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Spectral and transport properties of doped �or gated� graphene with long-range charged impurities are
discussed within the self-consistent Born approximation. It is shown how, for impurity concentrations nimp

�n a finite density of states appears at the Dirac point, the one-particle lifetime no longer scales linearly with
the Fermi momentum, and the line shapes in the spectral function become non-Lorentzian. These behaviors are
different from the results calculated within the Born approximation. We also calculate the optical conductivity
from the Kubo formula by using the self-consistently calculated spectral function in the presence of charged
impurities.
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I. INTRODUCTION

Graphene, the monolayer allotrope of carbon, has at-
tracted widespread attention since its isolation,1,2 and re-
mains to be the focus of intensive research. Among the main
reasons for this interest are its remarkable electronic proper-
ties, described in terms of massless Dirac fermions. They
make graphene an appealing system to study new unconven-
tional physics,3 but moreover, easy control of the electron
density through gating1 and very high room-temperature
mobilities4 make it also a promising material for applica-
tions. Since the first experiments, it was acknowledged that
understanding the role of disorder was essential to describe
the electronic properties of graphene correctly.5–8 One of the
first issues raised and still under debate is the origin of the
main scattering source in graphene transport. The linear-in-
density dependence of the dc conductivity2 was first attrib-
uted to charged impurities trapped in the substrate,9–12 which
were considered the main scattering mechanism. But it was
later shown that resonant scatterers13 and ripples14 could also
account for this linear behavior. Although Coulomb impuri-
ties are inevitably present in graphene samples and influence
the transport properties, they need not always be the domi-
nant scattering mechanism limiting the mobility especially at
high densities.15

The minimal conductivity measured at the Dirac point is
another experimental observation which can clarify the main
scattering mechanism in graphene.3 While the universal
value of 4e2 /�h was predicted for uncorrelated short-range
disorder as well as for ripples �described in terms of random
gauge fields�, the experimental value was consistently found
larger and sample dependent.2,16 These experimental obser-
vations can be explained by transport theory in the presence
of Coulomb disorder and electron-hole puddle
formation.7,17,18 dc transport measurements have therefore
provided compelling evidence of the relevance of charged
impurities in the physics of graphene in substrates.

The comparison of the single-particle relaxation time �e
defining the quantum level broadening and the transport scat-
tering time �tr defining the Drude conductivity in two-
dimensional �2D� graphene layers can also be a relevant

probe of the nature of disorder scattering of graphene
carriers.19 Hong et al.20 reported, by comparing these two
independently measured scattering times, that Coulomb im-
purities play a dominant role in graphene samples. But an-
other recent experiment of the same type suggests that the
main scattering mechanism in graphene is due to strong
�resonant� scatterers of a range shorter than the Fermi
wavelength.21

The study of the local density of states in samples on a
substrate22 has revealed inhomogeneites which have been
also attributed to charged impurities7 although ripples may
also contribute to this phenomenon.23 Long-range charged
disorder may also contribute to the broadening of the spectral
linewidth observed in angle-resolved photoemission spec-
troscopy �ARPES� experiments.24–26

The long-range charged disorder is also important to un-
derstand the recently measured optical conductivity.27,28

These experiments have revealed deviations from the ideal
picture of Dirac fermions which have been attributed, at least
in part, to the presence of Coulomb impurities.29

Thus it is expected that Coulomb disorder inevitably ex-
isting in the environment of graphene will be important in
many physical properties. In this paper we investigate spec-
tral and transport properties of doped �or gated� graphene
with long-range charged impurities within the self-consistent
Born approximation �SCBA�.

