Unlocking the potential of half-metallic Sr₂FeMoO₆ films through controlled stoichiometry and double-perovskite ordering

Adam J. Hauser, Robert E. A. Williams, Rebecca A. Ricciardo, Arda Genc, Manisha Dixit, Jeremy M. Lucy, Patrick M. Woodward, Hamish L. Fraser, and Fengyuan Yang

¹Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117, USA

²Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210-1117, USA

³Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1117, USA

(Received 19 November 2010; published 10 January 2011)

Phase-pure, fully epitaxial Sr_2FeMoO_6 films with a high degree of Fe/Mo ordering have been fabricated using ultrahigh vacuum sputtering and verified by a variety of techniques. Through identifying and controlling critical factors, such as stoichiometry, phase purity, and double-perovskite ordering, that complicate the growth of Sr_2FeMoO_6 films, we demonstrate characteristics of high-quality Sr_2FeMoO_6 films that have not been shown before. Our results include the first report of distinct magnetic shape anisotropy and via scanning transmission electron microscopy, the first direct observation of clear Fe/Mo ordering within the double perovskite framework.

DOI: 10.1103/PhysRevB.83.014407 PACS number(s): 75.70.-i, 68.37.-d, 75.47.Lx, 81.15.-z

I. INTRODUCTION

Half-metallic ferromagnets (HMF's) are desired materials for spin injection/detection in magnetoelectronic devices due to their 100% spin polarization. A number of HMF's have been predicted and discovered over the past three decades. ^{1–8} Unfortunately, all known HMF materials have limitations which hinder their application in real-world devices. For example, the manganite perovskites (e.g., La_{2/3}Sr_{1/3}MnO₃) are limited by their low Curie temperatures $(T_C)^{5,6}$ CrO₂ is a metastable phase that is difficult to incorporate in devices,⁶ and Fe₃O₄ suffers from its poor conductivity.^{6,7} Double perovskites (DP)^{8,9} are among the most promising HMF's for room-temperature applications because of their high $T_{\rm C}$ (up to 725 K) (Ref. 10) and the fact that they belong to a large family of isostructural compounds, which allows for the growth of complex epitaxial heterostructures. The challenge with double perovskites, as well as Heusler alloys,11 both of which are more chemically complex than other HMF's, is controlling the stoichiometry, defects, and chemical site ordering.

The report of half-metallicity in bulk Sr₂FeMoO₆ (Ref. 8) with a $T_{\rm C}$ of 420 K and ideal saturation magnetization ($M_{\rm S}$) of 4 μ_B per formula unit (f.u.) (Ref. 12) motivated numerous studies in the fabrication of epitaxial films of Sr₂FeMoO₆, using pulsed laser deposition (PLD) and sputtering. 13-26 However, it has proven challenging to grow Sr₂FeMoO₆ films that are stoichiometric, phase pure, fully epitaxial, and exhibit a high degree of Fe/Mo ordering. These challenges explain the absence of reports of Sr₂FeMoO₆-based magnetic tunnel junctions (MTJ's) that show a tunneling magnetoresistance (TMR) commensurate with the high spin polarization of the material. 16,23 In fact, many of the Sr₂FeMoO₆ films reported in the literature are accompanied by impurity phases. Furthermore, the stoichiometry of Sr₂FeMoO₆ films has been largely ignored despite the fact that studies of bulk samples have shown that Sr₂FeMoO₆ is not a line compound with a fixed composition, but rather can vary from Sr₂Mo₂O₆ (SrMoO₃) to Sr₂Fe_{1.33}Mo_{0.67}O₆ (Ref. 27). This nonstoichiometry arises because the oxidation state of molybdenum can readily change from +4 to +6, as well as the fact that Fe and Mo ions have similar sizes.

In this article, we used ultrahigh vacuum (UHV) magnetron sputtering to examine how changes in deposition conditions impact the stoichiometry, phase purity, and magnetic properties of Sr₂FeMoO₆ epitaxial films. This comprehensive study has enabled us to obtain phase-pure Sr₂FeMoO₆ epitaxial films with a high degree of Fe/Mo ordering which was quantitatively probed with both x-ray diffraction (XRD) and aberrationcorrected high-angle annular dark field (HAADF) scanning transmission electron microscopy (STEM).¹⁷ Films grown in this study show clear shape anisotropy between the in-plane and out-of-plane magnetizations, indicative of strong magnetic coupling throughout the film. Most importantly, this study reveals the critical factors that dictate stoichiometry, phase purity, and Fe/Mo ordering in Sr₂FeMoO₆ films. Controlling these factors is the key to optimizing the magnetic properties, thereby unlocking the potential of Sr₂FeMoO₆ for use in magnetoelectronic devices.

