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Magnetic properties of uranium and neptunium compounds showing the coexistence of the Kondo screening
effect and ferromagnetic order are investigated within the Anderson lattice Hamiltonian with a two-fold degenerate
f level in each site, corresponding to 5f 2 electronic configuration with S = 1 spins. A derivation of the
Schrieffer-Wolff transformation is presented and the resulting Hamiltonian has an effective f -band term, in
addition to the regular exchange Kondo interaction between the S = 1 f spins and the s = 1/2 spins of the
conduction electrons. The resulting effective Kondo lattice model can describe both the Kondo regime and a
weak delocalization of the 5f electrons. Within this model we compute the Kondo and Curie temperatures as
a function of model parameters, namely the Kondo exchange interaction constant JK , the magnetic intersite
exchange interaction JH , and the effective f bandwidth. We deduce, therefore, a phase diagram of the model
which yields the coexistence of the Kondo effect and ferromagnetic ordering and also accounts for the pressure
dependence of the Curie temperature of uranium compounds such as UTe.
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I. INTRODUCTION

In cerium, ytterbium, uranium, and other anomalous rare-
earth and actinide compounds, the interplay between the
Kondo effect and magnetism leads to the formation of
various interesting phenomena which still attract a great
deal of attention.1–3 Both effects depend strongly on the
hybridization between f and conduction electrons, which in
turn significantly influence the level of localization of the
f electrons. The extent of the localization is sensitive to
various external parameters, such as temperature and pressure,
but most importantly to the spatial extension of the orbitals.
Actually, in the case of cerium compounds, 4f electrons are
usually well localized, while in the case of uranium and other
actinide compounds, 5f electrons can be either localized or
itinerant, or in between, depending on the studied system. The
nature of the electronic structure of actinide metals has been
studied for a long time and extensively reviewed.4–11

The difference between the 4f and 5f electrons leads
to different magnetic properties of rare-earth and actinide
compounds.12 In the case of cerium Kondo compounds, a
competition between the Kondo effect on each Ce atom
and the magnetic ordering of the Ce magnetic moments
through the Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action has been successfully described by the so-called
Doniach diagram.13 In this diagram, both the Néel temperature
TN (or the Curie temperature TC) and the Kondo temperature
TK are obtained as functions of the Kondo exchange interaction
constant JK . In most of the Ce compounds, the magnetic
ordering temperatures, TN or TC , are rather low, typically of the
order of 5–10 K. With increasing pressure (i.e., with increasing
JK ) ordering temperatures pass through a maximum and then
tend toward zero at the quantum critical point, above which
the systems exhibit nonmagnetic heavy fermion properties.

The situation in actinide compounds is more complex, and
it is now established that some of them exhibit a coexistence

of magnetic order and the Kondo effect. Indeed, this phe-
nomenon has been observed in several uranium compounds,
such as UTe,14–16 UCu0.9Sb2,17 and UCo0.5Sb2,18 in which
a ferromagnetic order with large Curie temperatures (equal,
respectively, to TC = 102 K, 113 K, and 64.5 K) and a
logarithmic Kondo-type decrease of the resistivity above TC

has been experimentally detected. A similar behavior have
been experimentally observed in the neptunium compounds
NpNiSi219 and Np2PdGa3,20 with Curie temperatures equal
to, respectively, TC = 51.5 K and 62.5 K.

The origin of this fundamentally different behavior ob-
served in uranium compounds lies in the fact that 5f electrons
are generally less localized than 4f electrons and have a
tendency toward partial delocalization, which in addition
leads to a reduction of the magnetic moments. Moreover,
5f electrons often exhibit dual, localized and delocalized,
behavior, and the experimental data do not clearly distinguish
between a localized 5f n configuration and a mixed-valence
regime. Thus, it is always a challenge to decide which is
the best framework for discussing actinide materials. For
example, magnetic moments observed in UTe are substantially
smaller than the free-ion values for either the 5f 2 or the
5f 3 configurations.16 Similarly, in the series of uranium
monochalcogenides, US lies closest to the itinerant side for
the 5f electrons, USe is in the middle, and the 5f electrons
are more localized in UTe, as evidenced by magnetization
measurements.16 Moreover, the Curie temperature of UTe
passes through a maximum and then decreases with applied
pressure, which is interpreted as a weak delocalization of
the 5f electrons under pressure.5,16 The dual nature of the
5f electrons has also been used by Zwicknagl et al.8,9 to
account for the behavior of some uranium compounds.

