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Calculation of the properties of dislocations by computer simulations requires, among other things, the
availability of accurate interatomic potentials, ideally with ab-initio quality. For crystals with large unit cells
and complex crystal structures, such as most minerals, the number and size of the calculations may severely
limit the applicability of a full ab-initio approach. In this paper we present an investigation of the dislocation
properties of coesite, a mineral with a relatively large unit cell, carried out with a force field developed for
silica based on a parametrization to ab-initio data. Two-dimensional generalized stacking fault energy surfaces
for basal and prismatic planes are considered for a global search of the possible dissociation paths in partial
dislocations. Test calculations show negligible differences between the energy surfaces calculated with the force
field and with ab-initio methods. Five different coesite slip systems are investigated: [100](010), [001](010),
[101](010), [010](001), and [010](1̄01). Dislocation core structures and critical stresses are determined by
using the Peierls-Nabarro-Galerkin approach. While [100] and [101] (screw) dislocations share a similar core
structure, [001] differs substantially by showing a much larger split between partial dislocations. The lattice
friction experienced by [001](010) is found to be close to those of [100](010) and [101](010), confirming the
pseudohexagonal symmetry suggested by experiments.
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I. INTRODUCTION

Understanding the plastic behavior of minerals is of
paramount importance for unveiling the mechanisms behind
the rheology of the solid Earth.1 Modeling the rheology of
minerals requires the description of plastic flow over different
length scales, from the continuum limit down to the atomistic
scale.

The structural complexity displayed by minerals, partic-
ularly those present in the crust and in the upper mantle,
considerably increases the difficulty of an atomistic description
of their plastic properties. Large unit cells, many atomic
species, several inequivalent crystallographic planes, and
multiple choices for the slip systems imply that a large
number of atomistic level calculations need to be performed
in order to obtain a complete picture of the energetics of the
fundamental processes underlying plastic flow. In this context,
computationally demanding approaches such as those based on
ab-initio methods might have a limited range of applicability,
and alternative approaches, yet retaining a similar quality of
description of the interatomic interactions, might have to be
sought.

In this paper we focus on the rheological properties of
coesite as an example of a mineral with a simple chemical
formula (SiO2), but with a complex crystal structure. Coesite
is the highest-density SiO2 polymorph in which silicon is
tetrahedrally coordinated to oxygen.2 The coesite structure
has a low crystal symmetry (monoclinic space group C2/c).3

At ambient conditions the cell parameters are a = 0.713 56,
b = 1.236 92, and c = 0.717 36 nm, with β = 120.34◦, and
the unit cell contains 16 SiO2 molecular units.4 Coesite is
the thermodynamically stable phase of SiO2 above 2.5 GPa.
In metamorphic rocks, coesite is one of the best mineral
indicators of metamorphism at very high pressures [ultra-high-
pressure (UHP) metamorphism5,6]. Such UHP metamorphic

rocks record subduction or continental collisions in which
crustal rocks have been carried to depths of about a 100 km
before being brought to to the surface and exposed. Despite its
geological relevance, the deformation processes, slip systems,
and rheological laws of coesite are still unclear.7–9

The monoclinic coesite lattice has almost hexagonal param-
eters and it is possible to describe the coesite structure within
a pseudohexagonal cell. This characteristic has implications
for the nature of crystal defects as shown by the occurrence of
(021) twinning which is related to this pseudosymmetry.10

Following the same lines, Idrissi et al.9 have shown that
the diversity of dislocation Burgers vectors characterized by
large-angle convergent-beam electron diffraction could be
conveniently described in the pseudohexagonal setting. By
contrast, as it appears from Fig. 1, the atomic arrangement in
the primitive cell does not show either a threefold or a sixfold
symmetry. Indeed, the view of the basal plane (010) of coesite
(Fig. 1) shows a structure made of chains of four-membered
rings of SiO4 tetrahedra aligned parallel to the c direction.
Furthermore, in the study of Idrissi et al.9 the activation
of pseudoequivalent 1

3 〈112̄0〉, i.e., [100], [001], and [101],
dislocations appeared uneven, raising the question of possibly
different mobilities as a consequence of different atomic
core structures. Evidence of activation of [010] dislocations
was reported, maybe as a consequence of a dissociation
mechanism.9 1

2 [110] dislocations have also been observed,
though much less frequently than 1

3 〈112̄0〉 dislocations.9 All
these experimental observations call for a detailed theoretical
investigation of the main slip systems in coesite.

