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Transition from reversible to irreversible flow: Absorbing and depinning transitions in a
sheared-vortex system
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We provide evidence that a reversible to irreversible flow transition (RIT), as reported in driven colloidal
particles, occurs in periodically sheared vortices in a Corbino-disk superconductor under increasing a
displacement d of vortices per cycle. We determine a threshold displacement dc for RIT as the onset of flow
noise. A relaxation time to reach the steady state diverges around dc, indicative of an absorbing transition from
self-organized nonfluctuating (reversible) to fluctuating diffusing (irreversible) states. Our results strongly suggest
that RIT is a universal phenomenon in driven interacting particle systems with quenched disorder. We also find
evidence for a depinning transition with critical behavior similar to that of the absorbing transition in the same
vortex system.
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In many-particle systems where their dynamics is dom-
inated by time-reversible equations of motion, irreversible
phenomena are often visible. In slowly sheared colloidal
particles placed between concentric cylinders, a novel dy-
namic transition from reversible to irreversible flow has been
observed.1,2 In a reversible regime, the colloids return to
their initial position at the end of each cycle of a periodic
shear, while in an irreversible regime, they do not return
to their initial position. Both regimes are identified by a
displacement of colloids per cycle and its threshold has been
determined. This transition, called reversible to irreversible
transition (RIT), is expected to occur widely in nature but not
yet verified experimentally. Understanding of the phenomenon
will lead to new insights into the relationship between chaos,
reversibility, and predictability,1 which is a fundamental issue
in statistical physics. In an effort to clarify the universality
of the phenomenon, it has been shown numerically3,4 that
periodically driven superconducting vortices exhibit a similar
transition under increasing cycle period (displacement d) and
that it can be readily detected by the onset of broadband voltage
noise (BBN) SV .3

Recently, Corté et al. have carried out further numerical and
experimental studies for the colloidal system.5 They suddenly
applied a periodic shear and examined a transient behavior.
The particles collide with each other feeling a random force
and hence the system starts in a fluctuating state. After a certain
relaxation time, the system organizes into either a fluctuating
steady state or a nonfluctuating single quiescent state. The
latter state is interpreted as an absorbing state, from which a
system can never escape.3,5–11 Since the irreversible collisions
that generally produce diffusive chaotic dynamics can also
cause a system to self-organize to avoid future collisions, this is
termed random organization.5 Interestingly, the relaxation time
diverges at the shearing threshold (RIT), which is identified
with an absorbing transition. The concept of self-organization
is important in explaining origins of order, e.g., in biological
and social systems, and in controlling the structure of materials
microscopically.5 It is of great interest to explore whether
reversible to irreversible behaviors and random organization
found in the colloidal system can be generalized to other
nonequilibrium many-body systems.3,4,12

Here, we conduct shearing experiments for vortices con-
fined in a Corbino disk (CD) of an amorphous (a-)MoxGe1−x

film with random point pinning. In the presence of a radial
current I , the vortices rotate around the center of CD by
feeling a frustrated Lorentz force inversely proportional to
the radius r of rotation.13,14 We have driven the vortices
periodically in the circumferential direction by applying an
ac square current Iac, which, together with pinning, gives rise
to a shearing motion for vortices relative to each other, and
measured SV as a function of displacement d per half a cycle.
We observe the field(B)-dependent threshold dc above which
SV appears: dc is large when the vortex solid is rigid and
uniform, consistent with the picture of RIT. We have also
measured the time (t) evolution of voltage V (t) just after
Iac was applied. The amplitude of V (t) shows an increase
with t , relaxing toward a steady-state value. The relaxation
time τ1(d) diverges around dc, providing a strong support for
RIT and absorbing transition at dc. We also find evidence for
the depinning transition,6,15 which falls into the class of the
absorbing transition. Preliminary results have been reported
elsewhere.16

The 330-nm-thick a-MoxGe1−x film was prepared by rf
sputtering on a Si substrate held at room temperature.17 Mean-
field transition and zero-resistivity temperatures are 6.3 and
6.2 K, respectively. Arrangement of silver electrical contacts
is shown schematically in the inset (left bottom) of Fig. 1(a).
The current flows between the contact +C of the center and
that −C of the perimeter of the disk, which produces a radial
current density that decays as 1/r . The inner radius of CD is
0.8 mm. We used the voltage contacts, +V and −V , to measure
the voltage V and voltage noise SV . In measuring noise spectra,
voltage enhanced with a preamplifier was analyzed with a fast-
Fourier transform spectrum analyzer. We obtained excess noise
spectra by subtracting the background contribution, which was
measured with I = 0. The field B was applied perpendicular
to the plane of the film.