Another important difference between magnetic cerium and
uranium compounds lies in the values of the 5f -electron spins
S, which are always larger than 1/2 in uranium systems. (To
avoid any confusion, in the following S always designates
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the spin of the f -localized electrons and s the spin of the
conduction electrons.) For spins S larger than 1/2, the Kondo
effect is more complex and depends on the number of screening
channels; the underscreened Kondo impurity problem and
more generally the multichannel impurity problem have been
studied extensively21–25 and solved exactly by the Bethe ansatz
method.26 It has been clearly established that the large spin S

of the f electrons can be completely screened at T = 0 by
spins of conduction electrons only if the number of screening
channels n is equal to 2S. If this is not the case, the problem
is more complicated, as shown by Nozieres and Blandin.21

Here we are interested in the case of the underscreened
Kondo effect, which occurs when n is smaller than 2S; in
this case, in contrast to the regular Kondo impurity case,
the spin is only partially screened at low temperatures, and
this leads to a reduced effective spin Seff = S − n/2. For a
spin S = 1, this happens if there is only one active screening
channel, i.e., when only one conduction band is present near
the Fermi level. Indeed, for the systems studied here, this is
an oversimplification: generally, all screening channels are not
equivalent; thus, it is natural to consider that only one channel
is coupled more strongly to the local spin. This channel will
dominate the behavior, but other screening channels might play
a role at lower temperatures, resulting in a two-stage Kondo
screening with two Kondo temperatures.27 Very recently, the
underscreened impurity problem has been widely discussed in
relation to experiments performed on quantum dots coupled
to ferromagnetic leads,28 and on molecular quantum dots
(so-called molecular transistors).29

In a concentrated Kondo system, these reduced effective
spins Seff = S − n/2 interact ferro- or antiferromagnetically
through an RKKY exchange interaction, leading to magnetic
ordering of the reduced moments. Thus, coexistence of
magnetic ordering and the Kondo effect is expected to occur
more easily in the underscreened case than in the standard
S = 1/2 Kondo lattice.

The first attempt to describe the coexistence of ferromag-
netism and the Kondo effect in uranium compounds was
performed with the help of an underscreened Kondo lattice
(UKL) model which considered localized f spins S = 1 to
describe a 5f 2 configuration of uranium ions.30,31 This model
describes the Kondo interaction, JK , between localized S = 1
spins and s = 1/2 spins of conduction electrons, and an
intersite ferromagnetic exchange interaction between the f

spins, JH . The mean-field treatment of the UKL model gives
an analog of the Doniach phase diagram, and qualitatively
accounts for the coexistence of ferromagnetism and the Kondo
effect. However, this model is based on the assumption of
localized 5f electrons. Of course, this assumption imposes a
constraint on systems which can be described by the UKL,
because, as we already discussed, many metallic actinides
do not have fully localized electrons. To improve the model
for these compounds, one needs to include in the UKL the
possibility of 5f -electron delocalization. This is the main goal
of the present study.

This article is organized as follows: We start by consid-
ering, in Sec. II, the underscreened Anderson lattice (UAL)
hamiltonian, in which the charge transfer is present from the
beginning, and we transform it by using the Schrieffer-Wolff

(SW) transformation32 for n
f
tot = 2, which allows for an

effective f -band term, in addition to the exchange Kondo
interaction between the S = 1 f spins and the s = 1/2 spins
of the conduction electrons. Then, in Sec. III we present the
mean-field treatment of the model, and in Sec. IV we compute
the Curie and Kondo temperatures as a function of the different
parameters, and in particular of the f bandwidth. We obtain
new phase diagrams which could account for the pressure
dependence of the Curie temperature in uranium systems such
as UTe compound.