II. EXPERIMENT

Epitaxial Sr₂FeMoO₆ films were grown on SrTiO₃ (001) and (111) substrates in an UHV sputtering system with a base pressure of 5 \times 10⁻¹⁰ Torr. Stoichiometric Sr₂FeMoO₆ targets were synthesized via multistep chemical processing and sintering in forming gas (5% H₂ in N₂) using SrCO₃, Fe₂O₃, and MoO₃ as starting materials. XRD verified that the Sr₂FeMoO₆ targets are pure DP phase using a Bruker D8 Advance diffractometer in a Bragg-Brentano geometry. Direct-current (DC) magnetron sputtering was used for film deposition with a constant current of 5 or 100 mA. Ultrapure Ar gas (99.995%) was further purified by a Matheson NanoChem Purifilter to achieve a specified impurity level of one part per billion before entering the chamber for sputtering at pressures ranging from 6.7 to 300 mTorr. H₂ and O₂ with concentration down to 0.02% in Ar were also used to find the optimal reducing/inert/oxidizing environment for Sr₂FeMoO₆ film growth. For most films discussed in this article, horizontal sputter sources and standard 90° off-axis geometry were used for deposition with the substrates positioned at a horizontal distance of 6.5 cm from the target and 9.0 cm below the center of the target. ²⁸ The substrate temperature was varied between room temperature and 900°C and the optimal temperature was identified to be 800°C. Conventional on-axis sputtering geometry was also used to deposit Sr_2FeMoO_6 films for comparison.

The stoichiometry of the Sr₂FeMoO₆ films was determined using both Rutherford backscattering (RBS) and energy dispersive x-ray (EDX) spectroscopy. RBS measurements were carried out at Rutgers University and analyzed using the SIMNRA program. The epitaxial quality of the Sr₂FeMoO₆ films was characterized by a Bruker D8 Discover highresolution triple-axis x-ray diffractometer. Magnetic properties of the Sr₂FeMoO₆ films were measured by a Quantum Design superconducting quantum interference device (SQUID) magnetometer and a LakeShore vibrating sample magnetometer (VSM). Aberration-corrected HAADF STEM imaging using a FEI Titan 80-300 microscope with a spatial resolution of 0.7 Å was used to reveal the crystallinity and interface quality as well as the Fe/Mo ordering in our Sr₂FeMoO₆ films. A knowledge of the film thickness is critical in the calculation of $M_{\rm S}$, and for the measurement we used a combination of four techniques: profilometry over a chemically etched step, RBS analysis, small-angle x-ray reflectometry (XRR), and direct observation from HAADF STEM images which permitted counting of the atomic columns across total film thickness (observed in cross section).

III. RESULTS AND DISCUSSIONS

A. Stoichiometry

The foremost important factor for the fabrication of epitaxial films of complex materials such as double perovskites is the stoichiometry. It is well known that growing stoichiometric films of complex materials is quite challenging. However, despite the large amount of work published in the field, the stoichiometry of Sr₂FeMoO₆ films has been largely ignored in the literature. Due to the significant influence of stoichiometry on the magnetic properties of Sr₂FeMoO₆ (Ref. 27), we systematically characterize the stoichiometry of our Sr₂FeMoO₆ films as a function of sample position, sputtering gas pressure, inert/reducing/oxidizing environment, and substrate temperature using both RBS and EDX. Surprisingly, the sputtering gas pressure plays a dominant role in the stoichiometry of the films. It is generally believed that for the deposition of complex oxide epitaxial films using magnetron sputtering, off-axis geometry with high sputtering gas pressure (typically above 100 mTorr) is needed to minimize energetic bombardment.²⁸ Previously, magnetron sputtering in H₂/Ar at a total pressure of 76 mTorr was used to deposit Sr₂FeMoO₆ films²⁰⁻²⁴ and in only one study was the film stoichiometry characterized.²¹

