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Boltzmann approach to dissipation produced by a spin-polarized current
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By using the Boltzmann transport equations, we calculate the dissipation produced by a spin-polarized current.
The results can be interpreted in terms of a circuit model which is also commonly used to explain the giant
magnetoresistance (GMR) effect. We find that due to the spin-flip scattering of electrons, the GMR effect is
associated with extra Joule heating, which is more localized than the spin-diffusion length.
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In spintronic devices the electron’s spin degree of freedom,
rather than its charge plays an important role.1 Due to the
spin-dependent scattering of electrons, the current flowing
through these devices becomes spin polarized. In fact, in
some situations, we can even have a “pure” spin current,
without any accompanying charge current, by using “nonlocal
geometries.”2,3 The dissipation produced by a spin-polarized
current is an important issue, and can be a limiting factor in the
performance of spintronic devices. Recently, the existence of
a dissipationless spin current has been predicted.4,5 This effect
is related to the intrinsic spin Hall effect originating from
the spin-orbit coupling in semiconductors. Although there are
some reports of experimental observation,6 the interpretation
in terms of dissipationless current is still debated.7,8 In the
present paper, we consider diffusive flow of spin currents
and calculate the dissipation (i.e., rate of increase of entropy
density) produced by the spin-flip scattering of electrons. Such
a diffusive flow of spin current occurs in many devices such as
giant magnetoresistance (GMR) sensors, spin transistors,9 etc.
Apart from nonlocal geometries, a pure spin current can also be
generated by spin pumping,10 or application of a temperature
gradient to a ferromagnet. In the latter case, the spin current is
generated due to the spin-dependent Seebeck coefficient of the
ferromagnet.11–15 The dissipation produced by a spin current
has been previously considered by Wegrowe.16 By using a
thermodynamic theory, this author derived an expression for
the dissipation. Such a thermodynamic approach has also been
used in Refs. 17 and 18. Magnetoelectronic circuit theory has
also been used to find out dissipation in magnetic systems.19

In this paper, we use a microscopic theory based on the
semiclassical Boltzmann equation. This theory enables one to
evaluate the thermodynamic forces and currents in terms of the
scattering probability of electrons. We find that an additional
pair of thermodynamic force and current is required to describe
the dissipation produced by a spin current.

Consider a conductor subjected to a small electric field
and/or temperature gradient. The distribution function of its
electrons in position (�r)–momentum (�k) space can be written
as fs = f 0

s + (∂f 0
s /∂εs)φs(�r,�k). Here s denotes the spin index

(+ indicates spin pointing up or and − spin pointing down),
f 0

s denotes the equilibrium Fermi-Dirac (F-D) distribution
function, and φs is the deviation from equilibrium, which
in general depends on both the position and momentum of
electrons. The equation satisfied by the distribution function

(Boltzmann equation) can be written as20

∂fs

∂t
=

(
∂fs

∂t

)
diff+field

+
(

∂fs

∂t

)
coll

, (1)

The diff (diffusion) + field and collision terms appearing
in the above equation can be written as20

(
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∂t

)
diff+field

= −
[
vs,z

∂fs

∂z
+ (−eE)vs,z

∂fs

∂ε

]
, (2a)
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)
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kBT

∫
d3k′

s

8π3
(φk.s − φk′,s)P

0
ks,k′s

+ 1

kBT

∫
d3k−s

8π3
(φks − φk−s)P

sf

ks,k−s . (2b)

In writing Eq. (2a) we assumed that both the electric field
(E) and temperature gradient are along the z direction. We
also assume that all the magnetizations are collinear, either
parallel or antiparallel. The charge of the electron is taken
as −e. vs,z denotes the z component of the electron velocity
and P 0

ks,k′sd
3k′

s/(2π )3 denotes the transition probability per
unit time in equilibrium conditions that an electron with wave
vector ks is scattered to a final state k′

s in the volume element
d3k′

s/(2π )3. Similarly, P
sf

ks,k−sd
3k−s/(2π )3 denotes the transi-

tion probability per unit time in equilibrium conditions that
an electron with wave vector ks is scattered to a final state
k−s in the volume element d3k−s/(2π )3. All the scatterings
are assumed to be elastic. The change in the distribution
function φs can be expressed in terms of the change in chemical
potential (δμs), temperature (δT), and displacement of the
constant energy surface (hs). The first-order change in φs can
be written as