II. THE S = 1 SCHRIEFFER-WOLFF TRANSFORMATION

The standard model to describe the physics of the heavy
fermion compounds is the periodic Anderson lattice model,
whose Hamiltonian can be written as

H = Hc + HV + Hf . (1)

The first term describes a conduction c-electron band,

Hc =
∑
kσ

εkc
†
kσ ckσ , (2)

where c
†
kσ creates a conduction quasiparticle with spin σ and

momentum k, and εk is the energy of conduction electrons.
The term Hf includes all local energy terms of the f electrons
and is given by

Hf =
∑
iσα

Ef n
f

iασ +
∑

i

[
U

(
n

f

i1↑n
f

i1↓ + n
f

i2↑n
f

i2↓
)

+U ′(nf

i1↑n
f

i2↓ + n
f

i1↓n
f

i2↑
) + (U ′ − J )

(
n

f

i1↑n
f

i2↑

+ n
f

i1↓n
f

i2↓
) − J (f †

i1↑fi1↓f
†
i2↓fi2↑ + h.c.)

]
, (3)

where Ef is the energy of the two-fold degenerate f level
and n

f

iασ is the number operator for f electrons on lattice
site i, orbital α, and spin σ ; U and U ′ are the Coulomb
repulsions among electrons in the same and in the different
orbitals, respectively; and J is the Hund’s coupling constant.
For two electrons per site, the ground state of Hf is the triplet
state with S = 1. We assume here that this triplet state is much
lower in energy than the singlet states. This is achieved if
U ′ − J is much smaller than U ′ + J and than U . We study the
SW transformation in this limit, assuming that two electrons
on the same site can be coupled only in the S = 1 state. Both
subsystems, localized f electrons and conduction band, are
coupled via a hybridization term,

HV =
∑
ikσα

(Vkαeik·Ri c
†
kσ fiασ + V ∗

kαe−ik·Ri f
†
iασ ckσ ), (4)

where f
†
iασ and fiασ are creation and annihilation operators

for f electrons, carrying spin and orbital indexes σ and α

(α = 1,2), respectively.
In the SW transformation, the f − c hybridization term

is eliminated by a canonical transformation. Thus, using the
classical method explained in Ref. 32, we start the procedure
by writing the Hamiltonian as

H = H0 + HV , (5)

where H0 = Hc + Hf . Then, we look at the scattering of an
initial state |a〉 to a final state |b〉 through an intermediate
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state |c〉, where the states |a〉, |b〉, and |c〉 are eigenstates of
H0 and Ea , Eb, and Ec are their eigenvalues, respectively.
The SW transformation consists in replacing the HV term
of the Hamiltonian by an effective interaction which is of
second order in the hybridization parameter V of the starting
Hamiltonian HV . The detailed description of the calculations
can be found in Refs. 1 and 32. The resulting effective
Hamiltonian is given by

H � H0 + H̃ , (6)

where

〈b|H̃ |a〉 = 1

2

∑
c

〈b|HV |c〉〈c|HV |a〉
(

1

Ea−Ec

+ 1

Eb − Ec

)
.

(7)

The SW transformation was initially performed for the case
of one 4f electron in the 4f 1 configuration. Here, we present
a derivation of the SW transformation for the case of a 5f 2

configuration, corresponding to an f spin S = 1 and to the
so-called underscreened Kondo lattice model, where the S = 1
spins are coupled to a nondegenerate conduction band.

We study the SW transformation for two f electrons
per site, allowing fluctuations of the number of f electrons
between 1 and 2. Several interactions are generated by the SW
transformation.33 In the following we present the derivation
of the most relevant terms, leading to both local and intersite
effective interactions, namely the Kondo interaction and the
effective hopping of f electrons.

