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A fundamental problem of glass transition is to provide a quantitative and microscopic explanation of the
heat-capacity jump at the glass transition temperature Tg . Similar problems are also common to other disordered
systems, including spin glasses. We propose that the jump of heat capacity at Tg takes place as a result of the
change of the liquid’s elastic, vibrational, and thermal properties. In this theory, we discuss time-dependent effects
of glass transition, and identify three distinct regimes of relaxation. Our approach explains a widely observed
logarithmic increase of Tg with the quench rate and correlation of the heat-capacity jump with liquid fragility.
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I. INTRODUCTION

When a transition takes place between two distinct phases,
the change of heat capacity and other thermodynamic quanti-
ties is consistently understood in a theory of phase transitions.1

Often a disordered system such as a liquid forms a similarly
disordered solid glass without a transition into a different
phase, yet heat capacity changes with a jump. The jump
is considered a hallmark of glass transition, and defines
the glass transition temperature Tg . The heat-capacity jump
immediately presents a problem that is at the heart of glass
transition:2,3 How can the jump be understood if there is no
distinct second phase?

This problem remains unsolved and controversial. One set
of theories rationalizes the jump in heat capacity by invoking
the thermodynamics of phase transitions. An instructive
illustration is the ongoing discussion of a popular theory of
glass transition, the Adam-Gibbs theory.4 The theory connects
the change of heat capacity at Tg to the configurational
entropy, which becomes zero below Tg where a phase transition
between a liquid and a glass takes place.2,5 The Adam-Gibbs
theory has been convincingly criticized for a number of
important reasons.5 The main reason, also present in other
similar theories, is that it has not been possible to identify
the second low-temperature phase (the glass phase). To
circumvent this problem, several theories have subsequently
put forward proposals about the nonconventional mechanisms
of the phase transition and nontrivial descriptions of the second
phase, while retaining the idea of a phase transition of sorts.2

Another set of glass transition theories considers that glass
transition phenomena at Tg have a purely dynamic origin,
and simply correspond to the freezing of atomic jumps in
a liquid at the experimental time scale.2 The absence of a
phase transition and thermodynamic effects at Tg are supported
by the wide experimental observation that the liquid and the
glass at Tg have a nearly identical structure.2,3 For some of
the dynamic theories, such as mode-coupling theories, the
challenge is to explain the underlying microscopic physics of
the heat-capacity jump and its large magnitude, which for some
systems can be of the order of kB per atom. According to the
energy landscape approach to glass transition, the jump in heat
capacity is related to the difference in sampling the minima of
the potential energy landscape (PEL).6 As the temperature is

decreased, the system becomes trapped in one of the minima
of the PEL, corresponding to the glassy state. It has been
emphasized that the quantitative development of this idea, and
making this idea predictive, is a major challenge.6

In addition to glass transition in structural liquids, similar
problems exist in other disordered media. For example, spin
glasses have seen large developments in ideas based on
phase transitions and the existence of the second distinct
phase. Similar to the structural glass transition, these theories
have been used to explain the cusp in susceptibility at the
glass transition temperature. Similar to the structural glass
transition, several important problems remain in this field
as well, including identifying the nature of a distinct spin-
glass phase, dependence of the cusp on field frequency or
observation time, slow relaxation effects, etc.7

In this paper, we analyze how liquid’s elastic, vibrational,
and thermal properties change on cooling. This analysis
enables us to calculate the jump in heat capacity at Tg . Recall
that the glass transition temperature Tg has two experimental
definitions that give similar values of Tg . In the calorimetry
experiments, Tg is the temperature at which the jump of
constant-pressure heat capacity, Cp, is seen. In the experiments
that measure τ (e.g., dielectric relaxation experiments), Tg

is the temperature at which τ exceeds the time of the
experiment t of ∼102–103 s. We propose that when τ exceeds
t , the jump in heat capacity at Tg follows as a necessary
consequence, because freezing of local relaxation events alters
liquid elastic, vibrational, and thermal properties, including
bulk modulus and thermal expansion. In this theory, we discuss
time-dependent effects of glass transition, and identify three
distinct regimes of relaxation. Our approach explains the
widely observed logarithmic increase of Tg with the quench
rate and the correlation of the heat-capacity jump with liquid
fragility.

