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Essential singularity in the Renyi entanglement entropy of the one-dimensional XY Z spin-1
2 chain
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We study the Renyi entropy of the one-dimensional XYZ spin-1/2 chain in the entirety of its phase diagram.
The model has several quantum critical lines corresponding to rotated XXZ chains in their paramagnetic phase,
and four tricritical points where these phases join. Two of these points are described by a conformal field theory
and close to them the entropy scales as the logarithm of its mass gap. The other two points are not conformal and
the entropy has a peculiar singular behavior in their neighbors, characteristic of an essential singularity. At these
nonconformal points the model undergoes a discontinuous transition, with a level crossing in the ground state
and a quadratic excitation spectrum. We propose the entropy as an efficient tool to determine the discontinuous
or continuous nature of a phase transition also in more complicated models.
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In the past several years there has been a constantly in-
creasing interest in quantifying and studying the entanglement
of virtually every physical system.1–3 This interest is not
surprising, as entanglement provides valuable insights from
many different perspectives.

As it is often measured as entanglement entropy, that is,
the Von Neumann entropy of the reduced density matrix of
a system S = −Tr ρ̂ ln ρ̂, its origin lies in the context of
quantum information theory.4,5 Essentially, it quantifies the
“quantumness” of a state and therefore it provides a measure of
its suitability for efficient quantum algorithms, in the ongoing
quest for quantum computing.

In the physics of strongly interacting systems, entanglement
has been welcomed as a new, interesting correlation function,
different in nature compared to the traditional ones, due to
its nonlocal structure. In particular, it has provided a new
challenge for the integrable model community on one side6–8

and has led to new, more efficient approaches for numerical
simulations (tensor network states) on the other.9–11 For statis-
tical physics, the entanglement entropy has also been proposed
as a numerically efficient way to characterize a system, due to
its diverging behavior across a phase transition.12,13

If we concentrate on the bipartite entanglement, that is, the
entanglement entropy between two complementary regions,
a lot is understood about its qualitative behavior. In general,
it satisfies the so-called area law,2 that is, it is proportional
to the area of the boundary dividing the two regions. This
is naively understood considering that the entanglement is
carried by correlations that, in general, decay exponentially
with the distance with a rate given by the correlation length
ξ . If the volume of the two regions is much bigger than ξ ,
entanglement is localized at the boundary. Hence the area
law. This behavior is modified when correlations decay more
slowly, like close to phase transitions, where ξ → ∞.

The one-dimensional (1D) case is most interesting. As the
boundary between regions consists of individual points, in a
massive phase the entropy saturates to a finite value for suffi-
ciently large systems. For critical phases described by a confor-
mal theory, correlations decay as power laws and the entropy
diverge logarithmically with the size of the region.14 Close to

conformal points, the behavior is still governed by a conformal
field theory and the divergence is logarithmical in ξ .15

In this Brief Report, we argue that close to a nonconformal
point of phase transition the entropy shows a dramatically
different behavior, characteristic of an essential singularity.
Thus, we propose the entropy as an efficient (analytical
or numerical) tool to distinguish, for example, a first-order
ferromagnetic quantum phase transition in a spin chain from
higher-order ones. This kind of ability can be very helpful in the
study of a variety of other models with nonconformal critical
(but still gapless) points such as those described by spin-1
Hamiltonians16 or in fermionic systems17 and many more.

An essential singularity for the entropy was already ob-
served at the bicritical point of the XY model in Ref. 18, where
it was noticed that the conformal prediction fails because
low-energy excitations have a quadratic dispersion relation.
However, the XY chain can be considered a toy model; peculiar
behaviors like these can be simply a mathematical feature
that does not survive in more realistic systems. Here we will
consider a fully interacting model that cannot be mapped into
free systems, like the XY chain and those of Ref. 19, that is,
the XYZ spin-1/2 chain, defined by the Hamiltonian

