
PHYSICAL REVIEW B 83, 014412 (2011)

NMR and μSR study of spin correlations in SrZnVO(PO4)2: An S = 1
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31P nuclear and muon spin-lattice relaxation-rate measurements in SrZnVO(PO4)2, a S = 1/2 frustrated magnet
on a square lattice, are presented. The temperature (T ) dependence of the in-plane correlation length ξ is derived
and it is shown that the overall behavior is analogous to the one found for nonfrustrated systems but with a
reduced spin stiffness. The temperature dependence of ξ in SrZnVO(PO4)2 is compared to the one of other
frustrated magnets on a square lattice with competing nearest neighbor (J1) and next-nearest-neighbor (J2)
exchange couplings and it is shown that ξ progressively decreases as the ratio J2/J1 approaches the critical value
leading to the suppression of long-range magnetic order. In spite of the differences in the functional form of ξ (T )
found in different vanadates, it is pointed out that the characteristic energy scale describing spin correlations in
all those compounds appears to scale as |2J2 + J1|.
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I. INTRODUCTION

The study of quantum magnetism has received a renewed
attention after the discovery of high-temperature superconduc-
tivity in the cuprates. In fact, these materials have made it pos-
sible to investigate at the experimental level the phase diagram
of S = 1/2 Heisenberg antiferromagnets on a square lattice
with great accuracy.1 The behavior of the correlation length has
been derived by means of neutron-scattering experiments2 and
nuclear spin-lattice relaxation-rate measurements;3,4 the form
of the dynamical susceptibility and, accordingly, the value
of the scaling exponents which characterize those systems
have been obtained.5 More recently, much attention has been
addressed to the investigation of frustrated square-lattice (FSL)
systems where the frustration is induced by a next-nearest-
neighbor (n.n.n.) exchange coupling J2 competing with the
nearest-neighbor (n.n.) one (J1) along the side of the square.6

Frustration is expected to further enhance quantum fluctuations
and to lead to the suppression of long-range magnetic order
for certain values of the ratio r = J2/J1. In particular, when
both exchange couplings are antiferromagnetic for r � 0.5,
a spin-liquid ground state is expected,7 while when J1 is
ferromagnetic (i.e., J1 < 0) for r � −0.5, a nematic order for
the two-spin correlation function is envisaged.8,9 The J1-J2

model on a square lattice has received renewed attention in the
past two years when it was realized that the parent compounds
of the recently discovered iron-based superconductors are
characterized by comparable n.n. and n.n.n. hopping integrals,
which may yield competing exchange couplings within the
square lattice formed by iron atoms.10 In fact, those materials
would represent an extension of the J1-J2 model on a
square lattice to itinerant electron systems. With regard to
the insulating systems, a number of compounds have been
recently identified to be prototypes of FSL systems and
investigated through different experimental approaches.6,11–16

Attempts have been made to theoretically understand their high
field properties11,17 and the exchange mechanisms.18 Despite
such theoretical and experimental progress, a number of key
questions still have to be addressed. For example, the parts of

the phase diagram where long-range order should be absent
have not been studied so far; moreover it is not clear how the
temperature dependence of the in-plane correlation length ξ

changes with r . Unfortunately, it is not possible to address
this latter aspect by means of inelastic neutron scattering
experiments since only small crystals are available for the
prototypes of the J1-J2 model on a square lattice.6 Hence, it
would be worthwhile to find other experimental techniques
which could determine the effect of frustration on ξ .

Here we present an experimental study of the temperature
(T ) dependence of the in-plane correlation length ξ , derived
by means of nuclear and muon spin-lattice relaxation rates,
in SrZnVO(PO4)2 (Fig. 1), a prototype of a frustrated magnet
on a square lattice with competing ferromagnetic n.n. and
antiferromagnetic n.n.n. couplings. It is shown that ξ diverges
exponentially on cooling with a reduced spin stiffness, possibly
scaling as |J1 + 2J2|. A comparison with the results previously
obtained by our group on other systems with r < 0 appears to
qualitatively support this scaling of the spin stiffness, even if
an accurate description of ξ on approaching the transition to
the columnar ground state should take into account the spin
anisotropy and interlayer couplings.