A. The local effective interaction

First, we derive the s − f exchange Hamiltonian for S = 1
localized f spins. The corresponding eigenstates of H0 are,
therefore, given by

|a〉 = c
†
kσ ′f

†
i1σ f

†
i2σ |0〉,

|b〉 = c
†
kσ√
2

(f †
i1↑f

†
i2↓ + f

†
i1↓f

†
i2↑)|0〉 (8)

= 1√
2

∑
σ ′

c
†
kσ f

†
i1σ ′f

†
i2σ̄ ′ |0〉,

|c〉 = c
†
kσ c

†
k′σ ′f

†
iασ ′′ |0〉,

and the corresponding eigenvalues are

Ea = Eb = U ′ − J + 2Ef + εk,
(9)

Ec = εk + εk′ + Ef .

The SW transformation leads to the standard Kondo-like
s − f exchange Hamiltonian, but here with f spins S = 1,
and it is given by

HK = 1

2

∑
ikk′

Jk,k′
[
c
†
k′↑ck↓S−

i + c
†
k′↓ck↑S+

i

+ (c†k′↑ck↑ − c
†
k′↓ck↓)Sz

i

]
, (10)

where the different components of the spin S = 1 read

S+
i = n

f

i1f
†
i2↑fi2↓ + f

†
i1↑fi1↓n

f

i2,

S−
i = n

f

i1f
†
i2↓fi2↑ + f

†
i1↓fi1↑n

f

i2, (11)

Sz
i = n

f

i1↑n
f

i2↑ − n
f

i1↓n
f

i2↓,

n
f

iα = n
f

iα↑ + n
f

iα↓
and the corresponding exchange integral is

Jk,k′ = −V ∗
kαVk′αei(k−k′)·Ri

×
(

1

U ′ − J + Ef − εk′
+ 1

U ′ − J + Ef − εk

)
.

(12)

This exchange integral Jk,k′ can be easily simplified,
because εk can be restricted to values very close to the Fermi
energy. Then the difference between k and k′ can be neglected
in the values of both εk and Vkα . We also assume that the
mixing parameter does not depend on the orbital index α.
Thus, Jk,k′ can be approximated in the following by

Jk,k′ ≈ − 2|VkF
|2

U ′ − J + Ef − μ
≡ JK, (13)

where μ is the Fermi level and VkF
is the value of V at

the Fermi level. Eq. (13) gives the definition of the Kondo
exchange interaction, JK , that we will use in the following. It
is also interesting to notice that the Kondo effect is large when
the energy U ′ − J + Ef is very close to the Fermi energy.
In fact the denominator in Eq. (13) is the energy difference
between the ground-state energy U ′ − J + 2Ef + εk of two
f electrons in |a〉 and |b〉 states and the energy of the
intermediate state |c〉 with one f electron: Ef + εk + εk′ .

B. The intersite effective interaction

Among the different terms emerging from the SW trans-
formation, we consider in detail those that correspond to a
nonlocal interaction involving two different sites i and j . In this
case, the relevant initial and final states |a〉 and |b〉 are two-sites
states with a total occupation of three f electrons, allowing
charge fluctuations between sites i and j . Consequently, an
effective f bandwidth is obtained in the second order in Vk.
Thus, we derive an effective band Hamiltonian HW as the sum
of three terms which arise from the SW transformation, where
the sum over i and j refers to different sites:

HW = HW1 + HW2 + HW3, (14)

where

HW1 = −
∑

kασ ij

|Vk|2eik·(Ri − Rj )

U ′ − J + Ef − εk
(f †

jασ f
†
i1σ f

†
i2σ fj2σ fj1σ fiασ

−f
†
jασ f

†
i1σ f

†
i2σ fj2σ fj1σ fiᾱσ + h.c.), (15)

HW2 = −1

2

∑
kασσ ′ij

|Vk|2eik·(Ri − Rj )

U ′ − J + Ef − εk
(f †

jασ̄ f
†
i1σ f

†
i2σ fj2σ̄ ′fj1σ ′

× fiασ − f
†
jασ̄ f

†
i1σ f

†
i2σ fj2σ̄ ′fj1σ ′fiᾱσ + h.c.), (16)

HW3 = −1

4

∑
kασσ ′σ ′′ij

|Vk|2eik·(Ri − Rj )

U ′ − J + Ef − εk
(f †

jασ f
†
i1σ ′f

†
i2σ̄ ′fj2σ̄ ′′

× fj1σ ′′fiασ − f
†
jασ f

†
i1σ ′f

†
i2σ̄ ′fj2σ̄ ′′fj1σ ′′fiᾱσ + h.c.).

