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We investigate transport through a single-level quantum dot coupled to noncollinearly magnetized ferromag-
nets in the presence of localized spins in either the tunnel barrier or on the quantum dot. For a large, anisotropic
spin embedded in the tunnel barrier, our main focus is on the impurity excitations and the current-induced
switching of the impurity that lead to characteristic features in the current. In particular, we show how the
Coulomb interaction on the quantum dot can provide more information from tunnel spectroscopy of the
impurity spin. In the case of a small spin on the quantum dot, we find that the frequency-dependent Fano factor
can be used to study the nontrivial, coherent dynamics of the spins on the dot due to the interplay between
exchange interaction and coupling to external and exchange magnetic fields.
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I. INTRODUCTION

Recently, there has been growing interest in spin-
dependent transport through nanostructures due to possible
applications for spintronics devices. Transport through quan-
tum dots coupled to ferromagnetic electrodes is particularly
interesting due to the interplay of strong Coulomb interaction
on the quantum dot and nonequilibrium physics. Such sys-
tems have been realized experimentally, e.g., by coupling
self-assembled semiconducting quantum dots,1–5 small me-
tallic grains,6–10 quantum dots defined in InAs nanowires,11

carbon nanotubes,12–16 or even single C60 molecules17 to fer-
romagnetic electrodes. Quantum dots coupled to ferromag-
nets have been also studied extensively from a theoretical
point of view.18–31 Especially interesting are quantum-dot
spin valves, i.e., a single-level quantum dot coupled to non-
collinearly magnetized electrodes.32–39 Here, spin-dependent
tunneling leads to a spin accumulation on the dot that in turn
influences the transport through the system by blocking the
current. In addition, there is an exchange field acting on the
dot spin. It is due to quantum charge fluctuations on the
quantum dot and relies on the strong Coulomb interaction on
the dot. It gives rise to a precession of the accumulated spin,
thereby lifting the spin blockade of the dot. The resulting
interplay of spin accumulation and spin precession leads to a
number of interesting features in the transport characteristics,
e.g., a shift of the peaks in the linear conductance with the
angle enclosed by the magnetizations,32,33 a broad region of
negative differential conductance in nonlinear transport33 as
well as to characteristic features in the finite-frequency Fano
factor35 and a splitting of the Kondo resonance.27–31

While in the above studies all the spin dynamics takes
place in the singly occupied orbital of the quantum dot, more
complex spin dynamics appears when additional spin excita-
tions are possible. These may be spin waves in the ferromag-
netic leads, as discussed in Ref. 40. In the present paper, we
investigate a different situation, namely, the coupling to a
magnetic impurity either with a large, anisotropic spin or
with a spin 1/2.

We consider two different scenarios. In the first scenario,
a magnetic impurity with a large, anisotropic spin is embed-
ded in one of the tunnel barriers of a quantum-dot spin valve.

Here, our main focus is on the spectroscopy of the impurity
spin as well as on its switching by the spin-polarized current.
We consider the impurity spin in one of the barriers as this
leads to a simpler conductance pattern �only processes in-
volving this particular barrier can excite the spin�, thereby
simplifying the analysis of the impurity spin behavior. Our
system is somewhat related to the case of transport through
single tunnel barriers containing a magnetic atom or a single
molecular magnet, that has been investigated extensively in
the recent past, both from a theoretical41–49 as well as from
an experimental50–56 point of view. It was shown that the
steps observed in the differential conductance can be used to
extract magnetic properties such as anisotropies of the
atomic spin.44–47,53 Furthermore, the influence of nonequilib-
rium spin occupations was discussed,49 explaining the over-
shooting observed at the conductance steps in experiment
and predicting a super-Poissonian current noise. The absence
of certain nonequilibrium features in turn was interpreted in
terms of an anisotropic relaxation channel. For systems with
magnetic electrodes, the possibility to switch the embedded
spin by the spin-polarized current through the barrier was
predicted theoretically42,43,48 and observed in experiment.56