Figure 1 shows the RBS and EDX spectra for Sr_2FeMoO_6 films grown in pure Ar using off-axis geometry at a total pressure P_{Ar} of 70 mTorr and 6.7 mTorr. At $P_{Ar} = 70$ mTorr, RBS [Fig. 1(a)] and EDX [Fig. 1(c)] give a Mo: Fe ratios of 1.43 and 1.48, respectively. Since the RBS analysis prefers a film thickness of 100 to 300 nm for separation of the peaks of elements and EDX prefers films as thick as possible, the film thicknesses in Fig. 1 are different. However, we have done

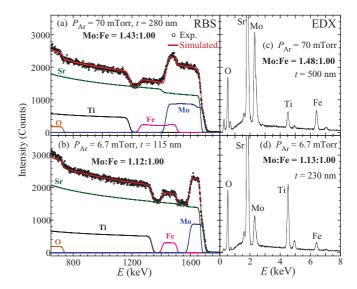


FIG. 1. (Color online) RBS spectra of Sr_2FeMoO_6 films deposited on $SrTiO_3$ substrates in pure Ar (a) at $P_{Ar} = 70$ mTorr showing Mo: Fe ratio of 1.43, and (b) at $P_{Ar} = 6.7$ mTorr showing Mo: Fe = 1.12. EDX spectra of Sr_2FeMoO_6 films on $SrTiO_3$ give (c) Mo: Fe = 1.48 for $P_{Ar} = 70$ mTorr and (d) Mo: Fe = 1.13 for $P_{Ar} = 6.7$ mTorr.

numerous measurements for each technique and verified that the Fe:Mo ratios do not change with film thickness within the instrument resolutions. The Sr signal from the substrate makes it difficult to get an accurate measure of stoichiometry for Sr using either RBS or EDX. Nevertheless, both RBS and EDX suggest that the amount of Sr is roughly comparable to the sum of Fe and Mo for most of our Sr₂FeMoO₆ films. A systematic study of stoichiometry in bulk Sr₂FeMoO₆ by Topwal et al. indicaftes that the magnitude of this offstoichiometry (\sim 45% Mo rich) drastically lowers the magnetization (from 3.2 $\mu_B/f.u.$ for stoichiometric composition to \sim 2.1 $\mu_{\rm B}/{\rm f.u.}$ at 4.2 K) and $T_{\rm C}$ (from 380 K for stoichiometric composition to ~270 K) in Sr₂FeMoO₆ (Ref. 27). Although the saturation magnetization of 3.2 $\mu_B/f.u.$ in Ref. 27 is not at optimal Fe/Mo ordering as compared to the value of 3.96 μ_B /f.u. for a close to perfectly ordered Sr₂FeMoO₆ (Ref. 29), the systematic variation of stoichiometry in a series of samples synthesized at similar conditions demonstrates the significant effect of stoichiometry on the magnetization.²⁷ By decreasing the Ar pressure to 6.7 mTorr, the stoichiometry is significantly improved to Mo: Fe = 1.12 by RBS [Fig. 1(b)] and Mo: Fe = 1.13 by EDX [Fig. 1(d)], corresponding to a composition of approximately Sr₂Fe_{0.94}Mo_{1.06}O₆. At this level of non-stoichiometry, both M_S and T_C only decrease slightly compared with stoichiometric Sr₂FeMoO₆ (Ref. 27). We varied the Ar pressure from 6.7 mTorr up to 300 mTorr and found that the Sr₂FeMoO₆ films monotonically become more off-stoichiometric (Mo rich) with increasing pressure.

The roles of other deposition parameters on the stoichiometry of Sr_2FeMoO_6 films are as follows:

(1) In addition to pure Ar, we explored H_2/Ar and O_2/Ar environments with the H_2/O_2 concentration ranging from 0.02%–2%. Although the change in redox characteristics of the sputter gas is an important parameter for phase formation as discussed in the following, the cation stoichiometry of

the films is not sensitive to the introduction of low levels of H_2 or O_2 .

