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Acoustic Faraday effect and the circular magnetic dichroism effect in single molecule magnets
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We report a theoretical study on propagation of an acoustic wave in a field-cooled magnetized crystal of
molecular magnets. A transverse wave propagating in the direction of crystal magnetization is considered along
with the acoustic Faraday effect and the circular magnetic dichroism effect arising by such propagation. Numerical
estimations of these effects are presented, demonstrating that they can easily be observed experimentally.
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I. INTRODUCTION

Magnetoacoustic phenomena, specifically the interaction
between the acoustic waves and paramagnetic atoms, have
always attracted the attention of theorists and experimenters
involved in magnetism research. A vivid manifestation of this
interaction is a well-known acoustic Faraday effect (AFE)
in paramagnetics that is essentially a nonreciprocal effect of
rotation of the polarization plane of a transverse acoustic wave
propagating in a paramagnetic parallel to the magnetic field
(see, for example, Ref. 1 and references therein). The AFE was
for the first time theoretically considered for ferromagnetic
substances2 and for paramagnetics.3 In dissipative media the
AFE occurs along with the circular magnetic dichroism effect
(MDE) that manifests itself through ellipticity of the acoustic
wave polarization.

Of great research interest currently are magnetoacoustic
phenomena in single molecule magnets (SMMs)4–7 which
are in fact paramagnetics.8 A distinctive feature of SMM,
which is also their advantage over regular paramagnetics,
is that they can be prepared in a variety of magnetic states
even in the absence of a magnetic field. Another distinction
is that interaction of the SMM spin system with long-wave
deformation induced by propagation of the transverse acoustic
wave is independent of the magnetoelastic coupling constants
(see Ref. 9 and references therein). These peculiarities of
SMMs show up through magnetoacoustic effects. Therefore,
we find theoretical consideration of AFE and MDE in
SMMs interesting and important. This paper addresses these
phenomena.

II. SMM IN A LONGITUDINAL CONSTANT
MAGNETIC FIELD

We consider a simple model of SMM, making appropriate
corrections where necessary. A simple model of SMM implies
that a crystal of molecular magnets is composed of noninteract-
ing magnetic molecules.10–13 Each molecule is characterized
by a strong crystal-field anisotropy (longitudinal anisotropy).
For certainty, we denote this direction by the z axis. In addition,
the molecule has a transverse anisotropy that can be both very
weak compared to the longitudinal anisotropy (like that of the
Mn12-Ac and Ni4 crystals) and comparable with it (as in Fe8

crystal, for example).

We focus only on crystals with a weak transverse
anisotropy. In the absence of magnetic fields and regardless
of the transverse anisotropy, the Hamiltonian of a magnetic
molecule reads

Ĥ0 = −DŜ2
z , (1)

where D is the longitudinal anisotropy energy constant and
Ŝz is the operator of spin projection on the z axis. The
energy spectrum of the molecule Em

(0) = −Dm2 (m = S,

S − 1, . . . , − S) is represented by S + 1/2 degenerate dou-
blets if S is a half integer, and by S degenerate doublets
and one nondegenerate level if S is an integer. The eigen-
functions ψm of operator Ŝz are the eigenfunctions of the
Hamiltonian (1). Thus, each level can be characterized by
the magnetic quantum number m, which is the eigenvalue of
operator Ŝz (Ŝzψm = mψm); it is seen that the energies of states
ψm and ψ−m are equal. Due to the relatively low temperatures,
it would be sufficient to consider just two lower doublets of
the magnetic molecule: the fundamental doublet m = ±S, and
the first excited doublet m = ±(S − 1). In the following, the
subscript 1 marks the fundamental doublet and the subscript 2
marks the first excited doublet (see Fig. 1).

If the applied dc magnetic field is directed along the z axis,
the molecule Hamiltonian is

Ĥmag = Ĥ0 + gμBH0zŜz, (2)

where g and μB are the Lande factor and the Bohr magneton,
respectively.

Since operator Ŝz commutes with Hamiltonian (2) (as it
does with Ĥ0), they have common eigenfunctions. It is easily
seen that, as in the absence of the magnetic field, functions
ψm are eigenfunctions of Hamiltonian (2), only now states
ψm and ψ−m correspond to different energies. According to
Eq. (2), the energy of the state with the specified value of m is
Em = −Dm2 + gμBH0zm, so, the value of splitting for each
doublet is equal to Em − E−m = 2gμBH0zm. For each split
doublet, the energy of the state with a positive m is higher than
the energy of the state with a negative m (for definiteness, we
set H0z > 0, see Fig. 2).