II. CHANGE OF HEAT CAPACITY AT Tg

The commonly discussed quantity from the calorimetry
experiments is the ratio of constant-pressure liquid heat
capacity, Cl

p, to glass heat capacity, C
g
p. We do not consider

the overshoot of heat capacity on heating, which is discussed
elsewhere.8,9 Heat capacities are considered at temperatures
separated by the interval in which these effects decay to the
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values of Cl
p and C

g
p attributed to the liquid and the glass.3,10

For various liquids,
Cl

p

C
g
p

= 1.1–1.8.3 By using the known

relationship Cp − Cv = V T α2B, where Cv is the constant-
volume heat capacity, α is the coefficient of thermal expansion,
and B is the bulk modulus, we write

Cl
p

C
g
p

= Cl
v + VlTlα

2
l Bl

C
g
v + VgTgα2

gBg

, (1)

where subscripts l and g refer to the liquid and the glass,
respectively.

We start by addressing the origin of the difference between
Bl and Bg and between αl and αg . Unlike in a solid glass,
atoms in a liquid are not fixed, but rearrange in space. This
gives liquid flow. Each flow event is a jump of an atom from its
surrounding cage, accompanied by large-scale rearrangement
of the cage atoms. We call this process a local relaxation
event (LRE). A LRE lasts on the order of a Debye vibration
period τ0 = 0.1 ps. Frenkel introduced liquid relaxation time
τ as the time between LREs at one point in space in a
liquid.11 Frenkel’s main idea was that at short times, t < τ ,
the liquid response is the same as that of a solid, i.e., is
purely elastic. On the other hand, for t > τ , viscous flow takes
place, during which each LRE is accompanied by additional
viscous displacements. Hence, for t > τ , the liquid response to
external perturbation (e.g., pressure) consists of an elastic and a
viscous response.11 This discussion provided the microscopic
basis for the earlier phenomenological model by Maxwell,12

who proposed to separate elastic and viscous response in his
viscoelastic approach to liquid flow.

Let us consider that pressure P is applied to a liquid.
Pressure induces a certain finite number of LREs, which bring
the liquid to the equilibrium state at new external conditions
(P,T ) after time τ . Following the Maxwell-Frenkel approach,
the change of liquid volume, v, is v = vel + vr , where vel and
vr are associated with a solidlike elastic deformation and a
viscous relaxation process owing to LREs, respectively. Let
us now define Tg as the temperature at which τ exceeds the
observation time t . This implies that LREs are not operative at
Tg during the time of observation. Therefore, v at Tg is given
by a purely elastic response as in the elastic solid. Then, P =
Bl

vel+vr

V 0
l

and P = Bg
vg

V 0
g

, where V 0
l and V 0

g are initial volumes

of the liquid and the glass and vg is the elastic deformation
of the glass. Let �T be a small temperature interval that
separates the liquid from the glass such that τ in the liquid, τl ,
is τl = τ (Tg + �T ) and �T

Tg
� 1. Then V 0

l ≈ V 0
g . Similarly,

the difference between the elastic response of the liquid and
the glass can be ignored for small �T , giving vel ≈ vg . By
combining the two expressions for Bl and Bg , we find

Bl = Bg

ε1 + 1
, (2)

where ε1 = vr

vel
is the ratio of the relaxational and the elastic

response to pressure.
αl can be calculated in a similar way. Let us consider

liquid relaxation in response to the increase of temperature
by �T . We write αl = 1

V l
0

vel+vr

�T
and αg = 1

V
g

0

vg

�T
, where vel

and vr are temperature-induced volume increases in a liquid
that are related to a solidlike elastic and relaxational response,

respectively, and vg is the elastic response of the glass. By
combining the two expressions and assuming V 0

l = V 0
g and

vel = vg as before, we find

αl = (ε2 + 1)αg, (3)

where ε2 = vr

vel
is the ratio of relaxational and elastic response

to temperature variation.
Equations (2) and (3) describe the relationships between

B and α in the liquid and the glass that originate from the
presence of LREs in the liquid above Tg and their absence
in the glass at Tg , insofar as Tg is the temperature at which
t < τ . We note that the relaxational response vr decays during
time τ . Because Bg and αg correspond to t < τ , Bg and αg

are unrelaxed, or nonequilibrium, values of bulk modulus and
thermal expansion, respectively. This point is discussed in
Sec. III in detail.