II. TECHNICAL ASPECTS AND
EXPERIMENTAL RESULTS

The synthesis of a SrZnVO(PO4)2 polycrystalline sample
was carried out by using the protocol reported in Refs. 16
and 19. Direct-current magnetization (M) measurements were
performed in order to estimate the superexchange coupling
constants for our sample and to check if they are consistent with
the ones reported in the literature.11,16,18 The T dependence
of the static uniform spin susceptibility χ = M/H ,20 with
H the magnetic field intensity, was analyzed by fitting the
high-T data to Curie-Weiss law and to the high-T series
expansion.21 It was found that J1 = −7.53 ± 0.7 K and
J2 = 8.63 ± 0.6 K, values which are quite consistent with
the ones previously reported in the literature.11,16,18 In the
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FIG. 1. (Color online) Projection of SrZnVO(PO4)2 structure
along the c axis evidencing the planes containing V4+ ions. Vanadium
ions are in green (large circles), phosphorus in purple (medium
circles), and oxygen ions in red (small circles). VO5 pyramids and
P1O4 tetrahedra are also visible. The red dotted square shows the
S = 1/2 square lattice.

following, in order to better compare SrZnVO(PO4)2 to the
other systems, we introduce a characteristic energy scale
JC =

√
J 2

1 + J 2
2 � 11.45 K, which provides the magnitude

of the exchange couplings.
31P NMR measurements were carried out by using standard

radio-frequency (rf) pulse sequences. At low field, where the
full spectrum could be irradiated, the NMR powder spectra
were obtained from the Fourier transform of half of the echo
after a π/2-τE-π pulse sequence. The NMR powder spectrum
Fig. 2(a) was characterized by an asymmetric line shape, quite
similar to the one found by Nath et al.22 in the isostructural
Pb2VO(PO4)2 compound. The narrow central component is
associated with P2 sites lying in between adjacent vanadium
layers, while the broader component to the P1 site (Fig. 1)
which lies within vanadium layers and is characterized by a
larger hyperfine coupling. At high magnetic fields the line
broadening prevented the irradiation of the whole line and
the NMR spectrum had to be derived either by recording
the intensity of the signal upon making discrete frequency
steps or upon sweeping the magnetic field [Fig. 2(a)]. The
T dependence of the NMR shift �K for the P1 site for
H ‖ c and H ‖ ab was determined by recording the position
of the low-frequency (high-field) and of the high-frequency
(low-field) shoulders of the NMR spectrum, respectively, as
a function of T . Both quantities were found to scale linearly
with χ but with opposite slopes, indicating an opposite sign in
the hyperfine coupling components [Fig. 2(b)].

Nuclear spin-lattice relaxation rate 1/T1 was derived from
the recovery of the nuclear magnetization after a saturating
pulse sequence. In view of the anisotropy of the hyperfine
coupling tensor 1/T1 depends on the portion of the spectrum
being irradiated. Since the low-frequency (high-field) shoulder
of the 31P1 spectrum was more separated from the rest of the
spectra we have decided to irradiate just that part of 31P NMR
powder spectrum, corresponding to the crystallites with H ‖ c.
From now on we refer to T1 only for the 31P1 site and for that
orientation. The corresponding recovery laws for the nuclear
magnetization could be nicely fit by a single exponential. In
Fig. 3 the temperature dependence of 1/T1 in the 1.6 K–100 K

4.02 4.04 4.06 4.08 4.10 4.12
0.0

0.2

0.4

0.6

0.8

1.0

H//cIn
te

ns
ity

 (
A

rb
. U

ni
ts

)

H (Tesla)

 SrZnVO(PO
4
)

2

 P1 site
 P2 site

H//ab

(a)

0.004 0.008 0.012 0.016 0.020 0.024

-6000

-4000

-2000

0

2000

4000

6000

8000

Δ K
 (

pp
m

)

χ (emu/mole)

SrZnVO(PO
4
)

2

(b)

FIG. 2. (Color online) (a) Field-swept 31P NMR spectrum re-
ported for rf irradiation at ν = 70 MHz. The contribution from 31P1
and 31P2 sites is evidenced and the parts of 31P1 spectra corresponding
to an orientation of the grains with H ‖ c or H ‖ ab are shown.
(b) The 31P NMR shift of the high (green squares) and low (blue
circles) frequency shoulders of 31P1 NMR spectra, corresponding
to H ‖ ab and H ‖ c, respectively, is reported as a function of the
macroscopic spin susceptibility with the temperature as an implicit
parameter.