In the model studied in this paper, the tunnel barrier con-
taining the magnetic impurity connects a lead with a quan-
tum dot. The transport behavior is, in this case, more com-
plex since the spin dynamics of the embedded impurity is
coupled to the charge and spin degrees of freedom of the
quantum dot. This has several consequences. First, interfer-
ence between direct and exchange tunneling through the bar-
rier plays already a role for nonmagnetic electrodes in trans-
port to lowest order in the tunnel coupling. This contrasts
with the simpler case of a single tunnel barrier with a mag-
netic impurity, for which this interference only contributes
for ferromagnetic electrodes or in higher order
transport.41,48,56,57 Second, we demonstrate that the Coulomb
charging energy of the quantum dot can help to perform
tunnel spectroscopy on the embedded spin. Even if the exci-
tation energy between the ground state and the first excited
state of the impurity spin is larger than any other spin exci-
tation energy, all spin excitation energies are accessible when
additional charge states of the dot contribute to transport
through the system, which is not possible for the single-
barrier case. Third, we discuss a current-induced switching
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of the impurity spin. The impurity state influence the spin
accumulation on the quantum dot, which in turn acts back on
the current through the system, leading to current oscillations
as a function of the applied bias. Interestingly, these phenom-
ena occur even for small polarizations of the leads. While the
current is only sensitive to the average value of the spin, we
find that the zero-frequency Fano factor also contains infor-
mation about the spin dynamics. Finally, fourth, we point out
how monitoring the exchange field peak in the frequency-
dependent Fano factor can detect the switching of the impu-
rity spin for noncollinear magnetizations.

In the second scenario, we consider a S=1 /2 impurity
side coupled to the spin of the electron on the quantum dot.
Here, our main aim is to describe the coherent dynamics of
the two spins on the quantum dot. We consider the case that
the impurity spin is located on the quantum dot, as this al-
lows us to take the exchange coupling between electron and
impurity spin into account exactly. This model can serve to
describe different situations. First, it can describe transport
through a quantum dot that is doped with a magnetic atom.
Transport through a quantum dot doped with a single man-
ganese atom has already been studied theoretically. It was
shown how the frequency-dependent shot noise can reveal
the spin relaxation times.58 Furthermore, the electrical con-
trol of the manganese spin state as well as the back action of
the spin state on transport have been investigated in the ab-
sence of Coulomb interaction in the quantum dot.59

Second, our model can be used to describe the coupling of
the electron spin on the dot to a nuclear spin via the hyper-
fine interaction. In general, such a coupling is disadvanta-
geous as it leads to decoherence of the electron spin and
therefore can lift, e.g., the Pauli spin blockade in a double
quantum dot.60–63 However, it can also be used to dynami-
cally polarize the nuclear spins in the quantum dot which in
turn may be used to control and manipulate the electron
spin.64–68

Transport through a quantum dot with a side-coupled spin
1/2 was discussed in Ref. 69 for the case of nonmagnetic
electrodes. It was shown how to extract the system param-
eters such as the exchange couplings, the g factors and spin
relaxation times from measurements of the current and Fano
factor.

The case of noncollinearly magnetized ferromagnetic
electrodes was recently investigated by Baumgärtel et al.70

for a large ferromagnetic exchange interaction. It was shown
that in addition to a spin dipole, a spin quadrupole moment
accumulates on the quantum dot, driven by a quadrupole
current.

In this work, we focus on the opposite regime of small
exchange interaction between the side-coupled impurity and
electron spin. This situation is particularly suited for the de-
scription of the weak hyperfine interaction. We discuss how
the frequency-dependent Fano factor can be used to experi-
mentally access the strength of the exchange coupling for
large and small external magnetic fields. Furthermore, for the
case of a weak external magnetic field, we show how the
exchange field acting on the electron spin �but not on the
impurity spin� gives rise to a highly nontrivial spin dynamics
that manifests itself in the frequency-dependent Fano factor.

Our paper is organized as follows. In Sec. II, we present
the models that describe a magnetic impurity with a large,

anisotropic spin localized in one tunnel barrier and a small
spin localized on the dot, respectively. We introduce the real-
time diagrammatic technique71–74 that we use to calculate the
transport properties in Sec. III. We discuss the form of the
reduced density matrix of the quantum-dot system and the
generalized master equation it obeys for the two systems
under investigation in Sec. IV. Our results for the transport
properties are presented in Sec. V for an impurity in the
barrier and in Sec. VI for an impurity on the dot. Finally, we
conclude by giving a summary and comparing our results for
the two models in Sec. VII.

II. MODEL

In this paper, we consider transport through a quantum-
dot spin valve, i.e., a single-level quantum dot tunnel
coupled to noncollinearly magnetized ferromagnetic elec-
trodes. We consider additional magnetic impurities either
with a large, anisotropic spin localized in the tunnel barrier
or with a spin S=1 /2 on the quantum dot itself. In the fol-
lowing, we define the Hamiltonians for these two cases, re-
spectively.