All the data were taken at 4.1 K for different B corre-
sponding to the solid phase.17 As illustrated with gray dots
in the inset (left top) of Fig. 1(a), we applied Iac of square
wave form, whose amplitude was fixed to yield ac voltage
with constant amplitude V ∞(≈10 μV) in the steady state. For
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10 μV the flow state is pinning-dominated plastic flow. The
period tac of Iac was varied from 0.125 to 25 ms to change
d in the range ≈0.5–102 μm. Here, d is calculated from
the relation d = V ∞tac/2Bl, where l is a distance between
voltage contacts. The right inset shows the selected data
of noise spectra taken for different d (tac) in 3.2 T, which
is just below the peak field Bp(=3.25 T) of the depinning
current Id (B) shown in Fig. 2(b). The field of Bp marks
the structural transition of vortex matter from the ordered
phase (OP) to amorphouslike disordered phase (DP).17 This
order-disorder transition18 is evidenced from a sharp maximum
and subsequent abrupt drop of SV (B) at Bp, as indicated with
full circles in Fig. 2(b). Large SV (B) observed just below Bp

implies the coexistence of OP and DP, where vortex flow is
most disordered.17

Spectral shape of SV is of Lorentzian type, while many
spikes or narrow-band noise originating from the fundamental
(1/tac) and higher order frequencies of Iac are visible superim-
posed on BBN. Some of them are eliminated from the figure
for clarity. For small d, e.g., d = 1.30 μm, some data points
are missing from the spectra, indicating that SV is close to or
below the background level (∼10−18 V2/Hz), while for larger
d substantial BBN exceeding the background level appears.
In Fig. 1(a) we plot the d dependence of SV at low frequency
(100 Hz) in 3.2 T. For d smaller than about 2 μm, SV (100 Hz)
(open circles) is below the background level (shading). As d

exceeds about 2 μm, SV (100 Hz) (full circles) starts to rise
and increases almost linearly with d. Qualitatively the same
result is obtained for other B studied.

The simulations3 consider vortex dynamics in a square-
shaped superconductor with periodic boundary conditions, that
is, no sample edges. In our experiment the absence of sample
edges is a necessary condition to eliminate complicated edge
effects18 and to compare our results with those of the colloidal
system. This condition is certainly satisfied by using CD, while
large shear forces that are actually present both in CD13,14 and
colloids are not considered in the simulations. We will show,
however, that qualitative features of RIT observed in our work
are consistent with the numerical results. The simulation3

determined stroboscopically the location of vortices driven
by periodic drive and calculated the mean square vortex
displacement, equivalently, effective diffusivity D. In the
reversible regime D is zero, while in the irreversible regime
D > 0. It is also shown that there is an initial transient period
for finite D[>D(t → ∞)], after which the system settles into
the stationary state that is either reversible [D(t → ∞) = 0]
or irreversible [D(t → ∞) > 0].

Here, we begin by considering the behavior after the
stationary state is reached. The D vs d curve reported in
Ref. 3 is qualitatively similar to the SV vs d curve shown in
Fig. 1(a), although the relationship between D and SV

is unclear. The critical value dc is determined from the
simple linear extrapolation of the data (full circles) to the
abscissa (SV = 0); e.g., dc ≈ 1.6 [an arrow in Fig. 1(a)] and
4 μm (not shown here), which correspond to the angles of
0.2◦ and 0.5◦ around the center of CD, for 3.2 and 1 T,
respectively. We interpret dc as the threshold displacement
of RIT. In the field region (∼1 T) studied an intervortex
spacing a0 is around 10 nm, which is well below the London
penetration depth (∼1 μm), and dc ∼ 1 μm corresponds to a
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FIG. 1. (Color online) (a) SV (100 Hz) in 3.2 T vs d . Open circles
denote SV (100 Hz) below the background level and an arrow marks
dc. Inset: (Left top) Gray dots and a horizontal dashed line represent
Iac and amplitude of ac voltage in the steady state, respectively. Red
(dark gray) lines indicate V (t) in 3.2 T for d = 1.64 and 3.72 μm vs
number of shear cycles. (Left bottom) Arrangement of the electrical
contacts. (Right) Noise spectra for different d in 3.2 T. Lines are
guide to the eye. (b) τ1 vs d . Squares and circles represent the data
below and above dc (a vertical dashed line), respectively, at which τ1

diverges. Full lines on both sides of the threshold show power-law
fits. Inset: The same data and its fits plotted on a log-log scale.

distance (∼102 × a0) over which a few hundred vortices are
located.