range is shown. At high temperature 1/T1 is flat, then it
smoothly decreases and eventually it shows a well-defined
peak at TC = 2.65 ± 0.02 K, corresponding to the columnar
ordering temperature. Below TC a rapid decrease of 1/T1 is
observed. This behavior is very similar to the one reported by
Nath et al.22 for Pb2VO(PO4)2. No significant change in 1/T1

was noticed upon increasing the magnetic field intensity from
7 to 35 kG (Fig. 3) at high T . On the other hand, a tiny change
has to be expected for T → TC due to the variation of the
transition temperature with the field.22

Muon spin resonance (μSR) measurements were performed
at the ISIS pulsed muon source on the MuSR beam line. In
zero field (ZF), for T > TC , the decay of the muon asym-
metry was characterized by a stretched exponential function
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FIG. 3. (Color online) Temperature dependence of 31P1 nuclear
spin-lattice relaxation rate in SrZnVO(PO4)2, for H ‖ c.

A(t) = A(0)exp[−(λt)β],20 with β progressively decreasing
from 0.7 to 0.5 upon decreasing the temperature from 30 K
to TC . The stretched exponential character of the relaxation
can be associated either with a distribution of muon sites
or with an anisotropic hyperfine coupling, yielding to a
distribution of relaxation rates in a powder sample. Below
TC clear oscillations are observed in ZF,20 showing that there
is a spontaneous sublattice magnetization causing a nonzero
magnetic field Bμ at the muon site.23 Accordingly, the decay
of the muon asymmetry followed the behavior typically found
for powder samples in ZF,24

A(t) = A1e
−σ tcos(γμBμt + φ) + A2e

−λt + B, (1)

where γμ is the muon gyromagnetic ratio, σ the decay
rate of the oscillating part, mostly due to a inhomogeneous
distribution of the local field at the muon sites, while B is a
constant background arising from the sample environment.

The temperature dependence of λ and of Bμ derived from
the fit of the asymmetry with the aforementioned expressions
is reported in Figs. 4 and 5, respectively.

III. DISCUSSION

First we shall consider the temperature dependence of the
order parameter, as derived from ZF μSR measurements. The
local field at the muon can be written

Bμ =
∑

i

A
μ

i 〈�Si〉 = A
μ

eff|〈 �S〉|, (2)

where A
μ

i is the hyperfine coupling between the muon and the
ith V4+ spin. Since the magnitudes of all V4+ spins |〈 �S〉|
are expected to be the same, the local field at the muon
can be written in terms of an effective total hyperfine coupling
A

μ

eff times |〈 �S〉|. Hence, the T dependence of the local
field at the muon gives directly the one of the sublattice
magnetization. With regard to the critical behavior of the
order parameter for T → Tc, here we only remark that the
critical exponent β can be consistent with the one expected
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FIG. 4. (Color online) Temperature dependence of the zero-field
muon relaxation rate in SrZnVO(PO4)2.

for finite two-dimensional (2D) XY systems (β = 0.235)25

found in other similar vanadates.22,23,26 Nevertheless, the
accuracy of the experimental points does not allow one to
give a definite answer in this respect. On the other hand,
the low-temperature behavior of Bμ provides information on
the dispersion relation for the spin-wave excitations. The
reduction of the low-temperature sublattice magnetization
is consistent with a power law |〈 �S〉|(T ) ∼ T n, with n =
1.8 ± 0.4. Although this value would be consistent with the
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FIG. 5. (Color online) The local field at the muon, normalized
to its low-temperature value Bμ = 186 ± 3 G, reported as a function
of T/Tc, with Tc = 2.65 K. The low-temperature blue dotted line
shows the behavior expected for a power-law reduction of Bμ(T ) =
Bμ(0)(1 − aT 2). The high-temperature red dotted line shows the
critical behavior for T → Tc for a critical exponent β = 0.235, as
is expected for a 2D XY model.
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dispersion relation for nearly 2D antiferromagnets,27 it is
difficult to give a precise statement in view of the experimental
uncertainty. Nevertheless, as is shown at the end of this
section, the T dependence of 1/T1 also seems to support the
2D character of the spin-wave excitations, with a quasilinear
magnon dispersion.