(17)
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These three terms can be simplified in the mean-field
approximation by introducing average occupation numbers
〈nf

iασ 〉. For simplicity, we will neglect all interorbital transfer
terms. With these assumptions, we can see that the HW terms
can be considered as effective f -hopping terms between i and
j sites with a spin-dependent hopping (see next section). If the
k dependence of Vk is negligible, as is often assumed, one can
deduce from Eqs. (15), (16), and (17) that there is no intersite
hopping. Thus, the k dependence of Vk is at the origin of the
effective f bandwidth and has to be taken into account. This
k dependence is due to nonlocal hybridization between f and
c electrons, which has no influence on the Kondo interaction
but has to be taken into account for intersite interactions. In
the following we write the coefficient which appears in the
expression for HW as

|Vk|2
U ′ − J + Ef − εk

≈ −JK

2
g(k), (18)

where the function g(k) includes the k dependence of |Vk|2,
while the k dependence of εk is not essential here, but can also
be included.

Finally, the resulting transformed Hamiltonian contains two
terms: HK , which gives the Kondo exchange interaction for
spin S = 1, and the important and new term HW , which can
be considered as an effective band term for the 5f electrons.

Thus, in addition to the Kondo interaction, we have derived
here a term which leads to a finite f bandwidth; we will show
that this newly introduced term gives a better description of
uranium and actinide compounds where the 5f electrons are
less localized than the 4f electrons in rare-earth compounds.

Besides this effective band term, there are other intersite
interactions which lead to RKKY exchange, but they arise
only to fourth order in hybridization Vk. We do not compute all
these terms, but, instead, we will introduce them phenomeno-
logically as an additional intersite exchange parameter of the
model, JH .

III. THE MEAN-FIELD APPROACH

Combining all terms obtained in the preceding section, we
can write the new effective Hamiltonian as

H = Hc + HK + HW + 1

2
JH

∑
ij

SiSj . (19)

The Heisenberg interaction JH is considered here as a
ferromagnetic exchange only between nearest neighbors. In
fact RKKY interactions are long range and oscillating, but
since our aim is to study the coexistence of ferromagnetism and
the Kondo effect, we consider only ferromagnetic interactions.
The mean-field approach has been previously described in
Ref. 30. For the Kondo part HK , it is based on a generalization
of a functional integration approach described by Yoshimori
and Sakurai for the single-impurity case34 and by Lacroix and
Cyrot for the S = 1/2 Kondo lattice case.35,36

Here we introduce the following mean-field parameters: the
average occupation numbers 〈nf

iασ 〉, 〈nc
iσ 〉, and the “Kondo”

parameter 〈λiασ 〉 = 〈f †
iσ ciασ 〉. We restrict ourselves to uni-

form solutions in which all these quantities are site and

orbital independent, i.e., 〈nf

jασ 〉 = 〈nf

iασ 〉 = n
f
σ , 〈nc

iσ 〉 = nc
σ ,

and
∑

α〈λiασ 〉 = λσ .
Thus, HW can be written as

HW =
∑
kσα

�kσ f
†
kασ fkασ . (20)

The effective band dispersion depends on spin but not on
the orbital indices. Then,

�kσ = �σg(k), (21)

where

�σ = −JK

2

[(
nf

σ

)2 + 1

2
nf

σ n
f
σ̄ + 1

4

(
n

f
σ̄

)2
]

(22)

and g(k) is the dispersion relation for the f band. We assume,
for simplicity, that the f -band dispersion is similar to the
conduction electron dispersion, i.e., g(k) = Pεk + P ′. We also
assume that the f band should be narrower than the conduction
band, so P < 1. The parameter P ′ can be included in the local
energy Ef , and P is a multiplicative coefficient that can be
absorbed in the definition of �σ . Then we have

�kσ = �σg(k) = Aσεk, (23)

with

Aσ = −JK

2
P

[(
nf

σ

)2 + 1

2
nf

σ n
f
σ̄ + 1

4

(
n

f
σ̄

)2
]
. (24)

The total Hamiltonian can be now written in the mean-field
approach as follows:

H =
∑
kσ

εc
kσ nc

kσ +
∑
iσα

E
f

0σ n
f

iασ

+
∑
kσα

�σ (c†kσ fkασ + h.c.)