Next, we focus on the transient behavior, which was
measured at 3.2 T in the disordered flow regime just below
Bp. The inset (left top) of Fig. 1(a) shows the time evolution
of V (t) vs the number of shear cycles taken for d = 1.64 μm
just above dc(=1.6 μm) and 3.72 μm. Since the voltage is
proportional to the average vortex velocity, a transient motion
of vortices can be sensitively detected by V (t). To randomize
the initial vortex distribution, for each measurement we first
shear the system at a large displacement by applying Iac with
tac = 20 ms (d = 80 μm) for more than 20 s (103 cycles). For
d = 1.64 μm the amplitude of voltage |V (t)|(≡V 0) at t = 0 is
smaller than that of |V (t)|(≡V ∞) at t → ∞ or the dc voltage
(10 μV). This is because initial vortex distributions are random
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and the first several cycles generate many collisions, similarly
to the case of colloids. After the several cycles, |V (t)| increases
and eventually reaches the steady-state value V ∞ ≈ 10 μV.
Essentially the same vortex dynamics in response to ac drive
was reported earlier in NbSe2.19 For larger d = 3.72 μm
(≈2dc) a transient behavior of V (t) is also observed, but it
is much less pronounced. For d < dc, we observe almost the
same transient behavior (not shown here) as that for d > dc.
However, the situation is much different depending on whether
d is smaller or larger than dc.5 For d < dc, which corresponds
to the reversible state, all the vortices eventually find a position
such that they no longer collide with each other when the
system is sheared. By contrast, for d > dc, which corresponds
to the irreversible state, the system reaches the steady state
where nonzero fraction of vortices always collides with another
vortex.

To verify the validity of the above interpretation and get
more insights into random organization,5,6 we examine the
characteristic time τ (≡τ1) for the system to reach the steady
state. τ1 is extracted by fitting |V (t)| to the simple relaxation
function,5,6

|V (t)| = V ∞ − (V ∞ − V 0) exp (−t/τ )/tα. (1)

Here, we fix α(≡α1) to be zero, because theoretically the
value of α1 only becomes relevant very close to the transition
(τ1 → ∞), while in our experiment τ1/t is relatively small. In
Fig. 1(b) we plot τ1 against d. For d < 1 μm, we cannot obtain
reliable data because of limitation of fast V (t) measurements.
The divergence in τ1 is visible around 1.6 μm(≈dc), which
strongly supports the view that the absorbing transition from
nonfluctuating (reversible) to fluctuating (irreversible) states
occurs at dc and that dc obtained from SV indeed probes RIT.
The τ1 vs d curves on both sides of the transition can be
fit to a power-law form, τ1 ∝ |d − dc|−ν1 with ν1 = 1.3, as
shown with full lines. The inset displays the same data plotted
on a log-log scale, giving ν1 = 1.3 ± 0.3. Our exponent is
close to 1.1 ± 0.3 and 1.33 ± 0.02 reported in the colloidal
experiments and simulations, respectively.5,6

The simulations predict that the reversible to irreversible
behaviors are largely dependent on the vortex-vortex interac-
tion (B)3 and driving force.4 In particular, in the peak effect
regime just prior to Bp, where the effectiveness of pinning
changes sharply with B, it should be possible to observe RIT
only by changing B at fixed d. This is seen in Fig. 2(a), where
dc derived from SV is plotted against B. Also shown between
Figs. 2(a) and 2(b) is the equilibrium vortex phase diagram
constructed based on B dependences of Id and flow noise
(SV at 100 Hz divided by V )17 [Fig. 2(b)]. We find that dc

is zero, namely, reversibility is completely lost both for low
B(<0.5 T) in OP and for high B in DP, i.e., just below the
melting field Bc and in the liquid phase. In these particular B

regions the vortex solids are softer than in the intermediate B

region (1–2.3 T) within OP, which accounts for the suppression
of the reversible behavior. Quite recently, we have detected
softening of rotating vortex lattices at low B by a mode-locking
experiment for the same CD sample as a change in lattice
orientation with respect to the flow direction.14 It is also
noted in Fig. 2(a) that as the field is increased from B = 0 at
fixed d, the irreversible-to-reversible behavior occurs at certain
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FIG. 2. (Color online) (a) dc vs B. (b) SV (100 Hz) divided by
V (full circles) and depinning Id (open squares) as a function of B.
Static vortex phase diagram is illustrated between (a) and (b). Vertical
dashed lines mark the onset of the coexistence phase in OP (left),
ODT (Bp) (middle), and melting Bc (right). Other lines are guide to
the eye.