In this work we adopt a highly accurate interatomic poten-
tial [the Tangney and Scandolo (TS) force field11] to calculate
generalized stacking fault energy surfaces (γ surfaces) of
coesite. We show that calculations that would be considerably
costly if done by ab-initio methods can instead be done with
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FIG. 1. (Color online) Ball and stick model of the coesite
primitive cell: view of the (010) basal plane. Silicon and oxygen
atoms are shown with blue (large) and light gray (small) balls.

a comparable quality by means of ab-initio parametrized
potentials.11–14 For modeling plastic deformation of materials
on a large scale, ideally macroscopic, it becomes necessary
to bridge from the atomistic description to a continuum one.
This is done by informing a macroscopic model with atomistic
data. In this work we apply the Peierls-Nabarro Galerkin
(PNG) model15,16 (Sec. II) to calculate dislocation properties
in coesite such as core structures and behavior under applied
stress. By discussing the activation of slip systems we aim
at completing the available experimental information and
hence at improving the current classification of dislocations
in coesite.

The paper is organized as follows. The introduction of the
work is presented in Sec. I. In Sec. II, we report the technical
details of our calculations. First, in Sec. II A a brief outline
of the PNG model is given. Next, in Sec. II B we discuss the
adopted procedure for building supercells for calculating γ

surfaces. We then address the structural properties of coesite
and report the calculated elastic constants for the adopted TS
force field (Sec. II C). Moreover, the TS force field is compared
with that of van Beest, Kramer, and van Santen (BKS) force
field and with ab-initio results for the calculation of a test γ

line. In Sec. III A we present our results for the investigated
slip systems: γ surfaces, dislocations, core structures, profiles
(Sec. III B), and critical stresses (Sec. III C). Finally, Sec. IV
contains the conclusions of our work.

II. METHODS AND TECHNICAL DETAILS

Over the years a model that has been largely adopted
for finding dislocation properties such as dislocation size
and Peierls stress is the Peierls-Nabarro (PN) model.17–21

This model successfully combines a continuum description
of the material with atomistic information concerning the
dislocation core. The PN model originally expressed by an
analytic formulation17,18,22 became later very appealing when
first-principles techniques successfully allowed the calculation
of the generalized stacking fault energies23 and hence of the
dislocation properties for covalent materials such as silicon.24

Several formulations of the PN model have been developed that
can be applied also to nonplanar core dislocations.19,21,25–28

The advent of first-principles approaches has led to the
investigation of dislocation properties for a large variety
of materials.29–31 In the last decade this model has suc-
cessfully helped in the understanding of the rheological
behavior of mantle minerals such as olivine, ringwoodite, and
MgSiO3-perovskite.30,32–35

A. Peierls-Nabarro-Galerkin model

The complexity of the coesite structure in principle might
allow dislocations with nonplanar cores. To investigate such
a possible scenario, in this work we made use of the Peierls-
Nabarro-Galerkin model. The PNG model is a generalization
of the PN model recently formulated within the framework of
finite-element techniques.15,16 The PNG model allows several
glide planes to be taken into account simultaneously and
complex (possibly three-dimensional) cores to be calculated.
As in the initial PN model, the dislocation core structure
is obtained by the minimization of an elastic energy and
of an interplanar potential. The latter is a function of the
γ -surface energies from which the linear elastic part has been
subtracted.15,16 In the PNG method, two distinct fields are used:
u(r), a three-dimensional displacement field of the volume
V , and a two-dimensional S(r) field, which is expressed in
the normal basis of the plane of a given γ surface. As a
dislocation is introduced into the calculation, a solution is
found by minimizing the energy with respect to u and S, using
a nodal mesh of at least 12 nodes per Burgers vector dimension
to ensure the accuracy of the calculation.