In the absence of the magnetic field, the frequency
of transition S − 1 → S is equal to that of transition
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FIG. 1. Two lower doublets of a magnetic molecule.

−S + 1 → −S. We denote this frequency by ω21 (see
Fig. 1):

ω21 = E
(0)
S−1 − E

(0)
S

h̄
= D

2S − 1

h̄
. (3)

Under the dc magnetic field H0z, the molecule spec-
trum changes: the state with m = ±S corresponds to
the energy E±S = −DS2 ± gμBH0zS, and the state with
m = ±(S − 1) corresponds to the energy E±(S−1) = −D(S −
1)2 ± gμBH0z(S − 1) (see Fig. 2). As a result, the frequencies
of transitions between the states of the fundamental and the
first excited doublets depend on sign m:

ω+ = ω21 − ωH ,

ω− = ω21 + ωH , (4)

ωH = gμBH0z

h̄
.

Here and following, the superscripts (+,−) mark the quantities
relating to the molecule states m > 0 and m < 0, respectively.

We study the case of relatively low temperatures:

kBT � h̄ω+, h̄ω−. (5)

So, under thermodynamic equilibrium, only the fundamental
doublet population is largely different from zero. Note that at
low temperatures the probability of thermoactivated processes
which cause a change of sign of the spin projection is
vanishingly small.

We also assume that the magnetic field H0z is such
that the energy differences ES − E−S , ES−1 − E−S+1, and
E−S+1 − ES are sufficient for neglecting the processes of
quantum tunneling S →← − S, S − 1 →← − S + 1, and −S +
1 →←S, respectively.

Thus, the entire ensemble of magnetic molecules may
be considered as two practically independent subsystems in
which the molecules differ by sign m. The respective molecule
concentrations in these subsystems are designated as N+ and

FIG. 2. Magnetic molecule spectrum (two lower doublets) in the
presence of a dc magnetic field H0z > 0 directed along the z axis.
The dotted lines correspond to the nonperturbed molecule spectrum.
The molecule spectrum in the presence of the dc magnetic field H0z

is shown by the solid lines.

N−. In consequence of Eq. (5), in the state of thermodynamic
equilibrium, N+ is the concentration of molecules in the state
ψS and N− is the concentration of molecules in the state ψ−S .

The values N+ and N− depend on the specific mode in
which the sample cooling and the H0z field application were
carried out. In this paper we consider the AFE and MDE
when SMM is entirely polarized (N+ = 0, N− = N ; i.e., N

is the total concentration of magnetic molecules in SMMs). It
is in a fully polarized (magnetized to saturation) sample that
the AFE and MDE in question are most strongly manifested.
This state can be obtained, for example, through field-cooled
(FC) magnetization (see, for example, Refs. 11 and 14). If we
then set an acceptable (fairly small) value for H0z, the entirely
polarized state with N+ = 0, N− = N will be retained long
enough; that is, all of the magnetic molecules will belong to
the subsystem with m < 0.

Note here that to theoretically estimate an acceptable value
of H0z we have to extend the limits of the simple SMM model,
in particular, by including the dipole interaction between the
molecular spins and the interaction between the electronic
and nuclear spins (hyperfine interaction).11,15 One can just as
well use the experimental data for estimations. In Ref. 14, for
example, it is demonstrated that the SMM state (for Mn12-Ac)
resulting from FC magnetization is quite stable at T < 1 K
and H0z � 103 �e (the magnetization value does not vary
for hours; see also Refs. 15 and 16). So, since we consider
Mn12-Ac, we assume T < 1 K and H0z � 103 �e (which
corresponds to ωH/2π � 3 × 109 s−1).

Investigation of the acoustic wave propagation along the z

axis is carried out in the continuous medium approximation.
Therefore, we introduce (via Heisenberg representation) the

operators of spin density �̂S−(z; t), relating to the subsystem
with m < 0. These operators satisfy the well-known commu-
tation relations expressed here in the traditional notations:

[Ŝ−
i (z; t)Ŝ−

j (z′; t)] = iεijkŜ
−
k δ(�r − �r ′), (6)

where �r = x�ex + y�ey + z�ez. Here and elsewhere, �ex,y,z are the
unit vectors of the Cartesian system of coordinates.