By using Eqs. (2) and (3) in Eq. (1), we write

Cl
p

C
g
p

=
Cl

v

C
g
v

+ γαgTgε

1 + γαgTg

, (4)

where ε = (ε2+1)2

ε1+1 , γ = VgαgBg/C
g
v is the glass Grüneisen

parameter, and C
g
p is the unrelaxed, or nonequilibrium (see

Sec. III), heat capacity of the glass. We note that in Eq. (4),
as in Eqs. (2) and (3), we set Tl ≈ Tg and Vl ≈ Vg . This

underestimates the experimental
Cl

p

C
g
p
, setting its lower limit,

because Cp is measured in the finite range of temperature and
volume such that Tl > Tg and Vl > Vg .

We now calculate Cl
v

C
g
v
. Generally, vibrational and diffusional

motion both contribute Cl
v . However, close to Tg , only vibra-

tional motion contributes to Cl
v , whereas the by contribution

to Cl
v from to the diffusional motion is negligible. This is an

important assertion that perhaps was not appreciated before,
and simplifies the problem greatly. The assertion follows from
the explicit calculation of liquid Cv as a function of τ ,13 and
is consistent with the experimental results showing that liquid
Cv is close to 3N close to the melting point.14,15 It also follows
from a more general argument that does not rely on the explicit
calculation of Cl

v , as discussed below.
Above Tg , each atom participates in the vibrational mo-

tion during time τ and in the diffusional motion when it
jumps between two equilibrium positions during a time of
approximately τ0. For t � τ , atoms can be separated into two
ensembles of Nvib vibrating and Ndif diffusing atoms. The
energy of an atom in each ensemble consists of kinetic and
potential energy. Then, the partition sum is Z = Zvib · Zdif ,
where Zvib and Zdif are related to vibrations and diffusion,
respectively. The liquid energy is E = T 2 d

dT
[ln(Zvib · Zdif)] =

T 2 d
dT

ln Zvib + T 2 d
dT

ln Zdif = Evib + Edif , where Evib and
Edif is the energy of the vibrating and diffusing atoms,
respectively. Here and below, temperature derivatives are
taken at a constant volume. At any given moment of time,
Ndif = N0 exp(−U/T ), where N0 is the total number of atoms
in a system and U is the activation energy barrier for a LRE
(U can be temperature dependent). By combining it with
τ = τ0 exp(U/T ), where τ0 is the Debye vibrational period
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of ∼0.1 ps, we write

Ndif = N0
τ0

τ
, (5)

which also directly follows by noting that the jump probability
is τ0

τ
.

At Tg , τ0
τ

≈ 10−16, i.e., the number of diffusing atoms is
negligible. Therefore, the ratio of the energy of diffusion to
the total energy, Edif

E
, is negligible. Similarly, Edif

Evib
� 1, giving

d
dT

ln Zdif

d
dT

ln Zvib
� 1. (6)

Liquid entropy is

S = d

dT
[T ln(Zvib · Zdif)]

=
(

T
d

dT
ln Zvib + ln Zvib

)
+

(
T

d

dT
ln Zdif + ln Zdif

)

= T
d

dT
ln Zvib + ln Zvib + ln Zdif,

where we have used Eq. (6). Then,

Cl
v = T

dS

dT

= T
d

dT

(
T

d

dT
ln Zvib

)
+ T

d

dT
ln Zvib + T

d

dT
ln Zdif

= T
d

dT

(
T

d

dT
ln Zvib

)
+ T

d

dT
ln Zvib,

where we have used Eq. (6) once more. Therefore, Cl
v

close to Tg (as well as at any temperature T such
that τ0

τ (T ) � 1) is essentially given by the vibrational
contribution to Z.

We note in passing that if a LRE, as an act of diffusion,
separates two distinct liquid configurations, the above result
implies the absence of diffusional (or, if appropriate, config-
urational), contribution to liquid heat capacity at Tg . This is
in contrast to previous approaches such as the Adam-Gibbs
theory4 and related models as well as the potential energy
landscape approach.6

The vibrational states of a liquid are given by one longitudi-
nal mode and two transverse modes with frequency ω > 1/τ .11

If τ0
τ

� 1, as is the case close to Tg , transverse modes in a liquid
account for essentially all transverse modes that exist in a solid
glass. Together with the fact that the phonon density of states
increases as ∝ ω2, this means that the energy of the missing
transverse waves with frequency ω < 1/τ is negligible. Hence,
the vibrational energy of a liquid in the regime τ0

τ
� 1 can be

calculated as the energy of all 3N phonons as in a solid glass.13

Therefore, in discussing the vibrational Cv of a liquid close to
Tg , we can use the results derived for solids.