A PNG simulation consists of three steps. First, we intro-
duce a Volterra dislocation in a finite volume, the boundary of
which is obtained by imposing the displacement of the result
of the elastic solution of the corresponding dislocation.36 The
imposed boundary conditions are therefore consistent with a
dislocation in an infinite medium, without any influence on the
core structure. Next, the equilibrium of the displacement jump
field S is determined at each node through a viscous relaxation
scheme.15,16 The last step of the calculation corresponds to the
evaluation of the Peierls stress. As the relaxed core structure
is reached, a strain is applied to the simulation cell. The
level of strain is increased very slowly to mimic a quasistatic
loading of the bulk of the material. Under such conditions, the
Peierls stress can be determined when the relaxed dislocation
core structure has moved from its initial position to the next
equilibrium position.

B. γ surface

By the generalized stacking fault energy surface or γ

surface, we mean the interplanar potential energy resulting
from the rigid-body shear of a semi-infinite crystal over the
other half crystal.29 The calculation of the γ surface for a given
slip system requires a supercell with a geometry that should
be carefully designed for the shear plane and direction under
investigation. Among several possibilities,37,38 we have chosen
to build supercells on a Cartesian reference frame defined
by the normal of the stacking fault plane and by the shear
direction. A vacuum buffer is added in the direction normal to
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the slip plane to avoid interaction between repeated stacking
faults resulting from the use of periodic boundary conditions.
A set of shear displacement vectors spanning the chosen shear
plane is introduced. The upper part of the supercell is then
displaced for each displacement vector of the set and the excess
energy is calculated, resulting in the γ surface of the chosen
shear plane. All atoms except those located close to the vacuum
region are allowed to relax in the directions perpendicular to
the shear direction in order to minimize the energy of the
γ surface. We built four distinct supercells for the γ -surface
calculations of the (010), (100), (001), and (101̄) planes. In
the pseudohexagonal setting, (010) corresponds to the basal
plane {0001} containing the pseudoequivalent directions
1
3 〈1̄21̄0〉 that in the monoclinic notation are written as [100],
[001], and [101]. The planes (001), (100) and (1̄01) correspond
to the prismatic planes {1̄100}. Supercells of 144 and 192 atoms
were used for calculations on the basal plane and prismatic
planes, respectively. Vacuum buffers of about 90 Å were used.
In Fig. 2 we show the adopted supercell for the calculation
of the basal plane γ surface. Note that the choice of the
shear plane is not straightforward in general and some tests
of the possible choices are required. In Fig. 2(ii) we show
for example two planes among those we considered for the
basal plane. Other parallel planes were considered, for instance
those crossing more than one Si-O bond of a given tetrahedron.
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FIG. 2. (Color online) (i) Supercell used for the γ -surface
calculation on the basal plane (010). (ii) Shear plane along which
the γ surface of Fig. 4(a) was calculated (1) and a test choice for the
shear plane (2) are shown.

We found that such choices are energetically unfavored with
respect to those depicted in Fig. 2. In total we calculated
more than ten different γ surfaces, each one defined by a
grid of 20 × 20 points. This grid provides a good resolution
for mapping all the relevant features of the γ surfaces.39

C. Force field

For calculating γ surfaces we take advantage of the TS
force field for silica, the parameters of which were extracted
from ab-initio calculations.11 This force field actually matches
both the requirements of being almost as accurate as ab-initio
calculations and also less expensive. Furthermore, the TS force
field successfully predicts the structures of liquid silica and
the low-pressure crystalline silica structures.11 We note that
the TS force field is known to perform systematically better
than other classical force fields for polymorphs in which the
silicon atoms are fourfold coordinated.12 For instance, the TS
force field successfully predicts the c/a anomaly at the α-β
transition in quartz, the density of states in α-quartz, the
stability of cristobalite and tridymite, and the shape of the
SiO4 units in quartz at room temperature. Moreover, the TS
force field successfully predicts phase transitions between
quartz and coesite and between coesite and stishovite.40 The
calculated cell parameters of coesite at ambient conditions are
in close agreement with the experimental values.4,11 The a and
c lattice parameters are almost identical: 7.162 Å and 7.165 Å,
while b is 12.377 Å, and the angle β is 120.44◦.