- (2) The substrate temperature was also explored and it was found to have little effect on the film stoichiometry over the range from room temperature to 900° C.
- (3) To investigate the effect of sample position on film stoichiometry, we positioned the substrate at several locations between the off-axis position and on-axis position. At high gas pressure (e.g., 70 mTorr), the Sr₂FeMoO₆ films always have Mo: Fe ratios in excess of 1.40 regardless of the substrate position. At low pressures such as 6.7 mTorr, the magnetic quality deteriorated significantly as the substrates moved towards directly facing the target due to the increasing bombardment.

A possible mechanism for the dependence of stoichiometry on total pressure is the difference in scattering of Fe (atomic mass = 55.85 amu) and Mo (95.94 amu) atoms by Ar (39.95 amu), resulting in different spatial distribution of sputtered Fe and Mo atoms. At high pressures, the sputtered species experience more scattering, which magnifies the imbalance between Fe and Mo, leading to considerable off-stoichiometry in the Sr_2FeMoO_6 films. At low pressures, the atoms experience less scattering and arrive at the substrate in a ratio that more closely maintains the stoichiometry of the target.

B. Phase purity

Phase purity and epitaxial quality are essential for realizing half-metallicity in Sr₂FeMoO₆ films. Unlike other complex oxides, the synthesis of Sr₂FeMoO₆ requires either an inert or reducing environment.^{27,29} A slight oversupply of oxygen promotes the formation of impurity phases, most notably SrMoO₄ and FeO_x. We characterized our Sr₂FeMoO₆ films using XRD systems with both Bragg-Brentano geometry for detecting impurity phases and triple-axis geometry for the measurement of epitaxy, as shown in Fig. 2. The sputtering gas pressure again plays a major role in the phase purity of the Sr_2FeMoO_6 films. When using pure Ar at P_{Ar} < \sim 50 mTorr, the films are phase-pure perovskites. Figure 2(a) shows the $\theta/2\theta$ scan of a Sr₂FeMoO₆ (001) film grown at $P_{\rm Ar}=6.7$ mTorr with only the (00 l) peaks and a c-axis pseudocubic lattice constant $a_{\rm pc} = 7.909$ Å. This is slightly larger than the bulk value of 7.894 Å (Ref. 8), suggesting that the film may have a small degree of in-plane strain due to the 1% lattice mismatch with SrTiO₃.

X-ray diffraction measurements on an Sr_2FeMoO_6 (111) film grown at $P_{Ar}=6.7$ mTorr in Fig. 2(b) reveals only the (hhh) peaks with $a_{pc}=7.982$ Å. Both films are phase pure without any detectable impurity phases. In addition, the Sr_2FeMoO_6 (111) film exhibits a strong (111) peak which reflects the DP ordering of Fe and Mo. Using Rietveld refinements, we fit the $\theta/2\theta$ scan of the Sr_2FeMoO_6 (111) film and extracted the DP ordering parameter $\xi=0.854\pm0.024$, where $\xi=2(g_{Fe}-0.5)$, and g_{Fe} is the refined occupancy of Fe on the Fe-site in the DP structure. Ye at $\xi=0.854$, 92.7% of the Fe atoms are correctly ordered in a DP lattice. Given the estimated stoichiometry of $Sr_2Fe_{0.94}Mo_{1.06}O_6$, which allows a maximum $g_{Fe}=0.94$ and $\xi=0.88$, the Fe and Mo ions are within experimental error as fully ordered as can be realized for this stoichiometry.