Next, we use these operators to introduce, following
Eqs. (1) and (2), the magnetic Hamiltonian density:

Ĥmag(z; t) = −D

N
(Ŝ−

z (z; t))2 + gμBH0zŜ
−
z (z; t). (7)

III. INTERACTION OF THE ACOUSTIC WAVE WITH THE
SMM SPIN SYSTEM IN THE ABSENCE OF DAMPING

In this section we regard an acoustic wave as a quantum
object but solely for the simplicity of the applicable body
of mathematics rather than fundamentally (see, for example,
Ref. 2). Also, no relaxation (dissipative) processes that
contribute to the acoustic wave damping are taken into account.

First, we examine an acoustic wave propagating without
interaction with the magnetic system of the crystal. For a
transverse wave propagating along the z axis, we have

�̂U (z; t) = Ûx(z; t)�ex + Ûy(z; t)�ey, (8)

where �̂U (z; t) is the operator of the displacement vector of a
point in the medium from its original position. Then the elastic
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Hamiltonian density has an ordinary form:

Ĥel(z; t) = P̂ 2
x (z; t)

2ρ
+ P̂ 2

y (z; t)

2ρ

+ K

2

[(
∂Ûx(z; t)

∂z

)2

+
(

∂Ûy(z; t)

∂z

)2
]

, (9)

where P̂x,y(z; t) is the operator of the momentum density,
conjugate to operator Ûx,y(z; t); ρ is the density; and K is
the elastic constant.

The commutation relations are

[Ûi(z; t)P̂j (z′; t)] = ih̄δij δ(�r − �r ′). (10)

Note that, in the absence of interaction between the acous-
tic wave and the SMM spin system, the wave velocity
vt = √

K/ρ.
We now consider the acoustic wave interaction with the

SMM spin system, following the approaches developed in
Ref. 9: this interaction is determined by the effect of the
acoustic wave-induced rotation of each local volume of the
crystal (and, hence, every magnetic molecule) as a whole.
According to Ref. 9, the operator of such magnetoelastic
interaction for a single molecule up to the linear terms in

δ �̂
 = ∇ �̂U (z; t)/2 (operator of the molecule anisotropy axis
rotation angle) is

Ĥmag,el = −D{Ŝ−
x Ŝ−

z }δ
̂y + D{Ŝ−
y Ŝ−

z }δ
̂x, (11)

where the curly brackets designate an anticommutator. The
matrix elements of operator Ĥmag,el differ from zero only for

the transitions m→←m ± 1.
For the acoustic transverse wave under study,

δ
̂x = − 1
2

∂Ûy (z;t)
∂z

, δ
̂y = 1
2

∂Ûx (z;t)
∂z

; therefore, using
Eq. (11), the density of the magnetoelastic Hamiltonian
is expressed as

Ĥmag,el(z; t) = − D

2N

(
{Ŝ−

x (z; t)Ŝ−
z (z; t)}∂Ûx(z; t)

∂z

+ {Ŝ−
y (z; t)Ŝ−

z (z; t)}∂Ûy(z; t)

∂z

)
. (12)

In further treatment we use the following simplifying condi-
tions. We deal with the case of relatively low temperatures (see
Sec. II). So, taking into account the fact that only transitions
m→←m ± 1 differ from zero, it would be sufficient to include
just a couple of states ψ−S and ψ−S+1 for the subsystem with
m < 0. We introduce pseudospin operators (in Schrödinger
representation) for a single molecule from this subsystem,
using ϕ1 = ψ−S , ϕ2 = ψ−S+1, as the basis:

R̂−Sch
I = 1

2

(
0 1

1 0

)
, R̂−Sch

II = 1

2

(
0 −i

i 0

)
,

R̂−Sch
III = 1

2

(
1 0

0 −1

)
. (13)

Note that in the state of thermodynamic equilibrium at
rather low temperatures only the level corresponding to ϕ1 =
ψ−S is populated substantially; therefore, we assume〈

R̂−Sch
III

〉 = 1
2 . (14)

Here and elsewhere the angle brackets designate the thermo-
dynamic average in the equilibrium state. Using Eqs. (13), it
is possible to write the operators for a single molecule (in
Schrödinger representation) in the following form: for Ĥmag

