vortex structures with the corresponding structure factors,
S(k) = |∑Nv

i=1 exp[ik · ri]|2/Nv, at different times. It can be
seen that the time evolution is characterized by two stages:
an early stage dominated by vortex attraction and a late
stage dominated by long-range vortex repulsion. In the early
stage, the vortex system forms interconnected and irregular
polydisperse domains [Figs. 6(b) and 6(c)]. The corresponding
structure factors S(k) show one central peak, indicating the
absence of ordering [Figs. 6(h) and 6(i)]. In the late stage, as the
long-range repulsive interaction becomes dominant, the bub-
bles of the vortex state become simultaneously monodisperse
and ordered [Figs. 6(d)–6(f)], and the corresponding structure
factors gradually become crystalline-like [Figs. 6(j)–6(l)].

In a real experiment, only part of the vortex states
[Fig. 6(a)–6(f)] can be probed;12 see also Fig. 4(b) in Ref. 11.
For a perfect sample, the vortex relaxation time might be
very short due to small local energy barriers. Thus, only the
final equilibrium state [Fig. 6(f)] rather than the metastable
states [Figs. 6(a)–6(e)] might be observed. However, for a
sample with strong vortex pinning, the vortices are easily
trapped, staying in the long-lived metastable states due to
long relaxation time. This means that one can only record
part of the metastable states rather than the equilibrium state
[Fig. 6(f)]. This might explain why the disordered states have

been frequently observed for low-κ type-II superconductors12

while the hexagonally ordered bubbles shown in Fig. 6(f) were
seldom probed in experiments. For the sake of simplicity,
we leave the effect of pinning centers on IMP and the
corresponding vortex dynamics to a future study.

In summary, we have studied the phase diagram of type-
II superconductors in the B-T , the B-κ , and B-q planes
based on a molecular-dynamical simulation. The model we
propose [Eq. (1)] to describe the complexity of the vortex
state in superconductors provides short-range attraction and
long-range repulsion and is a representative model for a class
of physical systems with these properties. We have observed
the IMP, the vortex lattice, and disordered phases over a wide
range of fields and temperatures and κ . The IMP, consisting of
a hexagonal superlattice of vortex bubbles or a superlattice of
parallel stripes, has been numerically observed. The simulation
results coincide well with the experimental observations for
type-II superconductors with different κ .
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