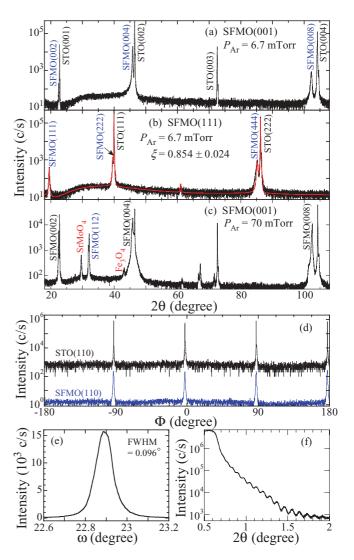


FIG. 2. (Color online) $\theta/2\theta$ XRD scans of (a) a Sr₂FeMoO₆ (001) and (b) a Sr₂FeMoO₆ (111) phase-pure epitaxial films deposited by sputtering in pure Ar of 6.7 mTorr. Rietveld refinements [red curve in (b)] gives a DP order parameter $\xi=0.854\pm0.024$. (c) $\theta/2\theta$ scan of a Sr₂FeMoO₆ (001) film grown in pure Ar at $P_{\rm Ar}=70$ mTorr shows impurity phases of SrMoO₄ and Fe₃O₄ as well as nonepitaxial peak of Sr₂FeMoO₆ (112). The broad "bump" between $2\theta=25^\circ$ and 50° is due to the plastic XRD holder.³⁰ (d) Φ -scans of the (110) peaks at a tilt angle $\Psi=45^\circ$ for a Sr₂FeMoO₆ (001) film demonstrate epitaxial relationship between the film and the SrTiO₃ substrate. (e) A rocking curve of the Sr₂FeMoO₆ (004) peak for a Sr₂FeMoO₆ (001) film gives a FWHM of 0.096° . (f) Small-angle x-ray reflectometry scan of a Sr₂FeMoO₆ (001) film gives multiple diffraction peaks and a film thickness of 110 nm.

Figure 2(c) shows an example $\theta/2\theta$ scan of a Sr₂FeMoO₆ (001) film grown at $P_{\rm Ar}=70$ mTorr with impurity phases of SrMoO₄ and Fe₃O₄ as well as a nonepitaxial Sr₂FeMoO₆ (112) peak. SrMoO₄ is the most common impurity phase in Sr₂FeMoO₆ films reported in the literature and Fe₃O₄ has also been previously observed. ^{13,14,18,25,26} Sr₂FeMoO₆ requires a narrow window of oxygen supply to form the DP phase. If the conditions become too oxidizing, formation of the Mo⁶⁺ containing SrMoO₄ is strongly favored. As a result, Fe₃O₄ can sometimes form if there is not enough Mo to pair with

Fe to form Sr_2FeMoO_6 and nonepitaxial Sr_2FeMoO_6 growth can occur. For Sr_2FeMoO_6 films grown at $P_{Ar} = 70$ mTorr the $SrMoO_4$ phase is always present whereas Fe_3O_4 and nonepitaxial Sr_2FeMoO_6 are often observed.

The difference in the phase purity of the Sr₂FeMoO₆ films grown at $P_{Ar} = 6.7$ and 70 mTorr is likely caused by two sources. First, the films made at $P_{\rm Ar} = 70$ mTorr have $\sim 45\%$ excess Mo, in contrast to the more stoichiometric films made at 6.7 mTorr. This off-stoichiometry at higher pressures may have favored formation of the SrMoO₄ impurity phase. Second, the oxygen needed for film growth should come exclusively from the target, and the oxygen pressure buildup in the chamber from sputtered oxygen increases at higher pressures due to the correspondingly lower gas replenish rates. Consequently, growth at $P_{Ar} = 70$ mTorr may lead to oxygen partial pressures that are high enough to form SrMoO₄. To suppress SrMoO₄ formation, we used H2 in Ar to grow Sr2FeMoO6 films at a total pressure of 70 mTorr (Refs. 20-24). Below 0.3% H₂ in Ar, the SrMoO₄ phase remains. Within a range of 0.3%-2% H₂ in Ar, we obtained phase-pure Sr₂FeMoO₆ films. However, as mentioned previously, even the phase-pure films

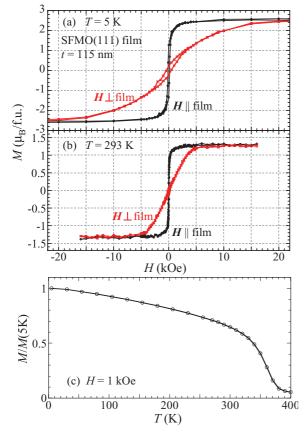


FIG. 3. (Color online) In-plane (black) and out-of-plane (red) hysteresis loops at (a) T=5 K and (b) T=293 K of a 115-nm thick Sr₂FeMoO₆ (111) epitaxial film deposited in pure Ar of 6.7 mTorr. The small opening in the out-of-plane loop at T=5 K in (a) is due to the misalignment of the sample in SQUID measurements, in which a few degrees off-perfect alignment can result in obvious change in the shape of the loop (Ref. 31). The clear anisotropy between $H \parallel$ film and $H \perp$ film indicates strong magnetic interaction throughout the film. (c) M vs. T curve gives a $T_{\rm C}=380$ K.