Knowledge of the elastic properties of the mineral is
important in order to calculate dislocation properties properly.
We calculated the elastic constants of coesite for the adopted
force field at ambient pressure (0 GPa).11 We derived them by
applying strains (about 1%) to the primitive cell of coesite.
These strains produce stresses which, by inverting Hooke’s
law, can be used to determine the elastic constants. The
latter are an important input in the PNG model. In Table I
we give the full elastic constant tensor together with the
experimental values of Ref. 41. The calculation does not take
temperature effects into account. We note that our calculated
elastic constants show a departure from the experimental value
that is comparable to or better than results obtained with other
classical and ab-initio molecular dynamics approaches.42,43

The quality of the adopted interaction potential is further
confirmed when γ surfaces are compared with those obtained
by ab-initio calculations. As a test case we considered the
projection of the basal plane γ surface along [001] (γ[001] line)
for which we performed also first-principles calculations by
using the QUANTUM-ESPRESSO code.44,45 The result are shown

TABLE I. Ambient pressure (0 GPa) elastic constants of coesite
as calculated in this work (T = 0 K) and as found from experiments
(room temperature) in Ref. 41. Values are expressed in GPa.

C11 C12 C13 C15 C22 C23 C25

Expt. 160.8 82.1 102.9 −36.2 230.4 35.6 2.6
This work 163.0 66.31 80.6 −37.2 213.0 49.9 5.2

C33 C35 C44 C46 C55 C66

Expt. 231.6 −39.3 67.8 9.9 73.3 58.8
This work 223.2 −31.8 46.8 10.4 65.6 56.8
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FIG. 3. γ line calculated by ab-initio method (dots), by ab-initio
parametrized force field (solid), and by BKS force field (dashed)
(Ref. 46). The adopted cell is shown in Fig. 2.

in Fig. 3 where we also compare with the results obtained with
a very common classical force field for silica (BKS).46 The
BKS force field was used rather successfully for the study of
structural, mechanical, and thermal properties of both crys-
talline and amorphous silica.46,47 The γ line calculated with
the adopted TS force field shows non-negligible deviations
with respect to ab-initio data; still, the two maxima and the
minimum between them are fairly well reproduced. In contrast,
the BKS calculation gives a γ line where the two maxima
are reasonably close to ab-initio data (about 13% difference),
but the central minimum markedly differs from that of the
ab-initio calculation. Interestingly enough, both the BKS and
even more the TS force fields appear to be sufficiently accurate
to describe the maxima of the γ surfaces even though the
atomistic structure is locally very far from the equilibrium
system.

Figure 3 also shows that γ -surface calculations constitute
a quite strict benchmark for testing the quality of the chosen
force field.

III. RESULTS

A. γ surfaces

The calculated γ surfaces of (010), (001), (100), and (1̄01)
planes are shown in Fig. 4.48,49 For each plane we considered
and calculated the γ surfaces corresponding to a few possible
choices of parallel shear planes. For example, in Fig. 5 we
show the γ surfaces obtained for the two parallel shear planes
shown in Fig. 2(ii). Both γ surfaces show the same pattern of
deep minima along the [001] cell edge. By constrast, most of
the maxima are changed in both shape and height. This might
come from a different number of broken bonds during the
shear of these two parallel planes. Although in principle one
should take into account both γ surfaces for investigating the
dislocation behavior, in practical calculations we are forced
to consider just one γ surface among those obtained by the
possible parallel choices of the shear plane. Of the two shown
in Fig. 5 we kept the one giving the lowest average γ surface
[labeled as (1) in Fig. 2(ii)]. Analogous criteria were used for
the choices of the γ surfaces of the other planes we considered
in this work.

The contour plot of the γ surface obtained by displacements
on (010) is shown in Fig. 4(a). We remark the presence of deep
minima oriented along [001], while along [100] and [101] deep

TABLE II. Parameters obtained from the γ -surface calculations.
τmax is the ideal shear stress; γmax is the maximum value of the excess
energy barrier.

τmax (GPa) γmax (J/m2)

[100](010) 15.1 3.1
[001](010) 13.0 2.2
[101](010) 15.9 3.3
[010](001) 22.9 5.1
[010](1̄01) 28.6 4.5

minima are alternated with shallow minima. This is further
clarified in Fig. 6 where we compare the projections of the
(010) γ surface along directions [100], [001], and [101]. These
γ lines display a two-peak camel shape, with [001] showing the
sharpest and lowest peaks. This difference shows the intrinsic
monoclinic structure of coesite (shown also in the γ -surface
structure) and the limits of the pseudohexagonal conceptual
frame. In Figs. 4(b), 4(c), and 4(d) we show the γ surfaces
obtained for the (001), (100), and (1̄01) planes. The first two
appear quite similar, showing deep minima arranged along
[110] or [011], while the latter (1̄01) γ surface exhibits a
complex pattern of minima.