A. Model A: Large spin in the barrier

Our model A, which is schematically shown in Fig. 1,
consists of a quantum-dot spin valve with an impurity em-
bedded in the right tunnel barrier. As already mentioned in
Sec. I, we choose the impurity to be in the tunnel barrier, as
this will lead to a simpler conductance pattern, see Sec. V
below, which allows to study the spin excitations more eas-
ily. In this case, the Hamiltonian can be written as the sum of
four terms describing the two electrodes, the quantum dot,
the spin, and the tunneling between dot and lead

H = �
r=L,R

Hr + Hdot + Hspin + �
r=L,R

Htun,r. �2.1�

The first term

Hr = �
k

�
�=�

�rk�ark�
† ark� �2.2�

describes the ferromagnetic electrodes in terms of noninter-
acting electrons at chemical potential �r. We quantize the
electron spin in the direction of the magnetization

tL tR

jR
ε

ε+Uϕ
nL

nR

FIG. 1. �Color online� Schematic of model A, a quantum-dot
spin valve with a magnetic impurity localized in the right tunnel
barrier.
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of the respective lead. The spin polarization is defined as
pr= ��r+−�r−� / ��r++�r−�, where �r� is the constant density of
states for majority ��=+� and minority ��=−� spin electrons.

The quantum dot is described by

Hdot = �
�=↑,↓

�c�
†c� + Uc↑

†c↑c↓
†c↓. �2.3�

Here, the first term characterizes the single, spin-degenerate
quantum dot level with energy � measured with respect to
the Fermi energy of the leads in equilibrium. The charging
energy U is needed to occupy the quantum dot with two
electrons. As indicated in Fig. 1, we choose the quantization
axis of the dot parallel to the magnetization of the right elec-
trode as this simplifies the expressions for the tunnel Hamil-
tonian, see below.

The third term in Eq. �2.1� describes the magnetic impu-
rity embedded in the right tunnel barrier as a localized spin
with Hamiltonian

Hspin = − DSz
2 − BSz. �2.4�

We model the spin of magnitude S as having a uniaxial an-
isotropy D which favors the spin to be in the eigenstates
pointing along the z axis. We, furthermore, assume the pres-
ence of a magnetic field B acting on the impurity spin. For
concreteness, we assume this field to be pointing along the z
direction. This choice is motivated by the presence of stray
fields from the ferromagnetic electrode which have the ten-
dency to align the impurity along the magnetization of the
electrode. As for the quantum dot, we quantize the impurity
spin along the direction of the magnetization of the right
electrode.

The last part of the Hamiltonian �2.1� describes the tun-
neling between the dot and the electrodes. For the coupling
to the left lead, it takes the form

Htun,L = �
k

tL�aLk+
† �cos

�

2
c↑ − sin

�

2
c↓�

+ aLk−
† �sin

�

2
c↑ + cos

�

2
c↓�� + H.c., �2.5�

i.e., majority and minority spin electrons of the leads couple
to spin-up and spin-down states of the quantum dot due to
our choice of quantization axes. The coupling to the right
lead consists of two terms

Htun,R = �
k�

tRaRk�
† c� + �

k	


jRaRk	
† S · �	
c
 + H.c..

�2.6�

Here, �	
 denotes the vector of Pauli matrices. The first part
describes direct tunneling between the dot and the leads. The
second term describes exchange scattering from the impurity
spin.

The tunnel matrix elements tL and tR �which can be cho-
sen real� are related to the spin-dependent tunneling rates via
�r�=2��tr�2��. The total tunnel coupling is then given by
�r=���r� /2. Similarly, for the exchange tunneling, we re-
late the corresponding tunneling rate to its �real� matrix ele-
ment by JR=2��jR�2

�++�−

2 . Furthermore, there will be a con-

tribution due to the interference between direct and exchange
tunneling through the right barrier. It is characterized by

	�RJR. Here, 
= �1 determines the sign of the interfer-
ence contribution which is governed by the relative sign of tR
and jR. The upper sign, 
=+1 applies for equal signs of tR
and jR while the lower sign, 
=−1 applies for different signs
of tR and jR.