[see Eq. (2)],

Ĥ Sch
mag = −h̄ω−R̂−Sch

III , (15)

and for the anticommutators in Eq. (11),{
Ŝ−Sch

x Ŝ−Sch
z

} = −√
2S(2S − 1)R̂−Sch

I , (16){
Ŝ−Sch

y Ŝ−Sch
z

} = √
2S(2S − 1)R̂−Sch

II . (17)

Now, using Eqs. (15)–(17), we change the operators R̂−Sch
i

for the Heisenberg operators of pseudospin density R̂−
i (z; t)

(i = I, II, III); then the magnetic Hamiltonian density
Ĥmag(z; t) [Eq. (7)] can be written as

Ĥmag(z; t) = −h̄ω−R̂−
III(z; t), (18)

and the magnetoelastic Hamiltonian density Ĥmag,el(z; t)
[Eq. (12)] as

Ĥmag,el(z; t) = D

√
S

2
(2S − 1)

×
(

R̂−
I (z; t)

∂Ûx(z; t)

∂z
− R̂−

II (z; t)
∂Ûy(z; t)

∂z

)
.

(19)

The commutation relations for the operators R̂−
i (z; t) have the

form

[R̂−
i (z; t)R̂−

j (z′; t)] = iεijkR̂
−
k (z; t)δ(�r − �r ′). (20)

The total Hamiltonian density Ĥtot is obtained by combining
Eqs. (9), (18), and (19):

Ĥtot(z; t) = Ĥel(z; t) + Ĥmag(z; t) + Ĥmag,el(z; t). (21)

Thus, the total Hamiltonian reads

Ĥtot =
∫

Ĥtot(z; t) d�r. (22)

Here the integral is taken over the crystal volume.
Using Eq. (22) and the commutation relations for Heisen-

berg operators, one can obtain the quantum equations of
motion for these operators:

˙̂Ux(y)(z; t) = i

h̄
[ĤtotÛx(y)(z; t)]

= i

h̄

∫
[Ĥel(z

′; t)Ûx(y)(z; t)]d�r ′ = 1

ρ
P̂x(y)(z; t),

(23)

˙̂P x(y)(z; t) = i

h̄
[ĤtotP̂x(y)(z; t)]

= i

h̄

∫
[(Ĥel(z

′; t) + Ĥmag,el(z
′; t))P̂x(y)(z; t)]d�r ′

= K
∂2Ux(y)(z; t)

∂z2

+
(−)

D

√
S

2
(2S − 1)

∂R̂−
I(II)(z; t)

∂z
,

(24)
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˙̂
R−

I(II)(z; t) = i

h̄
[ĤtotR̂

−
I(II)(z; t)]

= i

h̄

∫
[(Ĥmag(z′; t) + Ĥmag,el(z

′; t))

× R̂−
I(II)(z; t)] d�r ′

= +
(−) ω

−R̂−
II(I)(z; t) − D

√
S

2
(2S − 1)

× h̄−1R̂−
III(z; t)

∂Ûy(x)(z; t)

∂z
, (25)

˙̂
RIII3

−(z; t) = i

h̄
[ĤtotR̂

−
III(z; t)]

= i

h̄

∫
[Ĥmag,el(z

′; t)R̂−
III(z; t)]d�r ′

= D

√
S

2
(2S − 1)h̄−1

×
(
R̂−

II (z; t)
∂Ûx(z; t)

∂z
+R̂−

I (z; t)
∂Ûy(z; t)

∂z

)
.

(26)

It is seen from Eqs. (25) and (26) that ˙̂
R−

I(II)(z; t) are different

from zero in the first order and ˙̂
R−

III(z; t) in the second
order of interaction of the acoustic wave with the magnetic
system of SMMs. Assuming this interaction weak, we may set
˙̂
R−

III(z; t) = 0; then Eqs. (23)–(26) yield the equations for the
corresponding averages:

ρ〈 ¨̂Ux(z; t)〉 = K
∂2〈Ûx(z; t)〉

∂z2
+ D

√
S

2
(2S − 1)

∂〈R̂−
I (z; t)〉
∂z

,

(27)

ρ〈 ¨̂Uy(z; t)〉 = K
∂2〈Ûy(z; t)〉

∂z2
− D

√
S

2
(2S − 1)

∂〈R̂−
II (z; t)〉
∂z

,

(28)

〈 ˙̂
R−

I (z; t)〉 = ω−〈R̂−
II (z; t)〉 − D

√
S

2
(2S − 1)h̄−1

×
〈
R̂−

III(z; t)
∂Ûy(z; t)