A careful inspection of the γ surfaces provides a first
guideline for understanding which slip systems might be
activated in coesite. In particular, in Table II we report the ideal
shear stresses (maximal slope along the chosen shear direction,
τmax) and maximum value of the excess energy barrier (γmax)
calculated for five γ lines. The γ lines γ[100](010) and γ[101](010)

show very similar values for both τmax and γmax. We note that
γ[001](010) shows the lowest values for both the ideal shear stress
and the excess energy barrier. Finally, the γ lines γ[010](001) and
γ[010](1̄01) show larger γmax and τmax values, ranging from about
one and half to two times those found for the γ lines in the
(010) plane.

B. Dislocation core structures: Results of the PNG model

In hexagonal structures 1
3 〈1̄21̄0〉 dislocations are usually

found to glide in the basal plane which corresponds very often
to the easiest slip system. The study of Ref. 7 suggests that
this applies to coesite as well. Hence we decided to begin
our investigations by considering dislocations gliding in the
basal plane. This allows us to discuss the pseudohexagonal
issue in coesite.9 We have also considered the case of [010]
dislocations gliding in two prismatic planes: (100) and (1̄01).
Pyramidal planes are not considered and are left for future
extensive investigations that are beyond the scope of this work.
However, we note that by considering basal and prismatic
planes, we are still able to discuss the largest part of the
experimental observations of Ref. 9.

In Fig. 7 we show the results obtained from PNG calcu-
lations for the [001](010) screw dislocation. The dislocation
core is described through the shear profile S(x). The results
of the PNG calculation are given on a discrete grid of points.
We fitted the results by an expansion in a series of arctangent
functions (we used a total of six arctangent functions) to obtain
a smooth function S(x).50 Hence we derive a smooth curve for
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FIG. 4. (Color online) Contour plots of the γ surfaces of (a) (010), (b) (001), (c) (100), and (d) (1̄01).
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FIG. 5. γ surfaces obtained for the two parallel shear planes shown in Fig. 2(ii). (a) corresponds to the shear plane (1) and (b) to the shear
plane (2). A mesh of 20 × 20 points was used.
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FIG. 6. (a) γ lines of the slip systems [100](010) (dotted),
[001](010) (solid), and [101](010) (dashed). (b) γ lines of the slip
systems [010](001) (dotted) and [010](1̄01) (solid).

the dislocation density ρ(x) = dS(x)/dx which is another way
to look at the dislocation core. In Fig. 7, the two successive
steps of the shear profile result in two well-separated peaks
in the dislocation density profile, which are characteristic of
two well-defined partial dislocations. The separation distance
between the partials is ca. 20 Å. The energy of the stable
stacking fault between the two partials is given by the
minimum (at 50% shear) of the [001](010) γ line (Fig. 6),
i.e., about 0.2 J/m2.

In Figs. 8 and 9 we show the dislocation density profiles ob-
tained with the PNG model for all the dislocations considered
in this work. Correspondingly, in Table III we give the main
parameters of the dislocation densities, i.e., the width at half
maximum of the partial dislocation density, δ, which gives an
estimate of the size of the dislocation core, and the separation
� between partial dislocations.

In Fig. 8 we compare the local dislocation density profiles
for the three [100](010), [001](010), and [101](010) screw
dislocations. As for [001](010), [100](010) and [101](010)

FIG. 7. Dislocation profiles S(x) and ρ(x) = dS(x)/dx (dotted)
for the [001](010) screw dislocation. S(x) calculated by PNG method
(disks) is superimposed on the fit through an expansion in a series of
arctangent functions (solid).
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FIG. 8. Local dislocation densities for the screw [100](010)
(dotted), [001](010) (solid), and [101](010) (dashed) dislocations.

screw dislocations exhibit dissociation into two well-defined
partial dislocations. Their partial separation is identical (about
7 Å) and significantly smaller than that of [001](010). δ is very
narrow and found to range between 0.5 and 1 Å.