B. Model B: Small spin on the dot

Model B consists of a quantum-dot spin valve with an
additional spin localized on the quantum dot as shown sche-
matically in Fig. 2. Here, we restrict ourselves to the case of
a S=1 /2 impurity spin for two reasons. First of all, this
keeps the size of the Hilbert space small while still giving
rise to the nontrivial spin dynamics we are interested in.
Second, for a larger spin that additionally has some aniso-
tropy, spin states would not be degenerate any longer,
thereby destroying the possibility to observe the coherent
spin dynamics, see also the discussion in Sec. III. The total
Hamiltonian now takes the form

H = �
r=L,R

Hr + Hdot + Htun �2.7�

describing the electrodes, the dot containing the impurity
spin and the tunneling between dot and leads. The first part,
Hr, is identical to the one given in Eq. �2.2�. For the second
term, we have

Hdot = �
�=↑,↓

�c�
†c� +

B

2
�n↑ − n↓� + Un↑n↓ + BSz

+ J�
���

c�
†

S · ����

2
c��. �2.8�

The first two terms describe the single dot level with energy
� and Zeeman splitting B due to an external magnetic field.
For simplicity, we assume the magnetic field to point along
the quantization axis of the dot which we choose perpendicu-
lar to the magnetizations of the leads. The third term de-
scribes the Coulomb interaction U which is needed to doubly
occupy the quantum dot. The fourth term describes the Zee-
man energy of the additional spin on the quantum dot. Here,
we assume the same g factor for the electrons on the dot and

tL tR

J
ε

ε+UϕL ϕR

nL nR

FIG. 2. �Color online� Schematic of model B which consists of
a quantum-dot spin valve with a magnetic impurity on the quantum
dot.
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the impurity spin, for a discussion of a system where electron
and impurity spin have different g factors, cf. Ref. 69. Fi-
nally, the last term describes an exchange interaction be-
tween the spin of the electron on the dot and the impurity
spin.

The eigenstates of the dot Hamiltonian �2.8� and their
corresponding energies are summarized in Table I. The eight
states can be classified according to the number of electrons
on the dot. For the empty and doubly occupied dot, we have
two states each that differ in energy by the Zeeman energy B
with the impurity spin pointing up or down. For the singly
occupied dot, we have in total four states, three triplet
�S=1� and one singlet state �S=0�. While the triplet states
are energetically split by the Zeeman energy, singlet and trip-
let are split by the exchange coupling J.

The coupling between dot and leads is described by the
tunneling Hamiltonian

Htun = �
rk

tr
ark+
† �ei�r/2c↑ + e−i�r/2c↓�

+ ark−
† �− ei�r/2c↑ + e−i�r/2c↓�� + H.c., �2.9�

where �L=−�R=� /2 denotes half the angle enclosed by the
magnetizations.33 We relate the tunnel matrix elements tr to
the tunnel couplings �r� as for the model discussed in Sec.
II A. Instead of using the tunnel coupling strength to the left
and right lead, we can characterize the dot-lead coupling
alternatively by the total tunnel coupling �=�L+�R and the
asymmetry a= ��L−�R� /� with −1�a�1.

III. TECHNIQUE

In order to evaluate the transport properties of the two
systems under investigation, we make use of a real-time dia-
grammatic technique71–74 and its extension to systems with
noncollinearly magnetized ferromagnetic electrodes.32,33 The
basic idea of this approach is to integrate out the noninter-
acting degrees of freedom of the electrodes. We, then, arrive
at an effective description of the remaining, strongly inter-
acting subsystem in terms of its reduced density matrix �red.

We denote by P�2

�1 = ��1��red��2
 the elements of the re-
duced density matrix, where ��1
 and ��2
 are eigenstates of

the reduced system. The time evolution of the reduced den-
sity matrix elements is governed by a set of generalized mas-
ter equations

Ṗ�2

�1 = − i���1
− ��2

�P�2

�1 + �
�1��2�

W
�2�2�
�1�1�P

�2�
�1�. �3.1�

The first term on the right-hand side describes the coherent
evolution of the reduced system. The second term describes
the dissipative coupling to the electrodes. The generalized

transition rates W
�2�2�
�1�1� are defined as irreducible self-energies

of the dot propagator on the Keldysh contour. They can be
evaluated diagrammatically in a perturbation expansion in
the tunnel coupling strength �. The corresponding diagram-
matic rules are summarized in Appendix A.