ĤXYZ = −
∑

n

(
Jxσ

x
n σ x

n+1 + Jyσ
y
n σ

y

n+1 + Jzσ
z
nσ z

n+1

)
, (1)

where σα
n (α = x,y,z) are the Pauli matrices acting on the

site n, the sum ranges over all sites n of the chain, and
the constants Jx , Jy , and Jz take into account the degree of
anisotropy of the model. Without any loss of generality, we
can rescale the energy and set Jx = 1, Jy = �, and Jz = �.
This model is the most general spin-1/2 1D chain with nearest-
neighbor interactions, and its rich phase diagram has both
conformal and nonconformal critical points. Moreover, unlike
Ref. 18, this is a truly interacting, although still integrable,
model.

Following the standard procedure, we start from the ground-
state wave function | 0 〉 of (1) and divide the system into
two parts, which we take as the semi-infinite left and right
chains, thus dividing the Hilbert space as H = HR ⊗ HL. We
introduce the reduced density matrix by tracing out one of the
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two half-chains, say HL:

ρ̂ ≡ Tr HL
|0〉〈0|. (2)

As an entanglement estimator we will consider the Renyi
entropy20

Sα ≡ 1

1 − α
ln Tr ρ̂α, (3)

which reduces to the Von Neumann entropy for α → 1 (α
being just an additional parameter at our disposal).

In the thermodynamic limit, the reduced density matrix of
the XYZ model is known exactly, due to its connection with
the corner transfer matrices (CTM) of the zero-field 8-vertex
model.21 Using this connection, the entropy of the XYZ chain
was calculated in Ref. 22, where it was shown that ρ̂ can be
written in the form

ρ̂ = 1

Z

∞⊗
j=1

(
1 0
0 xj

)
, (4)

where x ≡ exp[−πλ/I (k)], Z ≡ ∏∞
j=1(1 + xj ), and k and λ

are elliptic parametrizations of the coupling constants that, in
the principal regime of the 8-vertex model, can be written as

� = 1 + k sn2(iλ)

1 − k sn2(iλ)
, � = − cn(iλ) dn(iλ)

1 − k sn2(iλ)
, (5)

with 0 � k � 1, 0 � λ � I (k′). I (k) is the complete elliptic
integral of the first kind and k′ = √

1 − k2 is the conjugated
elliptic parameter.

In Ref. 19, the entanglement was studied for systems akin
to free particles, using the fact that ρ̂ is of the form (4) with
eigenvalues xj = e−2jε or xj = e−(2j+1)ε , for the ordered or
disordered phases, with ε characteristic of the model. From
the CTM of Ref. 21 it is known that all integrable, local spin-
1/2 chains have a reduced density matrix of the form (4).
Thus, the degeneracy of the eigenvalues of ρ̂ is universal for
integrable models (and given by a partitioning problem23) and
the entanglement is completely characterized by ε. In the case
of the XYZ model, ε = π λ

2I (k) .
Further defining q ≡ e−ε , the Renyi entropy is

Sα = α

α − 1

∞∑
j=1

ln (1 + q2j ) + 1

1 − α

∞∑
j=1

ln(1 + q2jα),

(6)
which we can rewrite in terms of elliptic θ function24 as

Sα(ε) = α

6(1 − α)
ln

θ4(0,q)θ3(0,q)

θ2
2 (0,q)

+ 1

6(1 − α)
ln

θ2
2 (0,qα)

θ3(0,qα)θ4(0,qα)
− ln(2)

3
. (7)

This form, although completely equivalent to (6), is most
suitable for studying the behavior of the entropy in the phase
diagram of the model, thanks to the vast literature on elliptic
functions.

In Fig. 1 we plot a graph of the phase diagram of the
XYZ chain. The model is symmetric under reflections along
the diagonals in the (�,�) plane. The system is gapped in
the whole plane, except for six critical half-lines/segments:
� = ±1, |�| � 1; � = ±1, |�| � 1 and � = ±�, |�| � 1.