The partition function of a harmonic solid is Z = ( T
h̄ω

)3N

(kB = 1), where ω is the geometrically averaged phonon
frequency,1 giving the free energy F = 3NT ln h̄ω

T
. In the

purely harmonic case, ω is constant, giving the entropy
S = −( ∂F

∂T
)v = 3N (1 + ln T

h̄ω
) and Cv = T ( ∂S

∂T
)v = 3N . On

the other hand, anharmonicity, particularly large in liquids,
results in the decrease of ω with temperature. Importantly, as
we show below, this decrease is different below and above

Tg because α is different [see Eq. (3)]. If ω is not constant,
S = 3N (1 + ln T

h̄ω
− T

ω
dω
dT

), and

Cv = 3N

[
1 − 2T

ω

dω

dT
+ T 2

ω2

(
dω

dT

)2

− T 2

ω

d2ω

dT 2

]
, (7)

where the derivatives are taken at constant volume.
The effect of anharmonicity can be discussed in the

quasiharmonic approximation by introducing the Grüneisen
parameter γ = −V

ω
( ∂ω
∂V

)T to the phonon pressure, Pph =
−( ∂F

∂V
)T = 3NT γ

V
. Then, the bulk modulus from the (negative)

phonon pressure is Bph = − 3NT γ

V
and ( ∂Bph

∂T
)v = − 3Nγ

V
, where

we neglected the dependence of γ on V . By using γ = V αB
Cv

and B = B0 + Bph, where B0 is the zero-temperature bulk

modulus, ( ∂Bph

∂T
)v = −α(B0 + Bph), where we set Cv = 3N

in this approximation. For small αT , which is often the
case in the experimental temperature range, this implies
B ∝ −T , consistent with the experiments.16 We note that
experimentally, B linearly decreases with T at both constant
volume and constant pressure.16 The decrease of B with T

at constant volume results from the intrinsic anharmonicity
related to the softening of an interatomic potential at large
vibrational amplitudes; the decrease of B at constant pressure
has an additional contribution from thermal expansion. By
assuming ω2 ∝ B0 + Bph and combining it with ( ∂Bph

∂T
)v =

−α(B0 + Bph) from above gives 1
ω

dω
dT

= −α
2 . Putting this in

Eq. (7) gives

Cv = 3N (1 + αT ). (8)

We see that the derived expression for Cv is linear with T

and depends on α but not on ω, unlike in Eq. (7). This result
follows from Eq. (7) as long as dB

dT
∝ B or dω

dT
∝ ω.

From Eq. (8), Cl
v

C
g
v

= 1+αlTg

1+αgTg
at Tg . By using it in Eq. (4) and

retaining only linear terms in αT [we find that the linearization
and direct combination of Eqs. (4) and (8) give close values of
Cl

p

C
g
p

below], we write

Cl
p

C
g
p

= 1 + γαgTg(ε − 1) + Tg(αl − αg). (9)

Recalling that ε = (ε2+1)2

ε1+1 = α2
l

α2
g

Bl

Bg
, we see that Eq. (9) relates

Cl
p

C
g
p

to the changes of α and B that originate from the presence
of a relaxational response in the liquid and its absence in the
glass.

Interestingly, Eq. (9) predicts that temperature dependence
of Cp should follow that of α. This is in agreement with recent
simultaneous measurements of Cp and α showing that both
quantities closely follow each other across Tg .17

Importantly, the jump in heat capacity at Tg in our theory
takes place within the same single thermodynamic liquid
phase, but below and above Tg the liquid has different values
of α and B because LREs freeze at Tg where the liquid falls
out of equilibrium. In this sense, our theory is purely dynamic.
In contrast to previous glass transition theories,2 we do not
discuss transitions between distinct thermodynamic phases,
even though it may be tempting to invoke thermodynamic
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TABLE I. Experimental and calculated values of
Cl

p

C
g
p

. When more than one value of α, B, Cp , or γ was available, we have taken the average.
PVAC, PS, OTP, OPP, and CKN stand for polyvinylacetate, polystyrene, orthoterphenyl, orthoterphenyl phenol, and Ca(NO3)2-KNO3 mixture,
respectively. The ratio of the last term in Eq. (9), Tg(αl − αg), to the second term, γαgTg(ε − 1), varies from 0.1 in glycerol and 0.3 in OTP-OPP
to 2 in NaAlSi3O8 and 4 in GeO2.