Expanding the density matrix elements as well as the gen-
eralized transition rates in a power series in the tunnel cou-
pling �, we find that in the stationary limit the master equa-
tion for the off-diagonal matrix elements to leading order in
the tunnel couplings takes the form

0 = − i���1
− ��2

�P�2

�1 �3.2�

if ��1
−��2

��. As a consequence, coherent superpositions
between states whose energy difference is large compared to
the tunnel coupling have to be neglected in the sequential
tunneling regime. On the other hand, for superpositions that
satisfy ��1

−��2
��, the master equation in the stationary

limit takes the form

0 = − i���1
− ��2

�P�2

�1 + �
�1��2�

W
�2�2�
�1�1����1

=��2
P

�2�
�1� �3.3�

to lowest order in the tunnel coupling. Here, the generalized
transition rates have to be evaluated at ��1

−��2
=0 in order to

consistently neglect all effects of order �2. Hence, in this
case, the coherences will not vanish in general.

We define the current through the system as the average
of the currents through the left and right tunnel barrier,
I= �IL− IR� /2. It is given by

I =
e

2�
eTWIP . �3.4�

Here, we introduced the vector P which contains all density
matrix elements written as a vector to allow for a compact
notation. The vector eT is a vector containing a 1 if the cor-
responding entry in P is a diagonal density matrix element
and a 0 otherwise. Finally, the quantity Wr

I contains the cur-

rent rates W
�2�2�
I�1�1� which can be obtained diagrammatically

similarly to the generalized transition rates W
�2�2�
�1�1� by replac-

ing one tunneling vertex by a current vertex. The correspond-
ing diagrammatic rules are given in Appendix A.

The frequency-dependent current noise is defined as the
Fourier transform of the symmetrized current-current corre-
lation function S= �I�t�I�0�+ I�0�I�t�
−2�I
2. In the sequential
tunneling regime and for low frequencies, ���, we can
write it as

TABLE I. Eigenstates of the dot Hamiltonian �2.8� and corre-
sponding eigenenergies. The first entry in each ket denotes the state
of the quantum dot while the second entry characterizes the impu-
rity spin state.

Eigenstate Energy

�0↑
 E0↑=B /2

�0↓
 E0↓=−B /2

�T+
= �↑↑
 ET+ =�+J /4+B

�T0
= ��↑↓
+ �↓↑
� /	2 ET0 =�+J /4

�T−
= �↓↓
 ET− =�+J /4−B

�S
= ��↑↓
− �↓↑
� /	2 ES=�−3 /4J

�d↑
 Ed↑=2�+U+B /2

�d↓
 Ed↓=2�+U−B /2
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S��� =
e2

2�
eT
WII + WI��0

−1��� − W�−1WI�P − 2������I
2

+ �� → − �� , �3.5�

where WII is obtained from W by replacing two tunnel ver-
tices by current vertices. The frequency-dependent free dot
propagator on the Keldysh contour is given by

�0���
�2�2�
�1�1� =

i��1�1�
��2�2�

��2
− ��1

− � + i0+ . �3.6�

We stress that the frequency-dependent current noise for
��� is only sensitive to coherences between states with
��1

−��2
��, i.e., we can savely neglect all other coherences

in the calculation of S��� as in the evaluation of the master
equation and the stationary current. While our discussion of
the real-time diagrammatic technique so far was rather gen-
eral, in the next section, we turn to the explicit form of the
density matrix as well as the generalized master equations
for the two systems under investigation.

IV. REDUCED DENSITY MATRIX AND MASTER
EQUATION

A. Model A: Large spin in the barrier

For a quantum-dot spin valve with a large, anisotropic
impurity spin embedded in the tunnel barrier, the eigenstates
of the reduced system consisting of quantum dot and
impurity spin are products of dot eigenstates
��
� ��0
 , �↑ 
 , �↓ 
 , �d
� and impurity spin eigenstates
�Sz
� ��+S
 , . . . , �−S
�, ��
= ��
 � �Sz
. Assuming the energies
of states with different impurity states to differ more than the
tunnel coupling, ESz