Two [010] screw dislocations have been calculated. They
were initially introduced in the (001) and in the (1̄01) planes.
In both cases, the dislocation spreads significantly but remains
planar. In (001), the [010] screw dislocation is divided into four
partial dislocations (Fig. 9). The separation of the outer partials
is 11.2 Å. The [010] dislocation is also dissociated in the (1̄01)
plane. To a first approximation, the dislocation density profile
(Fig. 9) can be described with only two partials. The separation
� is 10.4 Å, close to the outer partial separation of [010](001).
However, the two partials are relatively wide (δ about 1.7 Å)
and their shapes suggest that each partial might be described
by the superimposition of two narrower partials. Figure 10
shows that dissociation of [010] dislocations involves quite
complex, noncollinear, dissociation paths. In (1̄01), a small
edge component appears because the dislocation paths getting
close to a local minimum of the γ surface [Fig. 10(b)].
The tendency is the same in the (001) plane, but due to the
symmetry in this plane, the dislocation exhibits two edge
components of alternate signs [Fig. 10(a)].

In PNG calculations, the γ surfaces of the planes perpen-
dicular to (or crossing) the initial glide plane are introduced
automatically in order to reproduce the periodic variation of
the crystal structure.15,16 The dislocation could thus spread into
these perpendicular planes. In spite of this freedom, however,
all the investigated dislocations show planar cores.

-20 -15 -10 -5 0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

x (Å)

ρ(
x)

FIG. 9. Dislocation density profiles of the [010](001) (dotted) and
[010](1̄01) (solid) screw dislocations.
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TABLE III. Results of the PNG model applied to the slip
systems (screw) [100](010), [001](010), [101](010), [010](001), and
[010](1̄01). δ and � are the width at half maximum and the split
between partial dislocations, respectively. σp is the critical shear
stress (Peierls stress). The values given between parentheses give
a statistical estimate of the uncertainty and are obtained by averaging
calculations done by applying stresses in one direction and in the
opposite one.

δ (Å) � (Å) σp (GPa)

[100](010) 0.4 7 0.8 (0.2)
[001](010) 0.5 19.6 1 (0.2)
[101](010) 0.9 6.9 0.7 (0.2)
[010](001) 0.8 11.2 1.9
[010](1̄01) 1.7 10.4 1.7

C. Peierls stresses

The Peierls stress σp is the minimum stress required to
move a dislocation through a perfect crystal lattice without
thermal activation. The PNG method allows for calculations
of dislocation core structures under the presence of an applied
stress.15,35 The procedure used to calculate σp, as decribed
in Ref. 16, corresponds to a slow straining of the simulation
cell in order to detect at which strain level, and thus at which
stress, the dislocation core moves from one Peierls valley to
another. In Table III we summarize the results for Peierls
stresses and dislocation splittings. Despite having different
core structures, the three dislocations gliding in the (010) plane
exhibit very comparable Peierls stresses with [001](010) only
being slightly harder than the two others. The critical shear
stresses found for [010] dislocations are significantly larger,
by about a factor 2, with respect to those of dislocations
gliding on the (010) plane. However, [010] slip could be
activated because [010] dislocations can relax their cores by
complex dissociations involving several partial dislocations
(Figs. 9 and 10).

In addition to [100], [001], [101], and [010], dislocations
showing Burgers vector 1

2 [110] have also been reported
experimentally, though in a lower proportion with respect to
the [100], [001], and [101] dislocations. Thus it is unlikely that

1
2 [110] dislocations have a lower σp than those found for [100],
[001], and [101] dislocations. We note that the theoretical
modeling of 1

2 [110] involves the treatment of pyramidal planes,
which also, because of the previous remarks, appears as a
complication beyond the scope of this work.

D. Discussion

Geometrical aspects have some implications for crystal
defects. The proximity of the coesite structure with hexagonal
symmetry is responsible, for instance, for (021) twinning,10