In general, the Born approximation has been widely used
to treat the Coulomb disorder.30 However, the first-order
Born approximation is restricted by nimp�n, which is not
necessarily satisfied in most experiments. More elaborate nu-
merical approaches7,17,18,31 are not hindered by this restric-
tion but the simplicity of the averaged theory makes it ap-
pealing to extend the known results beyond first order. The
SCBA is a nonperturbative approximation,30 and it is the
simplest natural way to extend the Born approximation. In
the case of graphene, this approximation has been used
mainly for momentum independent �-ranged impurities. The
more complicated case of Coulomb impurities in SCBA has
been addressed in the evaluation of the dc conductivity
only.32,33 In this paper, we present the numerical solution of
the SCBA equations for doped �or gated� graphene, and com-
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pute both spectral and optical properties by using the calcu-
lated self-energy and compare our results with previous
works and with experiments. We observe important changes
for impurity concentrations nimp�n, as compared to the first-
order case: a finite density of states �DOS� at the Dirac point,
nonlinear one-particle lifetimes, non-Lorentzian spectral
functions, and a modified optical conductivity.

The organization of the paper is as follows: we start by
reviewing the single Coulomb impurity problem in graphene
in Sec. II. In Sec. III we discuss the treatment of random
Coulomb impurities in an averaged theory, and formulate the
SCBA equations. Section IV describes the results of our
work: spectral properties and the optical conductivity are dis-
cussed. Finally, we present our conclusions in Sec. V.

II. COULOMB IMPURITY PROBLEM IN GRAPHENE

The problem with a single Coulomb impurity has been
widely studied in both low-density limit34–40 and high-
density limit.37,41 This problem is the starting point in the
description of Coulomb disordered graphene, so we highlight
its most relevant aspects. The importance of the single im-
purity problem stems from the fact that an electron in
graphene is affected not only by the bare Coulomb potential
of the impurity but also by the other electrons that redistrib-
ute around it. The effective impurity potential is thus
screened by the carriers, and the inclusion of the screening is
very important to account correctly for the effects of a ran-
dom collection of impurities. Since the exact consideration
of the screened Coulomb potential is a difficult problem, the
screening is simplified by assuming a linear-response ap-
proach. In this linear screening limit, the screened Coulomb
potential is given by

V�q� =
V0�q�

��q,� → 0�
, �1�

where ��q ,�� is the dynamical dielectric function and can be
obtained from the density-density correlation function as

1

��q,��
= 1 + V0�q���q,�� , �2�

where ��q ,�� is the polarizability of the system. In the
weak-interaction limit the ��q ,�� is calculated within
random-phase approximation �RPA� by summing all bare
bubbles.

In ordinary two-dimensional electron gas �2DEG� the
weak-interaction limit is defined by the interaction parameter
rs�1, where rs is given by

rs =
me2

��n�1/2 , �3�

where n is the 2D electron density and m is the electron
effective mass.42 If the density is lowered, nonlinear re-
sponse comes into play,43 and the parameter rs determines
the range of densities where the linear RPA model is appli-
cable.

In the case of graphene, one could expect that the RPA is
a good approximation at high densities but its validity near

Dirac point is questionable. In contrast to the regular 2DEG,
the parameter rs of graphene is density independent, and it is
known as the coupling constant 	=e2 / �
vF�. This generates
a difficulty in evaluating the range of validity of the RPA for
graphene. It is understood that in the zero-doping case it is
definitely not valid44 while it has been stated that in the
doped case it is applicable when rs�1,45 the same criterion
for the use of normal-perturbation theory. Since rs is density
independent, it is not clear how the two regimes interpolate,
and no quantitative criterion on n=kF

2 /� has been established
to separate them.

In spite of that, due to its simplicity and its qualitative
success in comparison with experiments, the RPA for
graphene has been thoroughly studied in the literature.3 In
static limit the polarizability is given by46

��q� = 1 +
qTF

q
�� q

kF
� , �4�

where qTF=4	vkF and

��x� = �1 x � 2

1 +
�x

8
−

�x2 − 4

2x
−

x arcsin�2/x�
4

x � 2.� �5�

For k
2kF, this is just the Thomas-Fermi �TF� result,37 and
identical to the regular 2DEG.42 Thus the difference in
screening between 2DEG and graphene arises at high wave
vectors, k�2kF. Even though the high-density screening is
similar to the 2DEG, it is worth noting that as n→0 RPA
screening in graphene only changes the constant dielectric
constant but not the wave vector dependence. This is due to
the vanishing density of states at the Fermi level as n→0.
The RPA result is questionable at n=0, where the problem
becomes strongly nonlinear,34–40,47 but its results compare
favorably with tight-binding exact results.48 In this work,
both the linear-response RPA polarizability and the Thomas-
Fermi result will be used as a model of screening, bearing in
mind the previous discussion regarding their limits of appli-
cability.