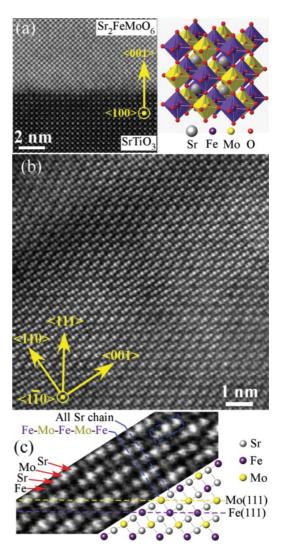


FIG. 4. (Color online) *Unfiltered* aberration-corrected HAADF STEM images of (a) a Sr_2FeMoO_6 (001) film grown on a $SrTiO_3$ (001) substrate with an atomically sharp interface [the schematic drawing shows the double-perovskite lattice with rock-salt (NaCl) ordering of Fe and Mo], (b) a Sr_2FeMoO_6 (111) epitaxial film on $SrTiO_3$ viewed along the $\langle 1\bar{1}0\rangle$ direction with bright "triplet" patterns indicative of atomic number contrast, and (c) an enlarged STEM image highlighting the triplets (dashed blue box), each of which is a bright Sr-Mo-Sr chain (due to their high atomic numbers) separated by a darker Fe atomic column (lighter). It clearly shows the Mo-Fe ordering separated by an Sr chain. The schematic in (c) is the projection of the DP lattice along the $\langle 1\bar{1}0\rangle$ direction, which matches the pattern seen in the STEM image of (c). The orientations in (c) are the same as in (b) indicated by the yellow axes.

are severely nonstoichiometric with \sim 45% excess Mo and have poor magnetic properties, including M_S below 1 $\mu_B/f.u.$ at T=5 K and T_C below 300 K. The addition of O_2 in Ar promotes the formation of SrMoO₄ across the whole pressure range, with a significant degradation of magnetization.

The Φ -scans of the (110) peaks of a Sr_2FeMoO_6 (001) film and the $SrTiO_3$ substrate shown in Fig. 2(d) confirms the epitaxial relationship between the film and $SrTiO_3$. Figure 2(e) shows the rocking curve of the Sr_2FeMoO_6 (004) peak for a Sr_2FeMoO_6 (001) film. The full-width-at-half-maximum

(FWHM) of 0.096° demonstrates the high uniformity of the Sr_2FeMoO_6 film. The small-angle x-ray reflectometry (XRR) scan [Fig. 1(f)] of an Sr_2FeMoO_6 film shows more than 15 diffraction peaks, indicating a smooth film surface and a sharp $Sr_2FeMoO_6/SrTiO_3$ interface. From the spacing between peaks, the thickness of the film is calculated to be 110 nm.

C. Magnetization and magnetic anisotropy

Figures 3(a) and 3(b) show the in-plane $(H \parallel \text{film})$ and out-of-plane ($H \perp$ film) magnetic hysteresis loops of a phasepure Sr_2FeMoO_6 (111) epitaxial film at T = 5 and 293 K, respectively. The hysteresis loops at both T = 5 K and room temperature show a distinct shape anisotropy between $H \parallel \text{film}$ and $H \perp$ film. The hysteresis loops with $H \parallel$ film (easy axis) exhibit sharp reversal with square-like loops while those with $H \perp$ film (hard axis) have slanted loops. The magnetic shape anisotropy originates from the minimization of magnetostatic energy and exists in most ferromagnetic films. To the best of our knowledge, there has been no report of the expected magnetic shape anisotropy in Sr₂FeMoO₆ films. The lack of magnetic shape anisotropy of previously reported films is likely due to the fact that the films are comprised of isolated magnetic domains with lateral sizes comparable to or smaller than the film thickness. As a result, the magnetic behavior of the films is similar to an ensemble of decoupled magnetic nanoparticles. Decoupling between magnetic domains could be attributed to impurity phases (e.g., SrMoO₄), nonmagnetic defects (e.g., Fe/Mo antisite disorders), or nonstoichiometry. The clear magnetic shape anisotropy seen in Fig. 3 indicates strong magnetic coupling over a range much larger than the film thickness.