γ Tg (K) αl × 104 (K−1) αg × 104 (K−1) Bl (GPa) Bg (GPa)
Cl

p

C
g
p

Calc.
Cl

p

C
g
p

Exp.

Glycerol 2.2a 190b 5c 1c 5.5d 9.9d 1.6 1.8e

PVAC 0.6f 304f 7.1f 2.8f 2f 3.5f 1.3 1.4f

OTP 1.2g 241b 7.2h 3h 2.1h 3.7h 1.3 1.5e,i

OTP-OPP 1.3g 235j 8.5j 2.5j 2.9j 5j 1.6 1.5j

PS 0.5j,k 355j 6j 2.5j 1.5j 2j 1.2 1.3j

CKN 0.9f 340f 3.6f 1.2f 7.6f 15.9f 1.2 1.6f

B2O3 0.3f,l 550f 4f 0.5f 2.6f 10f 1.3 1.4f

NaAlSi3O8 0.35m 1100n 0.54m 0.23m 20m 40m 1.05 1.11m

GeO2 0.27m 580m 0.76m 0.27m 8.08m 23.87m 1.04 1.08e,m

aReference 18.
bReference 19.
cReference 20.
dReference 21.
eReference 3.
fReference 22.
gReference 23.
hReference 24.
iReference 25.
jReference 26.
kReference 27.
lReference 28.
mReference 29.
nReference 30.

phase transitions, conventional or unconventional, in order to
explain the heat-capacity jump.

In Table I, we show
Cl

p

C
g
p

for several common glass formers

with both small and large
Cl

p

C
g
p

in the range 1.1–1.8.3 By using

the experimental values of γ , Tg , αg , αl , Bg , and Bl ,18–30

we calculate
Cl

p

C
g
p

by using Eq. (9). Given the approximations

used, including Tl = Tg and Vl = Vg that underestimate
Cl

p

C
g
p
,

Table I shows a reasonable agreement between the calculated
and experimental values. The worse agreement for Ca(NO3)2-
KNO3 (CKN) is probably owing to the fact that it is a
solution3 for which our approximations are expected to be less
successful. We further remark that the agreement is subject

to uncertainties of γ , α, B, and
Cl

p

C
g
p
,16,22 which are, moreover,

taken from different experiments. For these reasons, we view
Table I as an illustration that the differences between the
existing values of αg and αl and between Bg and Bl are large

enough to give the correct magnitude of experimental
Cl

p

C
g
p
.

III. TIME-DEPENDENT EFFECTS

The jump in heat capacity at Tg in Eq. (9) is the result
of α and B acquiring different values below and above Tg

as LREs freeze at Tg . This reflects the empirical definition
of Tg as the temperature at which τ exceeds the observation
time t , as in a glass transition experiment. We now remove

the empirical constraint τ > t , and consider the general case
of the arbitrary relationship between τ and t . This gives time-

dependent properties of
Cl

p

C
g
p
.

Lets now consider two liquids at two different temperatures
T1 and T2 with relaxation times τ1 and τ2 such that T2 < T1

and τ1 < τ2, and calculate the ratio of their heat capacities,
Cp,1

Cp,2
. The response of both liquids to pressure now includes

a viscous relaxational component owing to LREs. Hence, we
write P = B1

vel+vr,1

V0
and P = B2

vel+vr,2

V0
, where B1,B2 are the

bulk moduli and vr,1,vr,2 are the relaxational responses of
the two liquids, respectively. Combining the two expressions
gives

B1

B2
=

1 + vr,2

vel

1 + vr,1

vel

. (10)

Similarly, considering temperature-induced response in the
two liquids gives

α1

α2
= 1 + vr,1

vel

1 + vr,2

vel

, (11)

where α1 and α2 are thermal expansion coefficients of the two
liquids.