φs(k,z) = −δμs(z) − [εs(k) − μ0]δT (z)/T0 + hs(k,z), (3)

where μ0 and T0 are the chemical potential and temperature in
equilibrium. The first two terms on the right-hand side (RHS)
of the above equation represent the isotropic change of the
F-D distribution in k space, whereas the hs term represents
a displacement in k space, such that the average of hs over a
constant energy surface vanishes.21 The change in temperature
(δT) is assumed to be the same for up and down spin
channels. Equation (3) is valid to first order in δμs , δT , and hs ,
but is sufficient for calculating the entropy production, which
is second order in these quantities.
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From the distribution function, we can calculate various
quantities such as the energy density, entropy density, and also
energy current density, heat current density, entropy current
density, etc. All these quantities are assumed to be additive
in the two-channel model used here. The spin-density and
spin-current density are defined as ns = (−e)

∫
(d3k/8π3)fk,s

and Js = (−e)
∫

(d3k/8π3)vzfk,s . It should be noted that,
according to this definition, the spin density has units of
charge density. Similarly, the energy density and energy
current density are defined as us = ∫

(d3k/8π3)εk,sfk,s and
Ju,s = ∫

(d3k/8π3)vzεk,sfk,s . From Eqs. (1)–(3), we can write
down the continuity equations for the spin and total energy
densities as22

(∂ns/∂t) + ∂Js/∂z = 2sGmix(�μ/e), s = ±1, (4a)

(∂u/∂t) + (∂Ju/∂z) = EJ. (4b)

where the chemical potential splitting and the quantity Gmix

are defined as �μ = (δμ+ − δμ−)/2 and

Gmix = e2

kBT

∫
d3ks

8π3

d3k−s

8π3
P

sf

ks,k−s . (5)

Gmix is always non-negative and has units of conduc-
tance/area. Equation (4b) for the total energy density is exact
whereas Eq. (4a) for the spin density is valid to first order
in δμs , δT, and hs . This accuracy is sufficient for the present
paper. The heat current density and rate of heat generation are
defined as23 Jq,s = Ju,s + (μs/e)Js and ∂qs/∂t = ∂us/∂t +
(μs/e)∂ns/∂t . The continuity equation for the total heat after
some algebraic simplifications can be written as

∂q

∂t
+ ∂Jq

∂z
= J+

1

e

∂μ̄+
∂z

+ J−
1

e

∂μ̄−
∂z

+ 4(�μ)2

e2
Gmix. (6)

μ̄s in this equation represents the electrochemical potential,
i.e., μ̄s = μs − eV . Equation (6) is valid to second order in
δμs , δT, and hs .

Further, the entropy density of the electrons and entropy
current density can be defined as20

Ss = −kB

∫
d3ks

8π3
[fs ln fs + (1 − fs) ln(1 − fs)],

(7)

Jent,s = −kB

∫
d3ks

8π3
vs,z[fs ln fs + (1 − fs) ln(1 − fs)].

The above definition of the entropy density is exact in
equilibrium, and we assume it also holds for small deviations
from equilibrium. We can show that the relationship between
heat current density and entropy current density, Jq,s =
T Jent,s , is valid up to the second order in δμs and δT.

The dissipation in the system can be identified by writing
the continuity equation for the total entropy density (S =
S+ + S−) in the form24 (∂S/∂t) + (∂Jent/∂z) = σ . The RHS
of this equation (σ ) is identified as the rate of entropy density
production or dissipation.