∂z

〉
, (29)

〈 ˙̂
R−

II (z; t)〉 = −ω−〈R̂−
I (z; t)〉 − D

√
S

2
(2S − 1)h̄−1

×
〈
R̂−

III(z; t)
∂Ûx(z; t)

∂z

〉
. (30)

In accordance with our approach, the averaging is performed
via the density matrix which is independent of time in the
Heisenberg representation. We assume this density matrix to
correspond (at t = 0) to the initial thermodynamic equilibrium

state. Since ˙̂
R−

III(z; t) = 0, it is possible to assume in Eqs. (29)
and (30) that

R̂−
III(z; t) = R̂−

III(z; 0) = NR̂−Sch
III . (31)

Equality (31) implies that in the first order of interaction
of the acoustic wave with the SMM magnetic system the
populations of the magnetic molecule levels do not change
and, hence, neither does the SMM magnetization projection

on the z axis. So, the set of Eqs. (27)–(30) corresponds
to small oscillations of magnetization near the equilibrium
state.

Considering also Eq. (14), we can perform the following
uncoupling in Eqs. (29) and (30):〈

R̂−
III(z; t)

∂Ûx,y(z; t)

∂z

〉
= 1

2
N

∂〈Ûx,y(z; t)〉
∂z

. (32)

Using Eq. (32) and neglecting, for simplicity, the symbols
for the operators and the averaging, from Eqs. (27)–(30) we
obtain

ρÜx(z; t) = K
∂2Ux(z; t)

∂z2
+ D

√
S

2
(2S − 1)

∂R−
I (z; t)

∂z
,

(33)

ρÜy(z; t) = K
∂2Uy(z; t)

∂z2
− D

√
S

2
(2S − 1)

∂R−
II (z; t)

∂z
,

(34)

Ṙ−
I (z; t) = ω−R−

II (z; t) − D

√
S

2
(2S − 1)(2h̄)−1N

∂Uy(z; t)

∂z
,

(35)

Ṙ−
II (z; t) = −ω−R−

I (z; t)−D

√
S

2
(2S−1)(2h̄)−1N

∂Ux(z; t)

∂z
.

(36)

It should be noted here that the description of the interaction
between the SMM spin system and the acoustic wave,
Eqs. (33)–(36), can be readily interpreted. Indeed, quantities
R−

I,II(z; t), N can be thought of as the components of some

effective classical “magnetic moment” �Mef with components
(R−

I → (Mef)x ; R−
II → (Mef)y ; N → (Mef)z). It is seen from

Eqs. (35) and (36) that this effective classical “magnetic
moment” moves in the effective “magnetic field” �Hef with
the components

(Hef)x = −D

√
S

2
(2S − 1)(2h̄)−1 ∂Ux(z; t)

∂z
,

(Hef)y = D

√
S

2
(2S − 1)(2h̄)−1 ∂Uy(z; t)

∂z
, (37)

(Hef)z = ω−,

in accordance with the equation

�̇Mef = [ �Mef × �Hef]. (38)

This approach is valid under the condition

(Mef)x,y � (Mef)z = N = const. (39)

We would like to point out the obvious fact that the ef-
fective “gyromagnetic ratio” corresponding to such effective
“moment” and “field” equals 1. Also note that ω− is essentially
the frequency of the uniform precessing of the effective
“moment” (in the absence of the acoustic wave).
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IV. ACOUSTIC WAVE IN SMM UNDER THE RELAXATION
PROCESSES IN THE SMM SPIN SYSTEM:

AFE AND MDE

We assume that the relaxation processes are relevant only
in the SMM spin system and neglect them in the acoustic
wave proper (see, for example, Ref. 2). These processes are
included in the equations of motion for the “effective magnetic
moment” via the well-known Landau-Lifshitz approach.17,18

This approach, taking into account Eqs. (37)–(39), leads to the
following changes in the equations of motion for R−

I,II(z; t),
Eqs. (35) and (36):

Ṙ−
I (z; t)

= ω−R−
II (z; t) − D

√
S

2
(2S − 1)(2 h̄)−1N

∂Uy(z; t)

∂z

− γ

(
R−

I (z; t) + D

√
S

2
(2S − 1)(2 h̄ω−)−1N

∂Ux(z; t)

∂z

)
,

(40)

Ṙ−
II (z; t)