When the relaxational response in the low-temperature
liquid is absent, vr,2 = 0, Eqs. (10) and (11) become Eqs. (2)
and (3). Note that vr and vel in Eqs. (10) and (11) are not the
same because they are related to different effects of pressure
and temperature. This difference will be accounted for below.
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We now recall that the time dependence of strain and
stress in low-temperature liquids follows a slow stretched-
exponential form: q = q0[1 − e−(t/τ )β ].2,3,31 Here, q is a
relaxing quantity, q0 is its amplitude, t is the observation time,
and β is a stretching exponent that decreases from 1 at high
temperature to 0.5–0.8 at Tg .32 Recently, we proposed that slow
relaxation in liquids is a result of elastic interaction between
LREs via high-frequency elastic waves that they induce.33

The stretched-exponential relaxation follows as a result of this
interaction.34

Hence, vr,1

vel
= q0[1 − e−(t/τ1)β1 ] and vr,2

vel
= q0[1 − e−(t/τ2)β2 ],

where β1 and β2 are stretching exponents in both liquids.
Therefore, as follows from Eqs. (9)–(11), the time dependence
of Cp,1

Cp,2
is given by the following three equations:

Cp,1

Cp,2
= 1 + γα2T2

(
α2

1

α2
2

B1

B2
− 1

)
+ α2T2

(
α1

α2
− 1

)
, (12)

B1

B2
= 1 + ε1[1 − e−(t/τ2)β2 ]

1 + ε1[1 − e−(t/τ1)β1 ]
, (13)

α1

α2
= 1 + ε2[1 − e−(t/τ1)β1 ]

1 + ε2[1 − e−(t/τ2)β2 ]
, (14)

where we introduced relaxational amplitudes ε1 and ε2 as in
Eqs. (2) and (3).

There are three times in Eqs. (12)–(14): t , τ1, and τ2. This
sets three distinct regimes: (1) the fast regime t � τ1 � τ2;
(2) the intermediate glass transition regime τ1 � t � τ2;
and (3) the slow regime τ1 � τ2 � t . Each regime sets a
different mechanism governing the relationship between the
heat capacities of the two liquids.

Regimes (1) and (3) both give α1
α2

= 1 and B1
B2

= 1
in Eqs. (13) and (14), and therefore Cp,1 = Cp,2 from
Eq. (12), albeit for different physical reasons as discussed
below.

Regime (1) corresponds to nonequilibrium states of both
liquids and to nonequilibrium values of their Cp. In this regime,
the terms in brackets in Eqs. (13) and (14) are close to zero
because too little time elapses for any relaxation to take place.
Physically, zero relaxational response in both liquids follows
directly from Frenkel’s idea that at short times, the response of
a liquid is the same as that of a solid, i.e., purely elastic.11 In
this case, Cp,1 = Cp,2 follows from the absence of relaxation
in both liquids.

Regime (3) corresponds to equilibrium states of both liquids
and to equilibrium values of their Cp. In this regime, the
terms in brackets in Eqs. (13) and (14) are close to 1 owing
to a relaxational response acquiring its maximal value as
both liquids reach their equilibrium state, giving Cp,1 = Cp,2.
Importantly, our theory predicts no difference between Cp,1

and Cp,2 in equilibrium [except for the residual difference
owing to T1 > T2 and V1 > V2 in Eq. (1) discussed earlier and
the difference in Cv in Eq. (8) related to a finite temperature
interval where Cp,1–Cp,2 is measured].

Regime (2) corresponds to the laboratory glass transition
when the first liquid is in equilibrium (τ1 � t) but the second
liquid is not (t � τ2). If the second liquid is defined as the
glass, the change in heat capacity between the liquid and the

glass follows: 1 − e−(t/τ1)β1 is close to 1 but 1 − e−(t/τ2)β2 is
close to zero in Eqs. (13) and (14), giving B1 = B2

ε1+1 and
α1 = α2(ε2 + 1) as in Eqs. (2) and (3) and therefore nonzero
Cp,1–Cp,2 in Eq. (12), as in Eq. (9). This is the important result
of our theory.

We note that, by definition, the time range of regimes
(1)–(3) is determined by the relationship between τ and
the observation time t . In the calorimetry experiments in
particular, Cp is measured on the time scale t = 102–103 s.
Depending on τ , regimes (1)–(3) can be too fast or too slow
for the experiment. For example, if τ1,τ2 < 100 s, regimes (1)
and (2) are too fast for the experiment. On the other hand,
regime (3) can be too slow for the experiment, and can last for
astronomical times and longer. Let us consider SiO2 glass at
room temperature Tr = 300 K. The activation energy barrier
U can be assumed to be temperature independent, because
SiO2 is a strong liquid. Then, from τ (Tg) = τ0 exp(U/Tg) and
τ (Tr ) = τ0 exp(U/Tr ), τ (Tr ) = τ0[ τ (Tg)

τ0
]Tg/Tr . By taking τ0 =

0.1 ps, Tg ≈ 1500 K, τ (Tg) = 103 s, we find τ (Tr ) = 1067 s,
approximately the fourth power of the age of the Universe. For
t > τ (Tr ), SiO2 at room temperature is an equilibrium liquid,
and shows no jump in heat capacity on cooling from high
temperature related to the freezing of LREs.