Finally, it is also worth noting that when we consider
many impurities, we face a more complex problem in terms
of screening �even before disorder averaging� because the
screening of one impurity may depend on the charge accu-
mulated on the rest of them. It is reasonable to assume inde-
pendent screening of impurities when the impurity density is
small but this picture may fail when the screening length
becomes bigger than the average distance between impurities
nimp

−1/2. The many impurity problem introduces another type of
nonlinearity which may become relevant at low densities,
where the screening is weak.49 Since the Thomas-Fermi
screening length is given by

lTF = qTF
−1 =

1

4	��n�1/2 , �6�

the condition for independent screening can be written as

nimp � �4	�2�n . �7�

DE JUAN, HWANG, AND VOZMEDIANO PHYSICAL REVIEW B 82, 245418 �2010�

245418-2



In the case of graphene on SiO2, we can take 	�0.75 and
this means nimp /n�27 which is well satisfied for the ranges
of n and nimp we will consider.

III. AVERAGED THEORY FOR RANDOM CHARGED
IMPURITIES

In the standard theory of disorder30 is assumed that the
properties of the system with a particular realization of the
disorder landscape are the same as those averaged over all
impurity positions. In the case of graphene, the low-energy
Hamiltonian for a particular distribution of Nimp impurities is
given by

H =	 d2r
vF�†� � � − ��†� + �†V�r��� , �8�

where vF=106 m /s is the Fermi velocity and � is the chemi-
cal potential �note that energies are measured with respect to
the Dirac point�. This Hamiltonian is a good approximation
to the band structure for energies up to E�1 eV,3 so we will
consider the properties of this model in this range of energy.
The largest electron density we will consider will be n=6
�1012 cm−2, which corresponds to a chemical potential of
�=0.3 eV, well below the limit of applicability. The disor-
der potential V�r� is given by

V�r� = �
i

Nimp	 dqei�r−Ri�qV�q� , �9�

where Ri are the positions of the Nimp impurities and V�q� is
the Fourier transform of the potential. The disordered system
is described by its Green’s functions averaged over impurity
positions, which we assume uncorrelated for simplicity. In
the case of graphene, this approach has been widely used to
model disorder.33,50–52 When the potential is weak, multiple-
scattering events can be neglected, and the resulting pertur-
bative series is known as the Born approximation, of which
only the first terms are necessary. The first-order term in this
series for a general potential reads

�s�k,�� = nimp	 dk2

�2��2V2�k − k���
s�

G0,s��k�,��Fss��k,k�� ,

�10�

where s=+,− for the upper and lower bands and nimp is the
density of impurities

nimp = Nimp/L2 �11�

with L the system size. G0,s� are the bare Green’s functions
for each band

G0,��k,�� =
1

� � vF
k
 + i�
�12�

and Fss� are the overlap factors

Fss� =
1

2
�1 + ss� cos �k,k�� . �13�

In the self-consistent Born approximation the imaginary
part of the self-energy in the bare Green’s function is re-

placed by the self-energy of the full Green’s function, i.e.,
i�→�, and we have the self-consistent equation as

Gs
−1 = G0,s

−1 − �s, �14�

where the self-energy is given by

�s�k,�� = nimp	 dk2

�2��2V2�k − k���
s�

Gs��k�,��Fss��k,k�� .

�15�

The SCBA for the short-range case gives well-known results.
Note that, since the potential is independent of k, the self-
energy in this approximation is also independent of k. At �
=0 it can be solved analytically, giving the well known finite
purely imaginary self-energy

��� = 0� = −
i�

�exp� 4�vF
2

nimpV0
2� − 1

, �16�

and the DOS

�0 =
1

�nimpV0
2

�vF

�exp� 4�vF
2

nimpV0
2� − 1

, �17�

where � is a high-energy cutoff. For undoped graphene,
however, it has been long known that the SCBA is, in prin-
ciple, not a good approximation due to the absence of a EF�
type of parameter that would allow to neglect the crossing
diagrams53,54 �but see Ref. 55 for a special case where the
noncrossing approximation is controlled by 1 /N, N being the
number of valleys�. Renormalization-group calculations as
well as exact results56 indeed differ qualitatively from the
SCBA.