C11
E

EC 22

Γ

Δ

FIG. 1. Phase diagram of the XYZ model in the (�,�) plane.
The solid lines –� = ±1, |�| � 1; � = ±1, |�| � 1, and � = ±�,
|�| � 1– correspond to the critical phase of a rotated XXZ chain.
Out of the four “tricritical” points, C1,2 are conformal and E1,2 are
not.

All of these lines represent paramagnetic XXZ chains, with the
anisotropy along different directions. They are thus described
by a c = 1 (ultraviolet) sine-Gordon theory with β dependent
on � or �. These critical lines meet three by three at four points,
which we will denote as “tricritical,” since they separate three
regions where the system is gapped. These three regions can
be obtained one from the others by exchanging the role of the
three spin components σx , σy , and σ z. Two of these points,
C1,2 = (1, − 1),(−1,1), are conformal points with β2 = 8π ;
while the other two, E1,2 = (1,1),(−1, − 1), correspond to
β = 0 and are nonconformal. The former points correspond to
an antiferromagnetic Heisenberg chain at the BKT transition,
while the latter correspond to a Heisenberg ferromagnet. Thus,
at E1,2 the system undergoes a transition in which the ground
state passes from a disordered state to a fully aligned one.
Exactly at the transition, the ground state is highly degenerate
while the low-energy excitations are magnons with a quadratic
dispersion relation.

The different behavior of the entropy close to these points
is clear from Fig. 2, where we show a contour plot of the
Von Neumann entropy as a function of � and �. In any
neighbor of C1,2 the entropy is diverging, since it is controlled
by a conformal theory. Close to E1,2 the entropy goes from
0 to infinity depending on the direction of approach to the
nonconformal point. Moreover, we see that all curves of
constant entropy pass through either E1,2. This is the same
behavior observed around the bicritical point of the XY model
in Ref. 18.

The nonconformal point of the latter model does not show a
highly degenerate ground state, however; the density of states
of low-energy excitations always diverges like n(ε) 
 1/

√
ε

for a quadratic dispersion ε(k) 
 k2. Thus, in both models the
ground state close to the multicritical point can be constructed
out of a thermodynamically large number of configurations.
This argument provides a qualitative picture of how this rich
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FIG. 2. (Color online) Contour plot of the Von Neumann entropy
of the XYZ model in the (�,�) plane. Regions of similar colors have
similar entropy values and the lines where colors change are lines of
constant entropy. The brighter the color, the bigger the entropy.

variety in the entanglement may arise close to nonconformal
points.

For the XYZ model we can make these statements more
quantitative by expanding the parameters around the tricritical
points. Close to C2 we take

� = 1 − δ cos φ, � = −1 − δ sin φ, 0 � φ � π

2
,

yielding

k = (
√

tan φ + 1 −
√

tan φ)2 + O(δ),
(8)

λ =
√

δ cos φ

2
(
√

tan φ + 1 −
√

tan φ) + O(δ3/2).

Thus, k is not defined at the tricritical point, since its value
as δ → 0 depends on the direction φ of approach (for φ =
0, k = 1 and for φ = π/2, k = 0), while λ → 0 as δ → 0,
irrespective of φ. Hence, ε ∼ √

δ and in any neighborhood of
the conformal point the entropy is diverging. In particular, on
the direction φ = 0, since I (1) → ∞, the entropy is divergent
for any δ (as expected, since this is a critical line).

Expanding instead around E1 as

� = −1 + δ cos φ, � = −1 − δ sin φ, 0 � φ � π

2
,

we find

k = (
√

tan φ + 1 −
√

tan φ)2 + O(δ),
(9)

sn(iλ) = i

√
2

δ cos φ
(
√

tan φ + 1 −
√

tan φ) + O(δ1/2).

Thus, k is exactly as in the previous case, while λ has a very
singular behavior. A regular expansion of λ in powers of δ

is not readily available. However, one can see that λ ∼ I (k′)

close to E1 and thus ε ∼ I (k′)/I (k), which varies from 0 for
φ = 0 to infinity for φ = π/2.