B(d), consistent with numerical work predicting qualitatively
the same behavior when one enters a jammed phase.3 While
the simulation has not made specific predictions at higher B

including the peak effect regime, our results clearly show that
reversibility (dc) is sharply suppressed in fields just prior to
Bp. This behavior is reasonable, considering that vortex flow is
most disordered in the coexistence phase.17 The peculiar field
dependence of dc shown in Fig. 2(a), which well reflects the
static vortex states (rigidity and uniformity), can be a further
support for RIT at dc.

Finally, we discuss plastic depinning15 based on V (t) just
after dc I is suddenly applied. The transient vortex motion
based on V (t) was studied earlier for NbSe2.19 In plastic
depinning for two dimensions (2D), particles move in the
form of complex fluctuating channels, where some particles
are mobile while others remain pinned. This phenomenon is
widespread in nature,15 but the true nature of the depinning
transition is still not fully understood. Quite recently, simi-
larity between random organization (absorbing transition) and
plastic depinning (depinning transition) has been proposed
numerically.6 The simulation predicts that the system exhibits
a transient behavior before settling into a completely pinned
state or a steady moving state, depending on whether the
driving force is below (I < Id ) or above (I > Id ) the threshold
pinning force, respectively.

We measure V (t) in 3.0 T, where pinning is so effective.
Before applying I , the field was decreased and then increased
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FIG. 3. (Color online) (a) I − V relation in 3.0 T. An arrow marks
Id . Inset: V (t) just after dc I (0.8, 2.0 mA) was applied. Full lines
are fits to Eq. (1). A dashed line illustrates the shape of I (t). (b) τ2 vs
I , exhibiting a divergence at Ic = 0.37 ± 0.15 mA (a vertical dashed
line) close to Id ≈ 0.35 mA. A red (dark gray) line shows a power
law fit. Inset: The same data and its fit on a log-log scale.

up to 3.0 T. This field sweep process is necessary to avoid a
situation that many vortices are strongly pinned in the initial
state. For I < Id detectable V (t) is not visible, while above Id

we observe decaying V (t). Here, Id (≈ 0.35 mA) is determined

from I − V relation in Fig. 3(a). In the inset we display the
typical decaying signals of V (t) for I = 0.8 and 2.0 mA, which
are slightly and well above Id , respectively. The decay time τ2

for 0.8 mA looks longer than for 2.0 mA. We can reproduce the
V (t) curves well above Id using a simple exponential function,
while in the vicinity of Id the functional form approaches a
power law. Thus, to obtain τ2, we fit V (t) to the same function
as Eq. (1). Near Id , α(≡α2) ≈0.4. As shown in Fig. 3(b),
τ2(I ) diverges at 0.37(±0.15)(≡Ic) mA that is close to Id ≈
0.35 mA and the data points fall onto a line expressed as τ2 ∝
(I − Ic)−ν2 with ν2 ≈ 1.26. The same data are plotted on a log-
log scale in the inset, giving ν2 = 1.26 ± 0.15. Our exponent
ν2, as well as α2 ≈0.4 near Ic, is close to ν2 = 1.36 ± 0.06
(α2 = 0.5) reported in simulation for the depinning transition
in 2D6 and also close to ν1 = 1.1 ± 0.3 and 1.33 ± 0.02 found
in the colloidal experiment in 3D and simulation for random
organization in 2D,5 respectively. We thus conclude that the
nonequilibrium absorbing and depinning transitions actually
occur in our 2D vortex system and exhibit the similar critical
behavior, indicating that both transitions fall into the same
universal class.6

It is of interest to elucidate microscopic mechanisms giving
rise to plastic depinning and irreversible flow20: RIT may
be interpreted as a “plastic depinning transition” where irre-
versible vortex motion occurs in correspondence with flow of
topological defects in lattice. Quenched disorder favors these
defects and the transition is accompanied by the onset of BBN.
For CD, a simulation showed that BBN appears accompanying
the dynamics of topological defects even in the absence of
quenched disorder.21 This work will stimulate further research
into a connection between the onset of irreversibility and
dislocation dynamics,20 as well as the relationship between
chaos, self-organization, and reversibility.1
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