Nevertheless, it still represents a good approximation in
the doped case. While the short-range case is analytically
tractable, the SCBA has not been applied to Coulomb impu-
rities because its implementation is not as simple.57 The po-
tential due to screened Coulomb impurities is given by

VC�q� =
2�e2


��q�
1

q
, �18�

as stated in the previous section, and the dielectric function is
given by Eqs. �4� and �5� 
for comparison, we will also use
the Thomas-Fermi dielectric function, the low q limit of Eq.
�5��.

In the first-order Born approximation, the imaginary part
of the self-energy has been obtained analytically. The com-
putation of Eq. �10� with the Coulomb potential Eq. �18�
gives, at k=0,29

Im
��1��0,��� = nimp
e4


2	 k�dk�d�
���� − vFk��
�
k�
 + qTF�2

1 + cos �

2
,

�19�

which gives
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Im
��1��0,��� = nimp�2	2 �

��/vF + qTF�2 . �20�

Since this was computed in the Thomas-Fermi approxima-
tion, it is only valid for ��2�F. At k=kF, �=�F we have19

� =
	2nimpvF�I�2	�

kF
, �21�

where I�2	� is a dimensionless function which can also be
found in Ref. 19 
for our purposes we will take 	=0.75 and
we have I�2�0.75�=0.224�. This self-energy allowed to
compute the density of states in this approximation, which
was shown to vanish as 
E
ln
E
 at the Dirac point.19 The
SCBA equations for Dirac fermions in the presence of Cou-
lomb impurities are obtained by substitution of the Coulomb
potential Eq. �18� in Eq. �15�, obtaining explicitly

�+�k,�� = nimp	 d2k�

�2��2 
VC�k − k���2

�
1

2
� 1 + cos �

� − vFk� − �+�k�,��

+
1 − cos �

� + vFk� − �−�k�,��� , �22�

�−�k,�� = nimp	 d2k�

�2��2 
VC�k − k���2

�
1

2
� 1 − cos �

� − vFk� − �+�k�,��

+
1 + cos �

� + vFk� − �−�k�,��� . �23�

If all quantities with dimensions are scaled with the Fermi

momentum or energy, x=k /kF, y=� /�F, and �̃=� /�F this
formula can be rewritten as

�̃+�x,y� =
	2

�

nimp

n
	 x�dx�d�� 1


x − x�
 +
qTF

kF
�

2

�
1

2� 1 + cos �

y − vFx� − �̃+�x�,y�
+

1 − cos �

y + vFx� − �̃−�x�,y�
�

�24�

with

kF = �n��1/2. �25�

The iteration of formula Eq. �24� generates the series of dia-
grams for the SCBA, and therefore the parameter

� =
	2

�

nimp

n
, �26�

controls the relevance of higher order terms. Self consistent
effects become important when ��1. Note that the indepen-
dent screening condition Eq. �7� in terms of this parameter
reads �� �2	�4�5. In real experiments, doping through a

gate allows to reach values of n as high as 1013 cm−2 �see
Ref. 1�, and the concentration of impurities in samples is
estimated to reach up to nimp=5�1012 cm−2 in the most
disordered ones.16,58

The solution of Eq. �24� can be obtained numerically by
discretizing k� and iterating it until an error bound is reached.
Since the momentum lattice has to be kept fixed so the self-
energy from one iteration can be fed to the next one, a simple
Simpson rule for the integration proved to be the most effi-
cient way �interpolating in k space at each step allowed for
more efficient integration algorithms but the overall perfor-
mance of this strategy turned out to be worse than the simple
Simpson rule�. For the integration in k space to be reliable,
the step in the discretization has to be much smaller than the
imaginary part of the self-energy because this determines the
size over which the function to integrate is significantly dif-
ferent from zero. This sets a practical limitation to the lowest
value of nimp /n to which we have access, which is on the
order of 0.1.