and Idrissi et al.9 have shown that description of dislocations
within a pseudohexagonal framework could be instructive.
However, Langenhorst and Poirier8 had already pointed out
earlier that hexagonal pseudosymmetry cannot be considered
at the atomic scale. Indeed, Idrissi et al.9 had observed
some differences in the occurrence of [100], [001], and [101]
dislocations and raised the question of differences in mobility
and activation of these slip systems. The present study allows
a quantitative answer to this question. Figure 4(a) shows that,
according to the symmetry of the C2/c space group, the highest
symmetry in the (010) plane is a twofold axis. However, γ lines
along the [100], [001], and [101] directions (Fig. 6) provide
more quantitative information. If [100] and [101] are clearly
not equivalent from the symmetry point of view, the resistance
to shear along these directions is very similar and very few
differences are expected between the related dislocations, as
shown by the PNG modeling of their properties. On the other
hand, [001] glide seems easier than [100] and [101] glide,
as can be inferred from Fig. 6 and from the values of the
ideal shear stresses (Table II). By contrast, the lattice friction
experienced by this system is found to be very close to those of
the other two. This study suggests that [100], [101], and [001]
dislocations experience very similar lattice friction and hence
should have similar mobilities. The differences of occurrence
reported by Idrissi et al.9 would thus be an observation bias,
rather than reflecting intrinsic differences in the activation of
these dislocations.

In their study, Idrissi et al.9 reported also activation of [010]
dislocations with some evidences of dissociation. Such spread
core structures could be expected since [010] dislocations have

(a) (b)

FIG. 10. γ surfaces (a) (001) and (b) (1̄01) on which shear paths (line with filled squares) of the [010] screw dislocations have been
superimposed.
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a larger Burgers vector modulus than [100], [101], or [001]
dislocations (12.4 Å, to be compared to ca. 7.1 Å). Figure 10
shows that dissociation is the result of the search for an easy
shear path in the γ surfaces. In (1̄01) or (001), this gives rise to
complicated, zigzag, shear paths which induce a dissociation
into four partial dislocations. This suggests that the possibility
for [010] dislocations to dissociate allows the activation of the
[010] slip together with the [100], [101], and [001] slips as
observed by Idrissi et al.9

IV. CONCLUSIONS

Modeling dislocations is still a quite challenging task,
first because experimental data available for comparisons are
usually rare and experimental information is often limited to
just Burgers vectors. Furthermore, from a theoretical point of
view, a fully atomistic simulation of dislocations is challenging
due to the macroscopic extension of the defects. Thus it
is necessary to rely on approximated models that combine
atomistic information with a quasicontinuum or continuum
description.

With the TS force field, we calculated the elastic constants
of coesite, which are found to be reasonably close to the
experimental ones. We show that γ surfaces calculated by
the TS force field are comparable in quality with ab-initio
results and much better than those obtained by more standard
classical force fields such as the BKS. The TS force field
allows us to calculate the γ surfaces of many different slip
planes after checking several alternative planes for a given

orientation. This is done with a low computational cost
with respect to ab-initio methods, where the calculations
depend severely on the size of the system as well as on the
cell size.

The present study is a theoretical attempt to study dislo-
cation properties in coesite. We exploit the capabilities of the
TS force field and of the PNG model that we used to calculate
dislocation core structures and Peierls stresses. We achieve an
overall good description of the main slip systems for which
we discuss about activation, dislocation size and splittings,
and dissociation into noncollinear partials. We show that in
order to understand dislocation properties such as dissociation
in partial dislocations and gliding paths it is important to
calculate the γ surfaces for each relevant slip plane, because
information coming from single γ lines is limited. This work
shows that the lattice friction experienced by the [001](010)
slip system is close to those of [100](010) and [101](010)
slip systems. This supports the pseudohexagonal symmetry
description of dislocations in coesite that was suggested by
recent experiments.

ACKNOWLEDGMENTS

We acknowledge support from Consiglio Nazionale delle
Ricerche (CNR) and Centre National de la Recherche Sci-
entifique (CNRS) through the project “EuroSlab” of the
EuroMinScI/ESF initiative. L.G. acknowledges useful discus-
sions with C. R. Miranda. P.C. acknowledges C. Denoual for
his help in performing PNG calculations.

1S. Karato, Deformation of Earth Materials: An Introduction to the
Rheology of Solid Earth (Cambridge University Press, New York,
2008).

2L. Coes, Science 118, 131 (1953).
3R. J. Angel, C. S. J. Shaw, and G. V. Gibbs, Phys. Chem. Miner.
30, 167 (2003).

4L. Levien and C. T. Prewitt, Am. Mineral. 66, 324 (1981).
5C. Chopin, Contrib. Mineral. Petrol. 86, 107 (1984).
6Z. Y. Zhao, C. J. Wei, and A. M. Fang, Earth Planet. Sci. Lett. 237,
209 (2005).
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