From the expression for the entropy density given in
Eq. (7), it can be shown that20

T0
∂Ss

∂t
=

∫
d3ks

8π3
(εk,s − μ0 + φk,s)

×
[(

∂fs

∂t

)
diff+field

+
(

∂fs

∂t

)
coll

]
, (8)

Thus ∂Ss/∂t can be written as a sum of contributions
from the diffusion + field term and the collision term. We
first evaluate the contribution from the diffusion + field term
up to second order in δμs and δT. After some algebraic
simplifications we get25

(
∂Ss

∂t

)
diff+field

= − ∂

∂z

(
Jq,s

T

)
. (9)

Replacing Jq,s/T by Jent,s , the continuity equation for en-
tropy density becomes (∂Ss/∂t) + (∂Jent,s/∂z) = (∂Ss/∂t)coll.

Adding the two channels, we get (∂S/∂t) + (∂Jent/∂z) =
(∂S/∂t)coll. We can thus identify (∂S/∂t)coll as dissipa-
tion. In effect, we have shown that this continuity equa-
tion for entropy density holds even if we have a spatial
gradient of the hs term in the Boltzmann equation [see
Eq. (2a)]. (Note that such a spatial gradient of hs accounts
for the spatial distribution of spin accumulation.) From
Eq. (8), we can see that the contribution from the first two terms
(involving εk,s − μ0) to (∂S/∂t)coll vanishes due to energy and
total number conservation during collisions. The contribution
from the second term (considering only spin-flip collisions)
after adding the two spin channels and using the symmetry
property of the scattering probability (P sf

ks,k−s = P
sf

k−s,ks) can
be expressed as20

(
∂S

∂t

)s−f

coll

= 1

kBT 2
0

∫
d3ks

8π3

d3k−s

8π3
(φks − φk−s)

2P
s−f

ks,k−s .

This shows that the total dissipation arising from the
spin-flip scattering is always non-negative. (This is basically
Boltzmann’s H theorem for electrons.20)

We are interested in calculating the dissipation in steady
state. In steady state,(

∂S

∂t

)
coll

= −
(

∂S

∂t

)
diff+field

= 1

T

∂Jq

∂z
+ Jq

∂

∂z

(
1

T

)
.

(10)

Using the continuity equation for the heat current density
[Eq. (6)], the steady state dissipation can be expressed as(

∂S

∂t

)
coll

= J+
T e

∂μ̄+
∂z

+ J−
T e

∂μ̄−
∂z

+ 4(�μ)2

T e2
Gmix + Jq

∂

∂z

(
1

T

)
. (11)

Using the continuity equation for spin density
[Eq. (4a)], J = J+ + J− with ∂J/∂z = 0, and defining the
spin current as Jspin = J+ − J−, Eq. (11) can be written in
alternative forms:(

∂S
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)
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= J+
T e
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∂z

+ J−
T e
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+ ∂Jspin
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T e
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1

T

(12b)

= J

T e
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+ Jspin

T e

∂�μ
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�μ

T e
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∂

∂z

1

T
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The entropy density production in a system can always be
written as a product of thermodynamic forces and thermody-
namic currents.24 From Eq. (12a) we can identify (J+, 1

T e

∂μ̄+
∂z

),
(J−, 1

T e

∂μ̄−
∂z

), ( ∂Jspin

∂z
,
�μ

T e
), and (Jq,

∂
∂z

1
T

) as thermodynamic
current-force pairs. The terms 1, 2, and 4 on the RHS of
Eq. (12a) are dot products of two vectors (in position space),
whereas the third term is a product of two scalars. [(∂Jspin/∂z)
in the general case should be replaced by ∇r · Jspin, which is a
scalar in position space.] This pair of thermodynamic force and
current was considered as the affinity and speed of a chemical
reaction in Ref. 16. In general we have the following linear
relationship between the currents and forces:

⎛
⎜⎜⎜⎜⎜⎝

J+
J−
Jq

∂Jspin

∂z

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

L11 L12 L13 0

L21 L22 L23 0

L31 L32 L33 0

0 0 0 4T Gmix

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

T e

∂μ̄+
∂z

1

T e

∂μ̄−
∂z

∂(1/T )