+
∑
kσ

Akσ f
†
kασ fkασ + C, (25)

where we have

E
f

0σ = Ef + U ′nf
σ̄ + (U ′ − J )nf

σ + JKσmc

− JK

8
(λ↑ + λ↓)2 + JHzσMf , (26)

εc
kσ = εk + �σ , �σ = JKσMf , (27)

�σ = −JK

4
(λσ + λσ̄ ), (28)

C = −2U ′Nn
f

↑n
f

↓ − (U ′ − J )N [(nf

↑ )2 + (nf

↓ )2]

+ JK

2
N (λ↑ + λ↓)2 − JH

2
zN (Mf )2 − JKNmcMf ,

(29)

with σ = ± 1
2 , Mf = n

f

↑ − n
f

↓ , and mc = 1
2 (nc

↑ − nc
↓).

The diagonalization of the Hamiltonian gives one pure f

band, E
f

kσ , given by

E
f

kσ = E
f

0σ + Aσεk, (30)

and two hybridized bands E±
kσ , given by

E±
kσ = 1

2

[
εk(1 + Aσ ) + E

f

0σ + �σ ± Skσ

]
, (31)
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FIG. 1. (Color online) Band structure obtained in mean-field
approximation, for giving the initial conduction band energy εc

σ

(straight dotted line), the 3 f -bands Ef −band
σ (straight dashed-

dotted line), E−
σ and E+

σ (dotted lines), as explained in the text.
The parameters used here are: P = 0.12, JK = 0.53, JH = −0.01,
nc = 0.8, and n

f
tot = 2.

with

Skσ = E+
kσ − E−

kσ

=
√[

εk(1 − Aσ ) − (
E

f

0σ − �σ

)]2 + 8(�σ )2. (32)

In Fig. 1, we present a typical band structure resulting
from the three bands E

f

kσ and E±
kσ for JK = 0.53 and JH =

−0.01. In all figures presented here, z = 6, where z is the
number of nearest neighbors in a simple cubic lattice. In our
calculations, the values of JK and JH are defined in units of
the half-bandwidth D of the conduction band. One can see in
Fig. 1 the important effect of the finite f bandwidth: The band
structure is very different from that without any f bandwidth,
used in Ref. 30.

IV. RESULTS AND CONCLUSIONS

In this section, we present numerical results obtained from
this model, using the general method described in detail in
Ref. 30: We derive the Green functions, and we calculate
self-consistently the magnetization Mf for the f electrons,
the magnetization mc for the conduction electrons, and the
two spin-dependent λσ parameters which describe the Kondo
effect, by imposing constraints on the total number of f

electrons and conduction electrons, n
f
tot = 2 and nc

tot = nc,

respectively. Having solved the self-consistent equations, we
study various properties of the model. The Curie and Kondo
temperatures are defined, within this mean-field approach, as
the temperatures at which respectively the magnetizations or
the λσ parameters tend to zero.

As mentioned in the previous section, the half-f bandwidth
derived from the SW transformation is spin dependent and is
given by Aσ in Eq. (24). Aσ can be rewritten as

Aσ = −JKP

32
[7 + 3(Mf )2 + 12σMf ], where σ = ±1

2
(33)

indicating that the effective bandwidth and the magnetization
are correlated. In fact it can be easily checked that the
bandwidth for up spin increases with magnetization while it is
the opposite for down spin; this is consistent with the double
exchange process in the ferromagnetic phase, which favors
itinerancy of the conduction electrons with spin parallel to the
localized moment, because of intra-atomic Hund’s coupling.