−ESz�
��, we have to neglect coherent

superpositions between states with different impurity states.
The reduced density matrix therefore takes a block diag-

onal form given by

�red = �
m=−S

S �
P0,m 0 0 0

0 P↑,m P↓,m
↑ 0

0 P↑,m
↓ P↓,m 0

0 0 0 Pd,m

� . �4.1�

In order to give a physically intuitive interpretation
of the generalized master equations, we introduce the
probabilities to find the dot empty, P0,m, singly occupied,
P1,m= P↑,m+ P↓,m, and doubly occupied, Pd,m, with the impu-
rity in state �m
. We collect these quantities in the vector
Pm= �P0,m , P1,m , Pd,m�T. We furthermore introduce the aver-

age spin on the quantum dot sx,m=
P↓,m

↑ +P↑,m
↓

2 , sy,m= i
P↓,m

↑ −P↑,m
↓

2 ,
and sz,m=

P↑,m−P↓,m

2 . The set of master equations can then be
split into one determining the occupation probabilities and
one set governing the average dot spin. In the following, we
will keep the time derivative on the left-hand side of the
master equations explicitly to allow for a physically intuitive
interpretation of the master equations. For the numerical dis-
cussion below, these derivatives are equal to zero, however.
The master equations for the occupations are given by

Ṗm = WL
�0�Pm + VL

�0�sm · nL + WR
�0�Pm + WR

�+1�Pm+1

+ WR
�−1�Pm−1 + VR

�0�sm · nR + VR
�+1�sm+1 · nR

+ VR
�−1�sm−1 · nR. �4.2�

Here, Wr
�	� is a matrix which describes processes that trans-

fer an electron between the dot and lead r and change the
state of the impurity spin from �m
 to �m+	
. Since the im-
purity is located in the right tunnel barrier, tunneling through
the left lead cannot change the impurity state and therefore
WL

��1�=0. Changing the impurity state is possible, however,
for tunneling through the right barrier which provides a cou-
pling between Pm and Pm�1. Similarly, Vr

�	� is a vector which
describes the coupling of the occupation probabilities to the
spin on the dot, a feature characteristic of a quantum-dot spin
valve. Again, we have VL

��1�=0. The precise form of Wr
�	�

and Vr
�	� is given in Appendix B 1.

The time evolution of the dot spin obeys a Bloch-type
equation

ṡm = �dsm

dt
�

acc,L

�0�

+ �dsm

dt
�

acc,R

�0�

+ �dsm

dt
�

acc,R

�+1�

+ �dsm

dt
�

acc,R

�−1�

+ �dsm

dt
�

rel,L

�0�

+ �dsm

dt
�

rel,R

�0�

+ sm � �Bm,L + Bm,R� . �4.3�

The first four terms on the right-hand side describe the non-
equilibrium spin accumulation on the quantum dot due to the
tunneling from and to the spin-polarized leads. Similarly to
the master equation for the occupations, we get accumulation
terms that change the state of the impurity when tunneling
takes place through the right barrier.

−4

−2

0

2

4

B
R
/Γ

R

0 200 400 600 800 1000
V/kBT

−8

−4

0

4

8

B
R
/Γ

R

m = +3

m = +2

m = +1

m = 0

m = −1

m = −2

m = −3

FIG. 3. �Color online� Exchange field due to virtual tunneling
through the right barrier as a function of bias voltage V for p=0.3
�upper panel� and p=0.9 �lower panel�. Other parameters are
�=−300kBT, U=250kBT, D=17.5kBT, B=10kBT, �R=10JR,

=+1, W=500kBT, and S=3.
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The next two terms account for the relaxation of the spin
on the dot due to the tunneling out of an electron or the
tunneling in of an electron forming a spin singlet with the
electron already present on the dot. As these terms arise from
generalized transition rates which start and end in a singly
occupied state, in the sequential tunneling approximation the
state of the impurity spin cannot be changed in these pro-
cesses. We give the explicit forms of the accumulation and
relaxation terms in Appendix B 1.

The last term describes the precession of the dot spin in
an exchange field due to virtual tunneling to the leads. For
the coupling to the left lead, we find the usual exchange
field33 which is independent of the state of the impurity spin.
It is given by

Bm,L = − nL
pL�L

�
„�L��� − �L�� + U�… , �4.4�

where �r�x�=Re �� 1
2 + i


�x−�r�
2� �, and � denotes the digamma

function. While the first term arises from the spin-dependent
level renormalization of an electron virtually tunneling to the
lead and back, the second term stems from processes where
an electron first tunnels onto the dot and then back into the
lead.

The exchange field due to the coupling to the right lead
which points in the direction of nR is given by

Bm,R = − nR
�̃

�

�R��� − �R�� + U�� + nR

A+�m − 1�JR

�
�1 + pR

2
�R�� − 	−� +

1 − pR

2
�R�� + U + 	−� − ln


W

2�
�

− nR
A−�m + 1�JR

�
�1 − pR

2
�R�� + 	+� +

1 + pR

2
�R�� + U − 	+� − ln


W

2�
� , �4.5�

where �̃= pR�R+m2pRJR+2m
	�RJR, 	�=B+ �2m�1�D,
and A��m�=S�S+1�−m�m�1�.