Now we turn to the discussion of the temperature depen-
dence of 31P nuclear spin-lattice relaxation rate, which makes it
possible to derive information on the low-energy dynamics and
on the spin correlations. In the case of a magnetic relaxation
process driven by electron spin fluctuations, 1/T1 can be
written28

1

T1
= γ 2

2N

∑
α,q

[|Aq|2Sα,α(q,ωL)]⊥, (3)

where γ is the nuclear gyromagnetic ratio, |Aq|2 the form
factor describing the hyperfine coupling with spin excitations
at wave vector q and Sα,α(q,ωL) (α = x,y,z) the component
of the dynamical structure factor at the Larmor frequency
ωL. The ⊥ subscript indicates that one should consider the
components of the fluctuating hyperfine field perpendicular
to the quantization axis, given by the direction of the static
external field. By using scaling arguments, it is possible
to write the dynamical structure factor in terms of the in-
plane correlation length ξ (in lattice units hereafter) and
establish a one-to-one relationship between 1/T1 and ξ . This
procedure has proven to be very useful to study the temperature
dependence of the correlation length in the cuprates, which are
prototypes of 2D S = 1/2 Heisenberg antiferromagnets on a
square lattice,4 and to determine experimentally the value of
the dynamical scaling exponent z = 1. Given the similarity
between the cuprates and the vanadates under investigation,
we use the same approach here to derive ξ from 31P 1/T1,
assuming z = 1. Although deviations from z = 1 would affect
the estimate of the absolute value of ξ , the basic functional
form ξ (T ) would be only slightly affected. Accordingly, one
can write4

1

T1
� γ 2 S(S + 1)

3
ξz+2 β(ξ )2

√
2π

ωE

1

4π2

×
∫

BZ

d �q |A�q |2
1 + ξ 2(�q − �QC)2

, (4)

where β = (4π2/ξ 2)/[
∫

d �q/(1 + q2ξ 2)] is a normalization
factor which makes it possible to preserve the spin
sum rule4 and �QC is the columnar critical wave vector.
ωE = (JCkB/h̄)

√
2nS(S + 1)/3 is the Heisenberg exchange

frequency,28 with n = 4 the number of n.n. and of n.n.n..
In order to establish a one-to-one relationship between 1/T1

and ξ , from the preceding equation one has first to derive the
hyperfine coupling tensor components and the form factor for
the 31P1 site. The components of the hyperfine tensor can be
derived from the plot of the shift �K for the magnetic field
along the α direction vs the molar macroscopic susceptibility
χ [Fig. 2(b)], which is assumed to be isotropic. Then one can
write

�Kα = Aααχ

gμBNA

, (5)

with μB the Bohr magneton and NA the Avogadro’s number.
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FIG. 6. (Color online) The form factors for the 31P1 site reported
as a function of the in-plane components (qx and qy) of the wave
vector of the spin excitations for SrZnVO(PO4)2.

For SrZnVO(PO4)2 one finds Acc = −4300 ± 190 G and
Aaa � Abb = 2360 ± 200 G. In fact, since the measurements
on powders did not allow one to discern between �Ka and
�Kb we have assumed Aaa � Abb. In Pb2VO(PO4)2, on the
other hand, a small difference between those two components
is observed.22 The total hyperfine tensor is the sum of a
transferred term At and of a dipolar term Ad . The latter one
can be calculated on the basis of lattice sums, while the former
one is assumed to be the sum of four equal terms arising from
the hyperfine coupling between 31P1 nuclei and the four n.n.
V4+ spins. Hence, the contribution to the transferred hyperfine
term is simply given by At = (A − Ad )/4. Now that both the
transferred and the dipolar coupling between 31P1 nucleus and
each V4+ spin are known, it is possible to derive the hyperfine
form factor. The form factor of SrZnVO(PO4)2 is reported in
Fig. 6. It is noticed that, owing to the symmetry position of P1
site, the form factor shows a nonvanishing minimum at �QC =
(±π,0) and (0, ± π ). This explains why 1/T1 progressively
decreases as the system gets more correlated upon decreasing
temperature (Fig. 3) and why only when the correlation length
is sufficiently large does 1/T1 increase again. In fact, from
Eq. (4) it is possible to derive numerically the behavior of
1/T1 vs ξ (Fig. 7) and one finds a minimum for ξ � 5 lattice
steps. Accordingly, from the experimental data reported in
Fig. 3 it is now possible to derive quantitatively the temperature
dependence of ξ in SrZnVO(PO4)2.