As we have already mentioned, the behavior of the entropy
is completely determined by ε; thus, the Renyi entropy has an
essential singularity at E1,2 and can take any positive real value
arbitrarily close to it. This unusual behavior can be understood
qualitatively considering that this tricritical point is a highly
symmetric one with a highly degenerate ground state. Thus, as
the parameters are changed to pass through E1,2, the ground
state undergoes a level crossing and the entanglement can
change in a discontinuous way. This effect is most dramatic
along one of the XXZ lines, where the entropy goes suddenly
from diverging in the paramagnetic phase to vanishing in the
ferromagnetic one.

From the examples of the XYZ chain and of the XY

model,18 we can infer that points of discontinuous phase
transitions show a characteristic singular behavior of the en-
tanglement entropy, which can be easily detected numerically
and might be used as an efficient tool to distinguish, for
example, between first- and higher-order phase transitions in
more complicated models.16,17 It is important to remark that
Sα and the correlation length show very different behaviors
close to E1,2, since, as it is expected for any phase transition,
ξ diverges as one approaches the critical lines or points,
without showing the essential singularity characteristic of the
entropy.25 Thus, close to the discontinuous points E1,2 the
entropy formula derived in Ref. 14 is no longer valid: indeed
it applies in the vicinity of all conformal points of the critical
lines (including the BKT points C1,2), while it fails if we
are close to nonconformal points, such as E1,2, where the
spectrum of excitations has a quadratic dispersion relation for
small momenta.

The behavior of the Renyi entropy close to a conformal
point has been recently investigated in Ref. 15, where the
Poisson summation formula was applied to (6) to obtain
its asymptotic behavior. Equation (7) is equally suitable for
such an expansion, using the different representations of the
Jacobi θ functions.26 In Ref. 15, the Ising model and the
XXZ chain were considered. Using the XYZ and the elliptic
properties, we can easily extend their analysis. For instance,
we can expand (7) in powers of t ≡ e−π2/ε for ε → 0 close
to C1,2:

Sα(ε) = π2

24

(
1 + 1

α

)
1

ε
− 1

2
ln 2 + α

(1 − α)

[
t + t2

2
+ O(t3)

]

− 1

(1 − α)

[
t1/α + t2/α

2
+ O(t3/α)

]
. (10)

Because close to these two tricritical points we have

ξ−1 
 4e−π2/2ε = 4t1/2, (11)

we can write

Sα = 1

12

(
1 + 1

α

)
ln(ξ ) − 1

6

(
2 − 1

α

)
ln 2

+ α

(1 − α)

[
ξ−2

16
+ ξ−4

512
+ O(ξ−6)

]

− 1

(1 − α)

[
(4ξ )−2/α + 1

2
(4ξ )−4/α + O(ξ−6/α)

]
. (12)
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We recognize the familiar leading logarithmic term, a nonuni-
versal constant, and a series of corrections, in agreement with
the results of Ref. 15. For large α the leading correction is
given by ξ−χ/α with χ = 2. This implies that the operator
responsible for this correction has conformal dimensions
(�,�) = (1,1) and is therefore a quadratic combination of
the SU (2)1 Kac-Moody currents J,J .

We have studied the bipartite Renyi entropy of the 1D
XYZ spin chain in its phase diagram, using exact analytical
expressions derived from the integrability of the model. The
entropy diverges on the critical lines: close to conformal points
the divergence is logarithmical in the correlation length with
power-law corrections. At the nonconformal points the entropy
has an essential singularity. We argued that this may be a
characteristic feature of discontinuous phase transition points
that could allow to easily numerically discriminate between
first- and higher-order phase transitions. It would be interesting
to test this behavior in other models.

Expression (7) for the Renyi entropy is general for in-
tegrable models of spin 1/2 and possesses very interesting
elliptic and modular properties, as a function of k, λ, and α.25

Different modular properties, in real space instead of parameter
space, emerge close to the conformal points and have been
used in Ref. 15 to understand the leading corrections to the
entanglement entropy. It would be interesting to understand
whether there is a link between these two.
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