Here, the first term on the right-hand side describes ex-
change field contributions due to virtual tunneling between
dot and lead that does not change the state of the impurity
spin. The other two terms are due to virtual tunneling where
the intermediate state has an increased/decreased impurity
spin state. These processes give rise to a logarithmic diver-
gency of the exchange field cut off by the bandwith W of the
lead electrons. To understand this, we consider the impurity
in the state �Sz=S
. In this case, only the sequences
�↓ ,S
→ �0,S−1
→ �↓ ,S
 and �↓ ,S
→ �d ,S−1
→ �↓ ,S
 of
�virtual� transitions are possible while there are no such pro-
cesses starting from �↑ ,S
. Hence, these processes only
renormalize the energy of the spin down state, giving rise to
the logarithmic divergency. Similarly, when the impurity is
in any other state, the logarithmic contributions to the ex-
change field do not cancel between processes that increase
and decrease the intermediate impurity spin state. As we only
consider sequential tunneling, it is clear that our results are
only valid if JR ln
W

2� �kBT and JR ln
W
2� ��r, otherwise

higher order logarithmic corrections become important.
We, therefore, find that the presence of the impurity spin

in the tunnel barrier has two basic effects on the exchange
field. First of all, it alters its strength. Second, due to the
presence of the spin-flip processes, it also alters its energy
dependence �cf. Fig. 3�, giving rise to additional peaks and
dips whose separation is governed by the anisotropy D, the
Zeeman energy B, and the size of the impurity spin S. Since
the transition energies between the various impurity states
depend on the states itself, the position of the additional
peaks and dips depends on the value of Sz.

B. Model B: Small spin on the dot

For the case of a S=1 /2 impurity localized on the quan-
tum dot, the reduced density matrix in the most general case
takes the form

�red =�
P0↑ P0↓

0↑ 0 0 0 0 0 0

P0↑
0↓ P0↓ 0 0 0 0 0 0

0 0 PT+ PT0
T+

PT−
T+

PS
T+

0 0

0 0 PT+
T0

PT0 PT−
T0

PS
T0

0 0

0 0 PT+
T−

PT0
T−

PT− PS
T−

0 0

0 0 PT+
S PT0

S PT−
S

PS 0 0

0 0 0 0 0 0 Pd↑ Pd↓
d↑

0 0 0 0 0 0 Pd↑
d↓ Pd↓

� ,

�4.6�

i.e., apart from the eight diagonal matrix elements that de-
scribe the probability to find the system in one of its eigen-
states there can be up to 16 coherences. Coherences between
states with different electron numbers vanish due to the con-
servation of total particle number. As discussed above, de-
pending on the energy differences of the states forming the
coherent superposition, we either have to take them into ac-
count or neglect them in the sequential-tunneling regime. In
Table II, we summarize the different transport regimes that
arise consequently.
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In the following, we will only consider the cases �ii� and
�v�, i.e., we only consider the case of weak exchange cou-
plings, J��. When a large magnetic field is applied, B��,
only S−T0 coherences have to be taken into account. When
the externally applied magnetic field is weak, B��, we have
to take into account all coherences. There are two reasons
focusing on the two cases. On the one hand, they are particu-
larly suited to demonstrate the information about the trans-
port processes contained in the finite-frequency noise. On the
other hand, the cases of small exchange couplings are suited
to describe the influence of nuclear spins, that couple to the
electron spin via hyperfine interaction, on transport through
the quantum dot.

1. Case (ii): Large magnetic field

We first turn to the discussion of the master equation in
case �ii� where B��, J��. In this case, there are only su-
perpositions of S and T0 present. It is therefore natural to
introduce the isospin I via

Ix =
PT0

S + PS
T0

2
, Iy = i

PT0
S − PS

T0

2
,

Iz =
PT0 − PS

2
, I0 = PT0 + PS

to bring the master equation into a physically intuitive form.
Similar to the case of an ordinary quantum-dot spin valve,33

we can now split the master equation into one set governing
the occupation probabilities that we summarize in the vector
P= �P0↑ , P0↓ , PT+ , I0 , PT− , Pd↑ , Pd↓� and one set governing the
time evolution of the isospin I= �Ix , Iy , Iz�. However, there is
an important difference. While in the ordinary quantum-dot
spin valve, there is a real spin accumulating on the quantum
dot, here we have an isospin accumulation as a real spin
accumulation is suppressed by the large external magnetic
field. The master equation of the occupation probabilities
reads

Ṗ = W · P + V�I · ex� , �4.7�

where W denotes a matrix that contains the golden rule tran-
sition rates between the various dot states and V is a vector
that characterizes the influence of the isospin on the dot oc-
cupation whose precise form is given in Appendix B 2.