∂z
�μ/T e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

By Onsager’s relation,20 this matrix should be positive
definite and symmetrical. The identification of thermodynamic
forces and currents is not unique. For example, we can also use
Eq. (12c) instead of Eq. (11) to define them.16 The conductance
Gmix is always non-negative as can be seen from its definition
in Eq. (5). Also, from the continuity equation (4a) for the
spin density, the relation ∂Jspin/∂z = 4Gmix�μ is valid to first
order, and thus the matrix elements in the last row and last
column in Eq. (10) are zero. This is also expected from the
fact that the last pair of thermodynamic current and force
( ∂Jspin

∂z
,
�μ

T e
) is scalar, while the other pairs are vectors.

By using the relationship between P and the scattering
probability W, P

sf

ks,k−s = f 0
ks(1 − f 0

k−s)W
sf

ks,k−s , Gmix (in the
case of metals) can be written in terms of the relaxation
time as Gmix ≈ e2 gs

τ
sf
s

, where gs is the density of states at
the Fermi energy and τ

sf
s is the spin-flip time at the Fermi

energy. The energy-dependent spin-flip time is defined here
as 1

τ
sf
s (εs )

= ∫
d3k−s

8π3 W
sf

ks,k−s . Further, by using the definition of

the spin-diffusion lengths for the + and − channels (defined in
Ref. 21 for metals by using the relaxation time approximation),
Gmix can be written as Gmix = σ+/l2

+ = σ−/l2
−, where σs

denotes the conductivity and ls the spin-diffusion length.
We now give a simple interpretation of the result we

have obtained. We consider a case where the temperature
is uniform, and we make the relaxation time approximation
for the collision term.21 In this case, we need to solve
the following four equations:J+ = (σ+/e)(∂μ̄+/∂z),J− =
(σ−/e)(∂μ̄−/∂z),(∂Jspin/∂z) = 4Gmix�μ/e, and ∂J/∂z = 0.
These equations can be represented as the continuous circuit
model shown in Fig. 1. It can be seen that the first and second
terms in Eq. (11) correspond to the dissipation in the + and –
spin channel resistances, respectively, and the third term cor-
responds to the dissipation in the mixing conductance branch.

In Eqs. (12b) and (12c), we have separated the dissipation
arising from the charge and spin currents. It can be seen that
even if we have a pure spin current with no charge current, there
is still dissipation. This dissipation occurs due to the spin-flip
scattering. Thinking in terms of the circuit model (Fig. 1), the

zδρ+ zδρ+

zδρ− zδρ−

zGmixδzGmixδ zGmixδ

zz δ- zz δ+z

FIG. 1. Continuous circuit representation for the equations of
spin-polarized current transport in the two-channel model. ρ+ and
ρ− are the resistivities of up and down spin channels. Gmix is the
conductance per unit area through which the current can pass from
one channel to other. The total dissipation is given by the sum of the
dissipations in each branch.

dissipation occurs in the mixing conductance branch as well as
in the + and – spin channel resistances. The change in μ̄swith
distance due to spin-flip scattering gives rise to dissipation in
the + and – spin channel resistances. If we are interested only
in transporting spin current in a spintronic device, it is better
to use a pure spin current to avoid the dissipation arising from
the charge current. The dissipation produced by the pure spin
current can be measured experimentally by using nonlocal
geometry, e.g., by measuring the rise in the temperature by
local thermometry or scanning thermal microscopy. Materials
with long spin-diffusion lengths could be more suitable for
these experiments.