In order to derive the temperature dependence of ξ from
λ(T ) one has first to subtract the T -independent dipolar
contribution from the raw data in Fig. 4 and then proceed
in the same way as was done for 1/T1. However, here the form
factor cannot be determined since the muon site and hyperfine
couplings are unknown. It is noticed that, at variance with
P1 site, the muon should not be in a position symmetrical
with respect to the neighboring V4+ ions, since λ continues
to diverge upon cooling. Thus, if no filtering effect due to the
form factor is present, one can safely write λ ∼ ξ , for ξ � 1.4

Namely, the temperature dependence of λ directly gives the one
of ξ although, unlike 31P 1/T1, λ does not make it possible to
estimate quantitatively ξ . Nevertheless, by matching the ξ (T )
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FIG. 7. (Color online) 31P1 nuclear spin-lattice relaxation rate
in SrZnVO(PO4)2 reported as a function of the in-plane correlation
length (in lattice units) according to Eq. (4) in the text.

derived from λ(T ) with the one quantitatively derived from
1/T1 over the same T range, it is possible to use also λ(T )
data to estimate quantitatively ξ (T ).

In Fig. 8 we report the temperature dependence of ξ

derived by means of 31P1 1/T1 and the one obtained by
means of λ(T ) in a temperature range where ξ is sufficiently
large so that either Eq. (4) applies or λ ∼ ξ . One notices
an overall good agreement in the behavior of ξ (T ) derived
through both methods; moreover, it is noticed that ξ diverges
exponentially on decreasing temperature. For a nonfrustrated
S = 1/2 Heisenberg antiferromagnet on a square lattice one
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C
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FIG. 8. (Color online) The temperature dependence of the in-
plane correlation length (in lattice units) derived from λ and 1/T1 data
reported as a function of JC/T . The solid line shows the behavior
expected for a spin stiffness ρs = 0.79 ± 0.05 × 1.15JC/2π .

would expect that ξ (T ) � exp(2πρs/T )/(T + 4πρs),29 with
ρs the spin stiffness, which for nonfrustrated systems turns
out to be ρs � 1.15JC/2π . Here we find that the behavior of
ξ (T ) is the same but with a reduced effective spin stiffness
constant. In fact, the data in Fig. 8 can be nicely fit with
ρs = 0.79 ± 0.05 × 1.15JC/2π = 1.66 ± 0.1 K.

Recently, Härtel et al.30 have calculated the temperature
dependence of ξ (T ) for J2 � 0.44|J1| (i.e., r � −0.44),
namely, for the part of the phase diagram adjacent to the one
experimentally investigated here and in Ref. 23. They found
that ξ (T ) diverges exponentially with decreasing temperature
with an effective spin stiffness ρs � −(J1 + 2J2)/8, which
vanishes on approaching r � −0.5, namely, the region with
no long-range magnetic order.30 SrZnVO(PO4)2, however,
is characterized by r � −1.15 and it is not clear if the
previous expression for the spin stiffness can still be used.
Nevertheless, if one considers that also for the compounds
with r � −0.5 an analogous expression ρs � +(J1 + 2J2)/8
could hold, one would derive for SrZnVO(PO4)2 an effective
spin stiffness ρs = 1.23 ± 0.16 K, a value which is close to the
one experimentally determined here (Fig. 8). Accordingly, in
the absence of a theoretical calculation, one would be tempted
to argue that on both sides of the critical point around r � −0.5
the correlation length diverges exponentially on cooling with
an effective spin stiffness ρs � |(J1 + 2J2)/8|, progressively
vanishing as r → 0.5.