Once the self-energy has been obtained, the spectral prop-
erties of the system are easily computable. The density of
states is obtained from

���� =
1

�
lim

x→x�
Im
G�x,x�,��� . �27�

The inverse quantum lifetime is defined as �e
−1�k ,��

=Im
��k ,���, and it is in general a function of both � and k.
Its most interesting value is the on-shell lifetime at the Fermi
energy �e

−1�kF ,EF�. Finally, the spectral function is computed
as the imaginary part of the Green’s function

A�k,�� =
1

�

A+�k,�� + A−�k,��� �28�

with

A+�k,�� =
Im
�+�k,���

�� − �+�k� − Re
�+�k,����2 + Im
�+�k,���2 ,

�29�

and similarly for A−�k ,��, where ���k�= �vF
k
.

IV. RESULTS

A. Spectral properties

We now discuss the self-energies and related spectral
properties obtained from Eq. �22�. We start from the simple
case of the zero-momentum self-energy, ��k=0,��, often
taken as an approximation for the self-energy around the
Dirac point. Figure 1 shows the imaginary part of the zero-
momentum self-energy for nimp=6�1012 cm−2 and several
densities. For comparison, the first-order Born-
approximation results 
i.e., Eq. �20�� are also plotted for the
same values of the parameters.

Several features should be noted in Fig. 1. When nimp
�n, the SCBA result agree with the first-order Born-
approximation result as expected. But when the impurity
density is comparable with electron density, n�nimp, the dis-
agreement between BA and SCBA is measurable, especially
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at high energies. When nimp is further increased �nimp�n�,
the deviation becomes significant, and more interestingly a
finite value of self-energy is developed at zero energy, which
gives rise to a finite density of states at the Dirac point �see
below�. The finite density of states at zero energy is one of
the main characteristics of the SCBA result as compared to
the first-order Born approximation, which predicts a vanish-
ing DOS at zero energy.

As discussed in the introduction, the self-energy for the
short-range potentials does not depend on the wave vector.
Therefore, the simple calculation at k=0 can be used for all
wave vectors. However, when the self-energy is a function of
the wave vector and energy as for Coulomb disorder, the k
=0 self-energy may be useful to analyze the physics near the
Dirac point at high densities but, in general, it is not a good
approximation to analyze it at finite wave vectors. Instead of
zero wave vector self-energy, the most relevant value of the
self-energy is at the on-shell self-energy, ��k ,�k�, where the
Green’s functions are peaked. A first approximation to the
on-shell self-energy is obtained simply by taking ��k ,vFk�,
but the true on-shell self-energy should be computed with the
renormalized dispersion relation, ��k ,�k� �this is only rel-
evant when the dispersion relation is greatly changed by dis-
order�.

The imaginary part of the three different self-energies
��k ,�k�, ��k ,vFk�, and ��0,��, is displayed in Fig. 2 for two
different impurity concentrations. We find that within SCBA
the calculated self-energy for all different cases shows a fi-
nite value at the Dirac point for nimp�n. Aside from this, we
observe that the k=0 self-energy is indeed very different
from the on-shell self-energy. One should therefore be cau-
tious when applying this approximation for general compu-
tations. We also observe that the true on-shell self-energy
��k ,�k� presents almost no difference from the approxima-
tion ��k ,vFk�, which can thus be employed safely. Another
approximation commonly used in the literature is to employ
Thomas-Fermi screening for the Coulomb impurities instead
of the full RPA dielectric function. We also show in Fig. 2
the imaginary part of self-energy ��k ,vFk� with the TF
screening function. A notable difference is observed com-
pared with the RPA calculation. In particular, note that these
two curves differ even for ��2vFkF.