We now apply these results to an instructive example in-
volving two semi-infinite metallic ferromagnets with opposite
magnetizations as shown in Fig. 2. The nonmagnetic layer
separating these two ferromagnets is assumed to be very
thin compared to the spin-diffusion length, and hence can
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FIG. 2. (Color online) Two ferromagnets with opposite magne-
tizations with interface at z = 0. A current density J is flowing
perpendicular to the interface, from left to right. The black curve
shows the variation of chemical potential splitting (�μ), which gives
rise to spin-coupled interface resistance related to the GMR effect.
The red curve shows the Joule heat density produced per unit time by
the current. The Joule heat density per unit time is increased over its
background value (shown by the dotted red line) near the interface
due to the dissipation in the spin-coupled interface resistance. The
Joule heat density per unit time produced due to the spin-coupled
interface resistance is more localized than the variation of �μ.
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be neglected. A charge current density J flows from left to
right, and the temperature is uniform. We can solve for the
spin-dependent electrochemical potentials and spin-current
densities by assuming that they are continuous at the interface
between the two ferromagnets.21 (The interface resistance is
neglected here.) The chemical potential splitting decays on the
length scale of the spin-diffusion length as shown by the black
curve in Fig. 2. This variation of �μ gives rise to a “spin-
coupled interface resistance” equal to 2lsf

σF

β2

(1−β2) , where β =
(σ↑ − σ↓)/(σ↑ + σ↓), 1/l2

sf = (1/l2
↑) + (1/l2

↓), and ↑,↓ de-
note the majority and minority spin channels respectively.21,26

(The units of spin-coupled interface resistance defined above
are resistance × area.) The application of Eq. (12b) to calculate
the total Joule heat per unit area per unit time produced between
two planes far away from the interface gives the expected
result:

∫ ∞
−∞ T (∂S/∂t)coll dz = (J/e)[μ̄(∞) − μ̄(−∞)], since

the chemical potential splitting is 0 at ±∞. Further, the
position dependence of the Joule heat density per unit time,
obtained from Eq. (12b), can be written as

T

(
∂S

∂t

)
coll

= J 2

σF

[
1 + 2β2

1 − β2
exp(−2|z|/lsf )

]
. (14)

Thus the Joule heat density per unit time is the sum of a
constant and a term decaying on the length scale of half the
spin-diffusion length, as shown by the red curve in Fig. 2. It
can be seen that the integral of the last term in Eq. (14), from
z = −∞ to z = ∞, is equal to the product of J 2 and the spin-
coupled interface resistance. Thus the second term in Eq. (14)
can be associated with the dissipation produced by the spin-
coupled interface resistance. Interestingly, this dissipation is

more localized than the variation of the chemical potential
splitting.

We now consider the effect of the spin-dependent interface
resistance between the ferromagnet (FM) and nonmagnet
(NM). This gives rise to a discontinuity in the spin-dependent
electrochemical potentials, as δμ̄s ≡ μ̄s(z = z+

0 ) − μ̄s(z =
z−

0 ) = ersJs(z = z0), where rs is the spin-dependent interface
resistance.21 We assume that the spin current density is
continuous at the interface. The discontinuity in μ̄swill give
rise to a localized Joule heat per unit area per unit time of
(J+/e)δ(μ̄+) + (J−/e)δ(μ̄−) at the interface. This expression
can be written as (J/e)δ(μ̄) + (Jspin/e)δ(�μ). This expression
gives the correct Joule heat produced at the interface as can
be seen as follows: Consider an interface at z = 0 between a
semi-infinite NM and FM. The total Joule heat per unit area
per unit time should be given by the product (J/e)[μ̄(∞) −
μ̄(−∞)]. From Eq. (12b), the Joule heat per unit area per
unit time produced in the NM is given by(J/e)[μ̄(0−) −
μ̄(−∞)] + Jspin(0)�μ(0−)/e, whereas in the FM it is given
by (J/e)[μ̄(∞) − μ̄(0+)] + Jspin(0)�μ(0−)/e. Thus the Joule
heat per unit area per unit time at the interface should be given
by(J/e)δ(μ̄) + Jspin(0)δ(�μ)/e.

In summary, we have calculated the dissipation produced
due to spin-flip scattering by using the semiclassical Boltz-
mann equation. We found that even a pure spin current without
any charge current gives rise to dissipation. We applied the
results to obtain the Joule heat density produced by current
flowing through an interface between two ferromagnets.
Within the Valet-Fert model,21 these results can be interpreted
in terms of a simple circuit model. The Joule heat density per
unit time produced near the interface is more localized than
the variation of the chemical potential splitting.
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