= −ω−R−
I (z; t) − D

√
S

2
(2S − 1)(2 h̄)−1N

∂Ux(z; t)

∂z

−γ

(
R−

II (z; t) − D

√
S

2
(2S − 1)(2 h̄ω−)−1N

∂Uy(z; t)

∂z

)
,

(41)

where γ −1 is the characteristic time of the spin system
relaxation for the transition at frequencies ω ∼ ω− � ω21.
Note that for Eq. (39) these equations can be derived within the
approach involving a modified form of the Bloch equation19,20

(assuming γ −1 ≡ T2). The thing in common for both methods,
which is an important assumption, too, is that the dissipation
rate at each moment is proportional to the difference between
the value of the “magnetic moment” and its magnitude that
would set in if the momentary value of the effective “magnetic
field” were “frozen.”

In this way we obtain a set of equations (33), (34), (40),
and (41). Assuming that all variables in this system have time
and spatial dependences

Ux,y(z; t) = 1
2Ux,ye

i(ωt−kz) + c.c.,

R−
I,II(z; t) = 1

2R−
I,IIe

i(ωt−kz) + c.c.,

and excluding variables R−
I,II(z; t), we derive a system for

variables Ux,y :{
ω2 − v2

t k
2 − v2

t k
2C

(ω−)2 + iγ (ω − iγ )

(ω − iγ )2 − (ω−)2

}
Ux

−
{
v2

t k
2C

iωω−

(ω − iγ )2 − (ω−)2

}
Uy = 0,{

v2
t k

2C
iωω−

(ω − iγ )2 − (ω−)2

}
Ux

+
{
ω2 − v2

t k
2 − v2

t k
2C

(ω−)2 + iγ (ω − iγ )

(ω − iγ )2 − (ω−)2

}
Uy = 0.

(42)

Here

C = h̄ω21SN

2ρv2
t

(43)

is the quantity that should be regarded as the parameter
of coupling between the acoustic wave and the SMM spin
system. Note that this parameter includes just the elasticity
constant (due to the relation vt = √

K/ρ) and the anisotropy
constant (due to the relation ω21 = D(2S − 1) h̄−1), but it
lacks magnetoelastic coupling constants (that are present in
a ferromagnet17), which is a direct result of relation (11).
We use the characteristic value C ∼ 10−4 in the numerical
calculations. To estimate C, we take the following parameters
for Mn12-Ac: ω21/2π ∼ 3 × 1011 s−1, S = 10, N ∼ 2.5 ×
1020 cm−3, ρ ∼ 2g cm−3, vt ∼ (1.5−2) × 105 cm/s (see, for
example, Refs. 21 and 22).

We would like to note the following circumstance with
respect to the value of the characteristic time of the spin
system relaxation γ −1 (and, hence, the linewidth γ ). This
value in SMMs is largely determined by both the dipole
interaction between the spins [the typical value of the dipole
field is of order of ∼100 �e for Mn12-Ac (Refs. 11,23)]
and the hyperfine interaction [the hyperfine field is about
∼250 �e for Mn12-Ac (Refs. 11,15; see also Ref. 24 and
references therein)]. Therefore, the linewidth, which depends
on random distribution of the above fields (the effect of
inhomogeneous line broadening24), can be evaluated as 109

s−1. Indeed, the measurements taken in Ref. 24 for Mn12-Ac
at T = 2.33 K yielded the linewidth value ∼3 × 109 s−1

for the transitions at frequencies ω ∼ ω21. It is also known
that at T < 1 K the linewidth is expected to be smaller.25

Therefore, we assume γ −1 = 10−9 s for the numerical
estimations.

Further, the dispersion equations for Eqs. (42) have the
following form:

ω2 − v2
t k

2

[
1 − C

(ω−)2 + γ 2 + iωγ ± ωω−

(ω−)2 − (ω − iγ )2

]
= 0. (44)

From Eq. (44) we obtain the dispersion law for an acoustic
wave polarized over the right-hand circle (Ux = −iUy):

k− = ω

vt

[
1 − C

(ω−)2 + γ 2 + iωγ − ωω−

(ω−)2 − (ω − iγ )2

]−1/2

. (45)

Equation (45) corresponds to the nonresonance interaction of
the acoustic wave with the SMM spin system. For the acoustic
wave polarized over the left-hand circle (Ux = iUy), we
have

k+ = ω

vt

[
1 − C

(ω−)2 + γ 2 + iωγ + ωω−

(ω−)2 − (ω − iγ )2

]−1/2

. (46)

Equation (46) corresponds to the resonance interaction of the
acoustic wave with the SMM spin system.