Studies of bulk samples have shown that both $T_{\rm C}$ and $M_{\rm S}$ are sensitive to non-stoichiometry.²⁷ To accurately measure the film thickness, which is critical in determining $M_{\rm S}$, we used a combination of profilometry, XRR [Fig. 2(f)], STEM (see Fig. 4), and RBS. The $M_{\rm S}$ of 2.6 $\mu_{\rm B}/{\rm f.u.}$ is in good agreement with bulk results for samples with a similar stoichiometry (12% excess Mo which corresponds to Sr₂Fe_{0.94}Mo_{1.06}O₆) (Ref. 27). The $M \sim T$ curve in Fig. 3(c) shows a clean single ferromagnetic phase transition with a $T_{\rm C}=380~{\rm K.}$ The observation of a single transition is an indicator of magnetic homogeneity, a feature that is not always observed for Sr₂FeMoO₆ films.

The HAADF STEM image in Fig. 4(a) shows the sharp interface between an Sr₂FeMoO₆ (001) film and the SrTiO₃ substrate alongside a schematic drawing of a DP lattice. Figure 4(b) presents the direct observation of Fe/Mo ordering in a Sr_2FeMoO_6 (111) film by HAADF STEM along the $\langle 1\bar{1}0 \rangle$ direction. When viewed along this direction of the DP lattice, each lattice site becomes a column of pure Sr, Fe, or Mo atoms (no mixtures). In this imaging mode the intensity of the image in each atomic column is proportional to the chemical average atomic number. Each atomic column can be identified as Sr. Fe, or Mo (O is essentially invisible in HAADF STEM mode in our instrument). The most evident feature in Fig. 4(b) is the bright Sr-Mo-Sr triplets separated by a darker Fe atomic column. An enlarged view of the triplets present in Fig. 4(b) is given in Fig. 4(c) with the Sr, Fe, and Mo atoms labeled to outline the clear DP ordering. A schematic drawing of the projection of the DP lattice along the $\langle 1\bar{1}0 \rangle$ direction is shown in Fig. 4(c), which matches well with the STEM image. To the best of our knowledge, this is the first direct observation of clear DP ordering in Sr₂FeMoO₆ by HAADF STEM.¹⁷

IV. CONCLUSIONS

In summary, we have grown phase-pure fully epitaxial Sr_2FeMoO_6 films and characterized those films using a variety of techniques. RBS and EDX show that the stoichiometry of the Sr_2FeMoO_6 films depends sensitively on the system pressure, with severe off-stoichiometry (~45% Mo rich) at $P_{Ar}=70$ mTorr and close to stoichiometric composition ($Sr_2Fe_{0.94}Mo_{1.06}O_6$) at $P_{Ar}=6.7$ mTorr. These films showed a high degree of Fe/Mo ordering ($\xi=0.854\pm0.024$), complete epitaxy, a smooth surface and sharp interface with the underlying $SrTiO_3$ substrate, and strong magnetic shape anisotropy. The results presented here provide a critical understanding of this intriguing material and represent an important step toward the goal of incorporating half-metals into room-temperature magnetoelectric devices.

ACKNOWLEDGMENTS

This work is supported by the Center for Emergent Materials at the Ohio State University, an NSF Materials Research Science and Engineering Center (DMR-0820414).

and Y. Tokura, Appl. Phys. Lett. 74, 2215 (1999).

D. STEM imaging of Fe/Mo ordering

¹R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. **50**, 2024 (1983).

²K. Schwarz, J. Phys. F **16**, L211 (1986).

³Y. Ji, G. J. Strijkers, F. Y. Yang, C. L. Chien, J. M. Byers, A. Anguelouch, G. Xiao, and A. Gupta, Phys. Rev. Lett. **86**, 5585 (2001).

⁴A. Yanase and K. Siratori, J. Phys. Soc. Jpn. **53**, 312 (1984).

⁵W. E. Pickett and D. J. Singh, Phys. Rev. B **53**, 1146 (1996).

⁶M. Bibes and A. Barthélémy, IEEE Trans. Electron Devices **54**, 1003 (2007).

⁷V. A. M. Brabers, *Progress in spinel ferrite research. Ferromagnetic Materials*, Vol. 8, edited by K. H. J. Buschow, (Elsevier, Amsterdam, 1995), 189.