Here, however, we would like to explore the parameter
dependence of the effective bandwidth including different
possibilities for the relative variation of the Kondo coupling
JK and the f bandwidth Wf . In order to do that, we considered
also the following definitions of Wf :

Case (a): a constant bandwidth: Wf = const.
Case (b): a bandwidth Wf proportional to the Kondo

coupling constant, Wf = QJK ; in this way we can take into
account the effect of pressure on both the bandwidth and the
Kondo coupling, since both are sensitive to the increase of
hybridization under pressure.

Case (c): a bandwidth directly obtained from the SW
transformation. From Eqs. (23) and (24), we get a spin-
dependent bandwidth: Wf = 2Aσ .

In the following, all calculations are done assuming that
the conduction band εk has a width 2D and that its density of
states is constant and equal to 1/2D.

In Fig. 2, we present a plot of the temperature variation
of the Kondo correlations λ↑ and λ↓, and also the f and
c magnetizations, Mf and mc, for cases (b) and (c). The
parameters are nc = 0.8 and JH = −0.01. The upper plot is
for case (b) with Q = 0.12, while the lower plot is for case (c)
with P = 0.12.

The two magnetization curves clearly show a second-order
magnetic phase transition at TC , below which mc and Mf are
always antiparallel, as expected because JK is an antiferro-
magnetic coupling. At low temperatures, the Kondo effect and
ferromagnetism coexist, and, because of the breakdown of spin
symmetry at TC , λ↑ and λ↓ become slightly different in the
ferromagnetic phase. We define the Kondo temperature as the
temperature where λ↑ and λ↓ vanish. The fact that the Kondo
parameter vanishes at a particular temperature is a well-known
artifact of the mean-field approximation. Actually TK is a
crossover temperature, associated with the onset of Kondo
screening. In all cases, the Kondo temperature TK is larger than
the Curie temperature TC and we never found situations where
TK < TC . Once ferromagnetism is established, the Kondo
effect does not appear below TC ; it is blocked by the effective
internal magnetic field.

To investigate the effect of the pressure on the Kondo
and Curie temperatures, we computed these characteristic

014415-5



CHRISTOPHER THOMAS et al. PHYSICAL REVIEW B 83, 014415 (2011)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Q = 0.12,

JK = 0.9

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 0.02 0.04 0.06 0.08 0.1
T

P = 0.12,
JK = 0.75

λ↑
λ↓

Mf

mc

λ↑
λ↓

Mf

mc

FIG. 2. (Color online) Magnetization of f electrons Mf (short
dashed line), magnetization of c electrons mc (dotted line), and Kondo
parameters λσ (full and long dashed lines) for both spin directions
for cases (b) and (c) (see text for definitions), with JH = −0.01,
nc = 0.8, and n

f
tot = 2.

temperatures for various values of JK for fixed values of
exchange interaction JH and number of conduction electrons
nc. Figs. 3(a), 3(b), and 3(c) are obtained for the three
different characterizations of the f bandwidth, cases (a),
(b), and (c), respectively. We notice that the temperatures
TK and TC are obtained as the temperatures at which the
mean-field parameters (f and c magnetizations and the Kondo
parameters λ) vanish. In the three cases we note that the Kondo

temperature TK becomes nonzero only above a critical value
J c

K which varies from case to case. In all cases, once nonzero,
the Kondo temperature rapidly increases for larger values of
JK . The Curie temperature TC is nonzero above a given JK

value in case (a), below a given JK value for case (b), and is
nonzero for all studied values of JK for case (c). The reason for
these different behaviors is easy to understand. In case (a) the
f bandwidth is constant and the system needs a finite value of
JK to get magnetic ordering because f electrons are itinerant
even for small values of JK . In case (b) the f bandwidth
increases linearly with JK , so for low values of JK the f

electrons are localized and they are magnetic even for JK = 0;
thus as soon as JK is different from zero, magnetic ordering
occurs. With increasing JK the f bandwidth also increases,
and magnetism is destroyed because of the itinerant character
of the f electrons. Finally, in case (c) the f bandwidth depends
on both JK and magnetization, and the dependence is different
for up- and down-spin electrons; it can be seen in Fig. 3 that this
complex dependence of the bandwidth leads to small variations
of the Curie temperature, with a weak maximum. However, a
crossing point, at which TC and TK are equal, is obtained in
all cases.