Note that we assume ω to be a real quantity, which complies
with the treatment of steady-state waves. In this case the wave
number is generally a complex value:

k± = Re k± + iIm k±.
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The quantities Im k± define the spatial damping of
waves: ∼e(Im k±)z (Im k± < 0; z > 0). Generally speaking, the
right- and left-hand polarized waves (Im k+ �= Im k−) feature
an MDE which forms ellipticity of polarization of the displace-
ment vector oscillations. Thus, if at z = 0 the displacement
vector oscillations are linearly polarized, at z �= 0 they are
elliptically polarized. The minor-to-major semiaxes length
ratio, b/a (the ellipticity parameter), can then be written as
follows:

b

a
= tanh

(Im k− − Im k+)z

2
. (47)

The polarization plane rotation (Faraday rotation angle) reads
as follows:

ϕ = (Im k− − Im k+)z

2
. (48)

Using Eqs. (45), (46), and (48), we find the value for the
specific Faraday rotation (Faraday rotation angle per unit
length):

ϕ

z
= ω

2vt

Re

{[
1 − C

(ω−)2 + γ 2 + iωγ − ωω−

(ω−)2 − (ω − iγ )2

]−1/2

−
[

1 − C
(ω−)2 + γ 2 + iωγ + ωω−

(ω−)2 − (ω − iγ )2

]−1/2
}

. (49)

Equations (47) and (49) are used in numerical calculations.
Note that the effects in question are appreciable only in the
zone where the acoustic frequency ω comes close to ω21

(ω− ≈ ω21 as ωH � ω21). Since the typical SMM values of
frequency ω21/2π ∼ 3 × 1011 s−1, our study is relevant for the
hypersound.26 The authors of Ref. 27 were apparently the first
to emphasize the importance of research into acoustic waves
with frequencies up to 100 GHz in SMMs.

There is one point to make before we start numerical
estimations. Consider the value of specific Faraday rotation
when it is possible to neglect relaxation in the SMM spin
system; that is, in Eq. (49) we may assume γ → 0. In addition,
assume that the frequency ω is not too close to the frequency
ω−; that is, in Eq. (49),Cω− � (ω− − ω). Then, from Eq. (49)
we derive

ϕ

z
≈ C

2vt

ω2ω−

ω2 − (ω−)2
. (50)

Interestingly, expression (50) coincides within designations
with the expression for the specific Faraday rotation of the
magnetoelastic wave in a ferromagnet in the range of long
waves,17 that is, when αk2 � 1 (where α is the exchange
constant). In particular, for ferromagnets (in the long-wave
limit), instead of ω− in Eq. (50) the corresponding formula in
Ref. 17 contains ωS(0), which is the frequency of the uniform
precession of ferromagnetic magnetization, and instead of
C it has ξ , that is, the parameter of coupling between
the acoustic wave and the ferromagnetic spin system. We
want to stress one important circumstance, though: C in
contrast to ξ does not contain the magnetoelastic coupling
constants.17 The condition αk2 � 1 cannot be realized in
ferromagnetics for the hypersound; otherwise it would be
possible to neglect the exchange interaction between the

spins in a ferromagnet. Formally, this exchange interaction
being neglected, a ferromagnet is similar to a SMM, which
explains the analogy we found worth mentioning in our
analysis.

V. DISCUSSIONS AND ESTIMATIONS

For estimations we assume in formulas (45)–(47) and (49)
that ω− ≈ ω21 since, as mentioned above, ωH � ω21. Our
calculations are made for Mn12-Ac (i.e., ω21/2π � 3 × 1011

s−1) in the frequency interval 0.9 × 1011 < ω/2π < 4.5 ×
1011 s−1. The appropriateness of the interval choice becomes
obvious in further consideration. Here we just note that at
lower frequencies the effect of Faraday rotation is very small
and at higher frequencies the damping is significant for both
the left- and the right-hand waves.

First of all, consider the ω dependences of the quantities
Im k+ and Im k−, which determine the damping of the right-
and left-hand polarized waves, respectively. Figure 3 is a graph
of the dependence of Im k− on ω [Eq. (45)] for the entire
frequency interval (0.9 × 1011 < ω/2π < 4.5 × 1011 s−1). It
is clearly seen that this dependence is practically linear and
the value of Im k− is such (−10−2 > Im k− � −10−1 cm−1)
that on a scale of several centimeters the damping of the
corresponding right-hand polarized wave is very weak.