The density of states of the system can be calculated with
the self-energy, Eq. �27�. Figure 3 shows the densities of
states as a function of energy for a fixed electron density n
and several impurity concentrations. A significant finite value
is observed at the Dirac point for high impurity concentra-
tions, in agreement with the previous discussion on the self-
energy. To quantify better where the onset of this finite value
occurs, in the inset of Fig. 3 we show the DOS at the Dirac
point as a function of nimp, for n=3�1012 cm−2. A clear
threshold is observed for a value of ��0.4. This finite value
of the density of states is also similar to the one obtained in
the short-range case. However, there is a significant differ-
ence. In the short-range case, the analytical calculation pre-
dicts that this finite value is proportional to the cutoff, the
only scale with dimensions at �=0. The density of states,
therefore, remains constant if the rest of the scales in the
problem are changed simultaneously. To check weather this
behavior is present in the case of Coulomb impurities, we
computed the zero-energy density of states for nimp=6n
sweeping the value of n. This is shown in the left inset of
Fig. 3. A clear monotonous behavior is observed, indicating a
more complicated dependence on these scales than the con-
stant behavior of the short-range case.

Another spectral property of interest is the one-particle
relaxation time �e, given as the inverse imaginary part of the

0.2 0.4 0.6 0.8 1.0 1.2
Ω �eV�

0.02

0.04

0.06

0.08

0.10

0.12

Im��0,Ω� �eV�

FIG. 1. �Color online� Imaginary part of the zero-momentum
self-energy, ��0,��, for nimp=6�1012 cm−2 and different densi-
ties, n=6�1011, 1.7�1012, and 6.7�1012 cm−2, from top to bot-
tom �solid lines�. For comparison, the first-order analytical result
given by Eq. �20� is also plotted for the same values of the param-
eters �dashed lines�.
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� �eV�

FIG. 2. �Color online� Different approximations for the self-
energy, at fixed impurity concentration of 6�1012 cm−2, and for
different electron densities, 6.7�1012 cm−2 �upper panel� and 6
�1011 cm−2 �lower panel�. The self-energies are: ��k ,�k� �thick
full line�, ��k ,k� �dashed line�, and ��0,�� �dotted line�. �TF�k ,�k�
as computed with the Thomas-Fermi approximation, is shown for
comparison in blue �thin full line�.
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on-shell self-energy at the Fermi level. Figure 4 shows a plot
of the dependence of �e with the Fermi level kF and the
first-order Born-approximation results, Eq. �21�. For each
concentration of impurities, the Fermi momentum kF
=	�nimp which corresponds to �=1 and separates the high
and low doping region is plotted as a horizontal line. It is
clearly seen that in the high doping region, the SCBA is
again indistinguishable from the first-order result. We also
see how in the low doping region, deviations from the linear
behavior are clearly identified.

Finally, we discuss the spectral function of the system,
given by Eq. �28�. The spectral function is a physical mag-
nitude that is directly measured in ARPES
experiments.24,25,59,60 A customary way of representing the
spectral function is through two sets of plots: its constant �
sections as a function of k, known as momentum-distribution
curves �MDCs� and its constant k sections as a function of �,
known as energy-distribution curves �EDCs�. Here we show
both of them in Fig. 5, for nimp=3�1012 cm−2 and n=2
�1011 and 6�1012 cm−2. We observe the typical broaden-
ing of the quasiparticle Lorentzian peaks due to disorder,
whose width increases with increasing impurity density.
However, a closer look reveals an unexpected feature. Figure
6 shows the evolution of the MDCs with decreasing doping,
and the best Lorentzian fit to each curve is also shown. It is
appreciated that as doping is decreased the line shapes be-
come strongly non-Lorentzian. This is due to the momentum
dependence of the self-energy: the MDCs are obtained from
Eq. �29� by fixing the frequency. If the function ��k� changes
significantly from its on-shell value ��k0� 
with k0 defined by
�0=��k0�� within a scale �, then regarding the MDCs, the
self-energy looks like a constant if ��k0 ,�0���, and there-
fore the MDC looks like a Lorentzian. Analyzing our nu-

merical data, it can be seen that this condition is fulfilled
only for small impurity concentrations, and this is the reason
for the non-Lorentzian peaks shown in Fig. 6.