Concerning the Kondo effect, in all three cases a peculiar
behavior has been obtained for values of JK just above this
crossing point: At the temperature T1 indicated in Fig. 3(a),
3(b), and 3(c) the Kondo parameters vanish, being nonzero
only between T1 and TK . To better understand this behavior,
in Fig. 4 we have plotted Mf , mc, and λ↑ for nc = 0.8 and
JH = −0.01, for values of JK near the crossing of TC and
TK , i.e., JK = 0.75 for case (a), 0.8 for case (b), and 0.52 for
case (c). It appears clearly that, with decreasing temperature,
the Kondo effect occurs first, then there is a coexistence of
the Kondo effect and ferromagnetism, and finally the Kondo
effect disappears to yield only a strong ferromagnetism at
extremely low temperatures. This behavior can be interpreted
in the following way: The Kondo effect for a spin S = 1 cannot
be complete, as explained in the introduction. Thus if exchange
is large enough, the ordering of the remaining f moments
occurs in the Kondo phase. However, at lower temperature,
when these magnetic moments are large, they act as an internal
magnetic field that destroys the Kondo effect. It should be
pointed out that there is at present no experimental evidence
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FIG. 3. (Color online) Curie temperature TC (full line) and Kondo temperature TK (dashed line) vs JK for the three cases (a), (b), and (c),
with JH = −0.01, nc = 0.8, and n

f
tot = 2. For cases (a), (b), and (c), T1 (dot-dashed line) is also shown (see text).
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FIG. 4. (Color online) Magnetization of f electrons Mf (dashed
line), magnetization of c electrons mc (dotted line), and Kondo
parameter λ↑ (full line) for cases (a), (b), and (c), with JH = −0.01,
nc = 0.8, and n

f
tot = 2. Here λ↓ ≈ λ↑.

for or against such an effect in actinide compounds at very low
temperature.

Another interesting result that can be pointed out is the
decrease of the Curie temperature for large JK above the
intersection point, particularly in case (b), but also within a
small range of values of JK in case (c). This decrease can
probably be considered as resulting from the “delocalization”
of the 5f electrons. Let us also remark that JK increases
with increasing pressure and that Figs. 3(b) and 3(c) can give a
description of the experimentally observed variation of TC with
pressure in UTe compound, which passes through a maximum
and then decreases with applied pressure.5,16

To summarize, the present work improves upon the previous
S = 1 UKL model of Ref. 30 by explicitly including the effect
of a weak delocalization of the 5f electrons. Within this
improved model, we have described new phenomena in the
region where TC and TK are of the same order of magnitude: a
possible disappearance of the Kondo effect at low temperature,
which is a direct consequence of the underscreened Kondo
effect, and a maximum of TC as a function of JK . It is
worth noting that, in our model, the delocalization of the 5f

electrons increases when JK increases, i.e., when pressure is
applied; then the magnetization decreases in the same way
as the Curie temperature. Therefore, the change in the Curie
temperature at large JK is more influenced by delocalization
than by competition between magnetism and the Kondo
effect. This is a different result from the case of cerium
compounds, where the magnetization is destroyed by the
Kondo effect, i.e., by the screening of the magnetic moment.
In the underscreened S = 1 Kondo lattice, because Kondo
screening can never be complete, the Kondo effect alone does
not destroy ferromagnetism.

To conclude, we have shown that our model includes
two effects which are essential to describe the 5f -electron
compounds: the small delocalization of the 5f electrons and
the S = 1 spins found in uranium or neptunium compounds.
The first effect works against magnetism, while the second
one favors magnetism. The competition between these two
effects leads to complex phase diagrams which can improve
the description of some actinide compounds and explain in
particular the maximum of TC observed experimentally in UTe
compound with increasing pressure.
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