Now, it is rather interesting to compare the behavior of
ξ in SrZnVO(PO4)2 with the one in BaCdVO(PO4)2 (r �
−0.915) and in Pb2VO(PO4)2 (r � −1.831), derived from the
temperature dependence of λ(T ).23 Since in the latter two
compounds it was not possible to determine the absolute value
of ξ , we assumed that λ ∼ ξ and rescaled the values of λ
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FIG. 9. (Color online) The temperature dependence in-plane
correlation length derived from λ reported vs JC/T compared to
the one derived for SrZnVO(PO4)2 (JC = 11.45 K), BaCdVO(PO4)2

(JC = 4.8 K)15, and Pb2VO(PO4)2 (JC = 10.7 K).31 The dotted
arrow points out that upon decreasing |J2/J1| the correlation length
increases less rapidly on cooling.
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FIG. 10. (Color online) The in-plane correlation length derived
from λ(T ) reported as a function of (J1 + 2J2)/T for SrZnVO(PO4)2

[(J1 + 2J2) = 9.73 K], BaCdVO(PO4)2 [(J1 + 2J2) = 2.8 K)],15,32

and Pb2VO(PO4)2 [(J1 + 2J2) = 13.7 K].31

so that for T � JC/2, when ξ → 1, ξ is the same in all
compounds. The corresponding data are reported in Fig. 9.
One notices that indeed ξ decreases as r → −0.5; however,
it is also noticed that while for SrZnVO(PO4)2 the correlation
length diverges exponentially over a wide T range, this is not
the case for the other two systems. In fact, it has been pointed
out that the behavior of Pb2VO(PO4)2 is more characteristic of
a 2D XY system,23 while in BaCdVO(PO4)2 possible nematic
correlations appear, leading to a logarithmic increase of ξ on
cooling.23 Moreover, deviations associated with the critical
behavior are observed on approaching TC . Hence, it appears
that although in general the system becomes less correlated
as r → −0.5 the correct analytical form of the correlation
function is not simply exponential and that details taking
into account the presence of a possible XY character or of
nematic correlations should be considered. Nevertheless, it
is interesting to observe that in spite of the functional form,
the characteristic energy scale describing the growth of the
in-plane correlation length appears to scale as J1 + 2J2 far
from TC . In fact, if one now plots the ξ data when ξ � 1 for
the different compounds as a function of (J1 + 2J2)/T , one
observes a reasonable overlap between the data of the different
compounds until when the XY character or the interlayer
coupling do not give rise to a critical enhancement of the
correlations on approaching TC (see Fig. 10). It is noticed
that also in this plot the magnitude of ξ in Pb2VO(PO4)2

and BaCdVO(PO4)2 has been rescaled in order to match
the one quantitatively derived for SrZnVO(PO4)2. Hence, a
definite answer on the validity of the scaling would require
an independent quantitative estimate of ξ also for those two
compounds.

Finally, we discuss the behavior of the spin-lattice relax-
ation rate in the magnetically ordered columnar phase. Below
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FIG. 11. (Color online) The temperature dependence of
31P1 1/T1 in SrZnVO(PO4)2 in the columnar ground state is reported.
The solid line shows the best fit according to a power-law behavior
1/T1 ∼ T b with b = 1.9 ± 0.3.

TC one observes a marked decrease of 1/T1 which in the
low-temperature limit should be ascribed to the vanishing of
the two-magnon Raman relaxation processes.33 If the gap in
the magnon dispersion curve is negligible, one would expect
a power-law behavior of 1/T1 with a power-law exponent
depending on the magnetic lattice dimensionality and on the
analytical form of the magnon dispersion curve.33 In case
of a linear dispersion curve, neglecting the presence of a
gap in the spin-wave dispersion, for a quasi-2D system one
would expect 1/T1 ∼ T 2. Here we find that 1/T1 ∼ T b with
b = 1.9 ± 0.3 (see Fig. 11), in reasonable agreement with the
theoretical expectations and with the behavior of the sublattice
magnetization derived from μ+SR measurements.

IV. CONCLUSIONS

In conclusion, we have determined quantitatively the
temperature dependence of the in-plane correlation length ξ

in SrZnVO(PO4)2, a frustrated S = 1/2 magnet on a square
lattice with r � −1.15, by means of nuclear and muon spin-
lattice relaxation-rate measurements. It has been shown that ξ

diverges exponentially on cooling with a reduced spin stiffness,
which appears to roughly scale as |J1 + 2J2|. A comparison
with the results previously obtained by our group on other
systems with r < 0 appears to support this scaling of the spin
stiffness even if an accurate description of ξ on approaching
the transition to the columnar ground state should take into
account the spin anisotropy and interlayer couplings.
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