We remark that the above discussion of distinct relaxation
regimes does not depend on the specific functional form of the
decay of relaxing quantities q(vr ) toward their steady state.
We have used a stretched-exponential decay, but the same
conclusions are reached for any other functional form of decay
of relaxing quantities (e.g., exponential) as long as this decay
takes place with a characteristic relaxation time τ .

Our theory explains two widely observed and important
effects of glass transition. First, a well-known effect is that Tg ,
defined as the temperature at which the jump of heat capacity
takes place in the calorimetry experiment, logarithmically
increases with the quench rate q (see, e.g., Refs. 35 and 36).
According to our discussion above, the jump in heat capacity
at Tg takes place when the observation time t crosses liquid
relaxation time τ . This implies that because q = �T

t
, τ at

which the jump in heat capacity takes place is τ (Tg) = �T
q

,
where �T is the temperature interval of glass transformation
range. By combining this with τ (Tg) = τ0 exp(U/Tg) [here U

is approximately constant because τ is nearly Arrhenius close
to Tg (Ref. 33)], we find

Tg = U

ln �T
τ0

− ln q
. (15)

According to Eq. (15), Tg increases with the logarithm of
the quench rate q. In particular, this increase is predicted to
be faster than linear with ln q. This is consistent with the
experimental results.35 We note that this theory predicts no
divergence of Tg because the maximal physically possible
quench rate is set by the minimal internal time τ0, Debye
vibration period, so that �T

τ0
in Eq. (15) is always larger

than q.

Second, Eqs. (12)–(14) predict the correlation of
Cl

p

C
g
p

with

liquid fragility.3,37 Let us apply Eqs. (12)–(14) to the glass
transition regime where t � τ2. Then, 1 − e−(t/τ2)β2 = 0 in
Eqs. (13) and (14), corresponding to the absence of relaxational
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response in the glass. Next, let us consider that �Tg is

the temperature interval in which
Cl

p

C
g
p

is measured so that
τ1 = τ (Tg + �Tg) and τ2 ≈ τ (Tg). Then, because β is nearly
constant near Tg ,32 f = 1 − e−(t/τ1)β1 in Eqs. (12)–(14) can be
expanded close to Tg as f ≈ df

dτ
dτ
dT

�Tg , where the derivatives
are taken close to Tg . From the definition of fragility m =
d log τ

d
Tg

T

|T =Tg
, dτ

dT
|T =Tg

≈ − τ (Tg)
Tg

m. Next, df

dτ
|τ=τ (Tg) ≈ − 1

τ (Tg) ,

giving f = �Tg

Tg
m, and Eq. (12) becomes

Cl
p

C
g
p

= 1 + γαgTg

[(
ε2

�Tg

Tg
m + 1

)2

ε1
�Tg

Tg
m + 1

− 1

]
+ αg�Tgε2m.

(16)
If m�T

Tg
� 1, Eq. (16) simplifies to

Cl
p

C
g
p

≈ 1 + αg�Tgε2

(
γ

ε2

ε1
+ 1

)
m. (17)

Equations (16) and (17) predict that
Cl

p

C
g
p

increases with
liquid fragility, provided other parameters do not change
significantly. This is consistent with experimental data from

a large set of liquids.3,37 For a wider range of chemically
and structurally different liquids, the correlation holds within
distinct families.38,39

IV. SUMMARY

In summary, we observe that when a transition takes place
between two distinct phases, anomalies in the thermodynamic
functions are explained by the phase transition theory, a
well-understood topic in physics.1 If a distinct second phase
cannot be identified as in the glass transition, the apparent
anomalies can be explained in a picture that does not invoke
phase transitions and thermodynamics, but where the system
stops relaxing on the experimental time scale. Our approach
explains time-dependent effects of glass transition, including
a widely observed logarithmic increase of Tg with the quench
rate and the correlation of heat-capacity jump with liquid
fragility.
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