As for the value of Im k+, here it makes sense to distinguish
between two parts in the considered frequency interval: the
low-frequency range (0.9 × 1011 < ω/2π < 1.5 × 1011 s−1)
and the high-frequency range (1.5 × 1011 < ω/2π < 4.5 ×
1011 s−1). Figure 4 is a graphical representation of the Im k+
dependence on ω [Eq. (46)] for the low-frequency part of the
frequency interval. It is evident that in this region the value of
Im k+ is such that the corresponding left-hand polarized wave
damps on scales �1 cm.

It follows from the data in Figs. 3 and 4 that in the low-
frequency part of the interval, on scales �1 cm, the damping
of both the left- and the right-hand polarized waves is very
weak, which makes it possible to observe the AFE in this
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FIG. 3. Dependence of Im k− on frequency ω (0.9 × 1011 <

ω/2π < 4.5 × 1011 s−1) for Mn12-Ac.
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FIG. 4. Dependence of Im k+ on frequency ω (0.9 × 1011 <

ω/2π < 1.5 × 1011 s−1) for Mn12-Ac.

zone: Figure 5 demonstrates the frequency dependence of the
specific Faraday rotation [Eq. (49)]. It is seen that the average
value of the specific Faraday rotation is of order 102 rad/cm
and that the value of the effect becomes very small at lower
frequencies. In consideration of this fact, we specified the
lower limit of the frequency interval in our analysis.

Now let us turn to the high-frequency part of the interval.
Figure 6 shows the graph of the ω dependence of Im k+/Im k−
(in a logarithmic scale) in this region. Comparing Figs. 3 and 6,
one can see that |Im k+| � |Im k−|. That is, only the right-hand
polarized wave propagates without noticeable damping in the
high-frequency part of the interval. At higher frequencies its
damping becomes quite appreciable.

Finally, we present the graph of the ellipticity parameter
b/a versus ω [Eq. (47)] in Fig. 7. It is obvious that this graph
is in full conformity with the results shown in Figs. 3–6, which
is only natural.
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FIG. 5. Dependence of the specific Faraday rotation on frequency
ω (0.9 × 1011 < ω/2π < 1.5 × 1011 s−1) for Mn12-Ac.
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FIG. 6. Dependence of Im k+/Im k− (in a logarithmic scale) on
frequency ω (1.5 × 1011 < ω/2π < 4.5 × 1011 s−1) for Mn12-Ac.

It would be interesting to see how the results of our
theoretical study would change if the magnetization state of a
SMM is different from that analyzed in this work.

(i) Thus, for a fully polarized SMM state (N− = N ) at
temperatures T lower (but not much lower) than h̄ω21k

−1
B (for

Mn12-Ac, h̄ω21k
−1
B � 14 K), we have to take into account

the populations of at least two levels (states ϕ1 = ψ−S, ϕ2 =
ψ−S+1). It can be done by replacing N ⇒ N tanh[h̄ω21/(kBT )]
in the expression for parameter C [Eq. (43)], which is readily
understood as the difference in populations of the levels
with states ϕ1 = ψ−S and ϕ2 = ψ−S+1 is proportional to
tanh[h̄ω21/(kBT )].

(ii) If the SMM state is not fully polarized (N− �= N ), this
can obviously be taken into account for low temperatures
[Eq. (5)] and weak fields (ωH � ω21) (in the zero order on
ωH/ω21) by replacing N ⇒ N− − N+ in the expression for
parameter C [Eq. (43)].

1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(ω/2π)×1011 s−1

b/
a

FIG. 7. Dependence of ellipticity parameter b/a on frequency ω

(0.9 × 1011 < ω/2π < 4.5 × 1011 s−1) for Mn12-Ac.
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VI. CONCLUSION

We have demonstrated a possibility of observing the
acoustic Faraday effect and the magnetic circular dichroism
effect in a crystal of molecular magnets. Our investigation
focuses on the case when a crystal of molecular magnets is
magnetized through field-cooled magnetization and cooled
down to temperatures �1 K. In this state the effects in question
manifest themselves in the hypersonic frequency range, their

values reaching magnitudes by far too great for the effects to
be observed experimentally.
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