B. Optical conductivity

In this section we investigate the optical conductivity of
graphene, which is affected strongly by long-range charged
impurities. The optical conductivity of the ideal �or intrinsic�
Dirac fermion model is predicted to be frequency indepen-
dent and given by the universal value3

�0 �
�

2

e2

h
. �30�

This frequency independent optical conductivity has been
measured in both suspended samples61 and samples depos-
ited on SiO2.62 This universal result is observed even beyond
the energies where the Dirac model is valid, due to the small-
ness of the correction induced by trigonal warping.63 The
absence of sizable electron-electron interaction corrections in
these experiments has also been recently discussed.64–66

Moreover, this ideal picture may be modified by a thermal
broadening or a level broadening of the single-particle states
due to disorder.51,67 In the presence of the broadenings the
universal value Eq. �30� is obtained only in the asymptoti-
cally high-energy limit, where all energy scale of broaden-
ings are negligible.

Optical-conductivity experiments have also been per-
formed in the gated system,27,28 where the optical conductiv-
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kF, where the linear behavior predicted by Eq. �21� is fully
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ity with different electron densities has been studied. Theo-
retically, the optical conductivity at finite carrier density �or
finite chemical potential �� has been addressed by many
authors.18,29,56,68–72 Without any disorder and at T=0 the op-
tical conductivity at finite density arises from two contribu-
tions: a Drude peak at zero energy from intraband transitions
and a constant contribution from interband transitions, Eq.
�30�, starting at the threshold energy �=2�. However, in the
real experiment,27 a number of strong deviations from these
ideal predictions have been observed. One of them is a con-
stant background conductivity in the region between the
Drude peak and the threshold at �=2�, where the interband
optical transition is forbidden. An anomalously large energy
broadening of the threshold has also been observed, which
cannot be explained in terms of thermal broadening. This
anomalous optical conductivity in the forbidden region has
been attributed to various physical mechanisms. Short-range
impurities produce a broadening of both the Drude peak and
the threshold,56 and more recently Coulomb impurities have
been considered within Born approximation to produce a
similar but stronger effect.29 Electron-electron interactions
are also considered to explain the background optical
conductivity.71,72 In addition, the measured optical conduc-
tivity of very low-mobility samples in CVD graphene28

shows a reduction in the free-carrier Drude weight induced
by the intraband transition and consequently a substantial
weight increase due to interband transition, which cannot be
explained within Born approximation.

While the effects of short-range scatterers on the optical
conductivity have been computed in the SCBA,56 Coulomb
impurities have only been considered within the first-order
Born approximation.29 In this section we calculate the optical
conductivity of graphene within the self-consistent Born ap-
proximation and provide the experimental relevance of our
results. We use the Kubo formula with the SCBA self-
energies calculated in the previous section. The optical con-
ductivity can be computed from the current-current correla-
tion function as

���� =
gsgv

2��
	

−�+�

�

dE	 kdk�
ss�

As�k,E�As��k,E + ��

�31�

with As�k ,��, the spectral function defined in Eq. �29�.

Figure 7 shows the optical conductivity as a function of
energy for different electron densities with the full self-
energies obtained from the self-consistent Born approxima-
tion. For comparison, the optical conductivity with the first-
order self-energy given by Eq. �20� is also shown. As
expected, the result approaches to the value �0 for ��2�.
Most importantly, the SCBA result gives significantly more
background conductivity for the density n�nimp. We note
that the four curves correspond to values of �=0.63, 0.35,
0.22, and 0.16, for given chemical potentials of �
=0.15 eV, 0.20 eV, 0.25 eV, and 0.30 eV, respectively. As
discussed in the previous section, SCBA effects are more
significant for the low-electron densities. The self-energy rel-
evant for this computation is the on-shell self-energy, which
is clearly different from the k=0 self-energy. In particular, it
gives a nonzero broadening at the Dirac point, which is par-
tially responsible for the background at � close to �.

While these results improve on those computed with the
first-order self-energy for nimp�n, they also indicate that
Coulomb impurities are not the only contribution in the ex-
periment in Ref. 27. Indeed, any scattering mechanism which
is affected by screening will tend to produce less scattering
as the doping is increased, and what is needed to explain the
background in the forbidden region is a mechanism which
becomes more efficient at high dopings. Our results are con-
sistent, however, with the latest experiment reported in Ref.
28, which seems to be dominated mainly by disorder.