⁸K. L. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature (London) **395**, 677 (1998).

⁹D. Serrate, J. M. DeTeresa, and M. R. Ibarra, J. Phys. Condens. Matter **19**, 023201 (2007).

¹⁰Y. Krockenberger, K. Mogare, M. Reehuis, M. Tovar, M. Jansen, G. Vaitheeswaran, V. Kanchana, F. Bultmark, A. Delin, F. Wilhelm, A. Rogalev, A. Winkler, and L. Alff, Phys. Rev. B 75, 020404(R) (2007).

¹¹Y. Miura, K. Nagao, and M. Shirai, Phys. Rev. B **69**, 144413 (2004).

A. W. Sleight and J. F. Weiher, J. Phys. Chem. Solids 33, 679 (1972).
 T. Manako, M. Izumi, Y. Konishi, K.-I. Kobayashi, M. Kawasaki,

- ¹⁴H. Q. Yin, J.-S. Zhou, J.-P. Zhou, R. Dass, J. T. McDevitt, and J. B. Goodenough, Appl. Phys. Lett. 75, 2812 (1999).
- ¹⁵W. Westerburg, D. Reisinger, and G. Jakob, Phys. Rev. B **62**, R767 (2000).
- ¹⁶M. Bibes, K. Bouzehouane, A. Barthélémy, M. Besse, S. Fusil, M. Bowen, P. Seneor, J. Carrey, V. Cros, A. Vaurès, J.-P. Contour, and A. Fert, Appl. Phys. Lett. 83, 2629 (2003).
- ¹⁷S. Q. Wang, H. Y. Pan, X. P. Zhang, G. J. Lian, and G. C. Xiong, Appl. Phys. Lett. **88**, 121912 (2006).
- ¹⁸D. Sanchez, M. Garcia-Hernandez, N. Auth, and G. Jakob, J. Appl. Phys. **96**, 2736 (2004).
- ¹⁹T. Fix, G. Versini, J. L. Loison, S. Colis, G. Schmerber, G. Pourroy, and A. Dinia, J. Appl. Phys. **97**, 024907 (2005).
- ²⁰M. Osugi, H. Asano, D. Hidashida, and M.Matsui, J. Magn. Soc. Jpn. 25, 887 (2001) [in Japanese].
- ²¹H. Asano, M. Osugi, Y. Kohara, D. Higashida, and M. Matsui, Jpn. J. Appl. Phys. **40**, 4883 (2001).
- ²²H Asano, Y. Kohara, and M. Matsui, Jpn. J. Appl. Phys. **41**, L1081 (2002).

- ²³H. Asano, N. Koduka, K. Imaeda, M. Sugiyama, and M. Matsui, IEEE Trans. Magn. 41, 2811 (2005).
- ²⁴H. Asano, N. Koduka, Y. Takahashi, and M. Matsui, J. Magn. Magn. Mater. 310, 2174 (2007).
- ²⁵A. Venimadhav, F. Sher, J. P. Attfield, and M. G. Blamire, J. Magn. Magn. Mater. **269**, 101 (2004).
- ²⁶H. Jalili, N. F. Heinig, and K. T. Leung, Phys. Rev. B **79**, 174427 (2009).
- ²⁷D. Topwal, D. D. Sarma, H. Kato, Y. Tokura, and M. Avignon, Phys. Rev. B **73**, 094419 (2006).
- ²⁸C. B. Eom, J. Z. Sun, K. Yamamoto, A. F. Marshall, K. E. Luther, T. H. Geballe, and S. S. Laderman, Appl. Phys. Lett. **55**, 595 (1989).
- ²⁹Y. H. Huang, M. Karppinen, H. Yamauchi, and J. B. Goodenough, Phys. Rev. B **73**, 104408 (2006).
- ³⁰A. J. Hauser, J. Zhang, L. Mier, R. A. Ricciardo, P. M. Woodward, T. L. Gustafson, L. J. Brillson, and F. Y. Yang, Appl. Phys. Lett. 92, 222901 (2008).
- ³¹F. Y. Yang, C. L. Chien, E. F. Ferrari, X. W. Li, Gang Xiao, and A. Gupta, Appl. Phys. Lett. 77, 286 (2000).