V. DISCUSSION AND CONCLUSIONS

We now discuss several aspects of the results shown in
the previous sections. We have shown that the k=0 self-
energy widely employed for the electron self-energy is only
valid near the Dirac point and very different from the on-
shell self-energy. Thus it is necessary to consider the on-shell
self-energy to describe the electronic properties of disordered
graphene. The on-shell self-energy with bare single-particle
energy is not much different from the true self-energy and
represents a reasonable approximation. We also discuss the
TF screening approximation and its relation with the RPA
approximation. Since the TF screening function is equivalent
to the RPA result for k�2kF, it seems that the self-energies
calculated within both approximations should coincide at
low energies. However, as shown in Fig. 2 the TF self-energy

�1.0 �0.5 0.0 0.5 1.0
�1200

�1000

�800

�600

�400

�200

0

200

Ω �eV�

n	 6
1012 cm�2

�1.0�0.5 0.0 0.5 1.0

�200

�150

�100

�50

0

Ω �eV�

n	 2
1011 cm�2

0.14

0.12

0.09

0.07

0.04

0.02

k ���1�

0.00 0.05 0.10 0.15 0.20
�1200

�1000

�800

�600

�400

�200

0

200

k ���1�

n	 6
1012 cm�2

0.00 0.05 0.10 0.15 0.20

�200

�150

�100

�50

0

k ���1�

n	 2
1011 cm�2

1.00

0.82

0.64

0.46

0.28

0.10

Ω �eV�

(a) (b)

FIG. 5. �Color online� �a� EDC at a fixed impurity density of 3�1012 cm−2, for two values of the doping n=6�1012 and 2
�1011 cm−2. �b� MDCs for the same parameters. Note the change in absolute scale from left to right.

SPECTRAL AND OPTICAL PROPERTIES OF DOPED… PHYSICAL REVIEW B 82, 245418 �2010�

245418-7



differs from its RPA counterpart at all energies. The differ-
ence becomes greater at higher values of � as defined in Eq.
�26�, especially for high impurity concentrations. This is be-
cause the SCBA is nonlocal in momentum space and the
difference between TF and RPA at high momenta is enough
to alter the low-energy region of the self-energy. It is there-
fore more reliable to use the RPA screening function even for
��2vFkF.

We now compare our SCBA results with those obtained in
the same approximation for short-range disorder.50,51 We find
that even though the densities of states for both cases are
similar in energy dependence at low impurity densities the
dependence of both n and nimp is very different. We also find
that the single-particle relaxation time behaves very differ-
ently depending on whether ��1 or ��1. The parameter �
determines to what extent the SCBA differs from the first-
order Born approximation. It is a good consistency test that
for small values of �, our numerical integration results match
perfectly with the first-order Born approximation Eq. �21�.
This allows us to see clearly the deviation from linearity as
the disorder density increases. This deviation is characteristic
of Coulomb impurities, which gives rise to the ratio �tr /�e to
deviate from its constant value at low impurity densities.

The MDC calculated within the self-consistence Born ap-
proximation have also revealed an unexpected feature. They
become non-Lorentzian with decreasing electron density,
which suggests that the evolution of MDCs with density
could be used to probe the relevant scattering mechanisms in

graphene. If the MDC become non-Lorentzian by lowering
the electron density, this is a signature of a momentum de-
pendent self-energy, which could be produced by Coulomb
impurities �other momentum-dependent potentials such as
ripples could perhaps produce a similar effect but the method
is still useful to distinguish short-range scatterers from long-
range scatterers�.

Finally, the discussed spectral features have a direct influ-
ence on the optical conductivity. We have shown that long-
range Coulomb impurities beyond the Born approximation
induce a characteristic broadening in the shape of the optical
conductivity at finite doping compatible with recent experi-
ments.

In summary, this work has addressed the effects of long-
ranged charged impurities on the electronic properties of
graphene, showing how self-consistent scheme modifies
them as the impurity density nimp is increased. The SCBA in
the presence of Coulomb disorder produces characteristic
features in both the spectral properties and the optical con-
ductivity which may be relevant in the explanation of current
experiments.
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