The master equation that governs the time evolution of
the isospin is given by

İ = �dI

dt
�

acc
+ �dI

dt
�

relax
+ I � �

r

Br. �4.8�

Here, the first term

�dI

dt
�

acc
=

1

2�
r

�r�− fr
+�� − B/2�P0↑ + fr

+�� + B/2�P0↓

− fr
+�� + U + B/2�Pd↑ + fr

−�� + U − B/2�Pd↓

+
1

2

fr

−�� − B/2� − fr
−�� + B/2� + fr

+�� + U + B/2�

− fr
+�� + U − B/2��I0�ex �4.9�

describes the accumulation of the isospin along the x axis
due to electrons tunneling onto and off the dot. Similarly, the
second term describes a relaxation of the isospin

�dI

dt
�

relax
= −

1

2�
r

�r
fr
−�� − B/2� + fr

−�� + B/2�

+ fr
+�� + U − B/2� + fr

+�� + U + B/2��I .

�4.10�

Finally, the last term describes the precession of the isospin
in an exchange field that is given by

Brx =
�r

2�

�r�� − B/2� − �r�� + B/2�

+ �r�� + U + B/2� − �r�� + U − B/2�� ,

Bry = 0,

Brz = J . �4.11�

The exchange field describes the level splitting between �T0

and �S
 which is due to the finite exchange coupling J as well
as due to virtual tunneling processes that renormalize the
energies of the two states in a different way. As can be in-
ferred from Eq. �4.8�, it gives rise to a precession of the
accumulated isospin around the exchange field.

The current through the quantum dot is given by

I =
�L

2
�
fL

+�� + B/2� + fL
+�� − B/2���P0↑ + P0↓�

− 
fL
−�� + U + B/2� + fL

−�� + U − B/2���Pd↑ + Pd↓�

− 
fL
−�� + B/2� − fL

+�� + U − B/2��PT+ − 
fL
−�� − B/2�

TABLE II. Coherent superpositions that have to be taken into
account in the sequential tunneling regime for different values of
the external magnetic field B and the exchange coupling J between
the two spins.

Case Parameters Superpositions of

�i� B ,J , �B−J��� none

�ii� B��, J�� �T0
, �S

�iii� B ,J��, �B−J��� �T−
, �S

�iv� J��, B�� �0↑
, �0↓


�T+
, �T0
, �T−

�d↑
, �d↓


�v� B ,J�� �0↑
, �0↓

�T+
, �T0
, �T−
, �S


�d↑
, �d↓
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− fL
+�� + U + B/2��PT− −

1

2

fL

−�� + B/2� + fL
−�� − B/2�

− fL
+�� + U + B/2� − fL

+�� + U − B/2��I0 − 
fL
−�� + B/2�

− fL
−�� − B/2� + fL

+�� + U + B/2� − fL
+�� + U − B/2��Ix�

− �L → R� . �4.12�

It depends on the occupation probabilities as well as on the x
component of the accumulated isospin. This resembles the
normal quantum-dot spin valve where the current also de-
pends on both, the dot occupations as well as on the dot
spin.33

2. Case (v): Small magnetic field

We now turn to the discussion of the master equation in
the case B ,J��. In this case, we have to include all coher-
ences of the reduced density matrix, Eq. �4.6�.

To allow for a physical interpretation of the different ma-
trix elements, we introduce the probabilities to find the quan-
tum dot empty, P0, singly occupied, P1, and doubly occu-
pied, Pd. Furthermore, we introduce the expectation values
of the electron spin on the dot, S1, as well as the expectation
values for the impurity spin when the dot is empty, S0, singly

occupied, S2, and doubly occupied, Sd. While for a single
spin 1/2 the description of its density matrix in terms of spin
expectation values is sufficient, this is in general no longer
true for a system of two spin 1/2 particles.70 For the case of
small magnetic fields that we consider here, we therefore
have to introduce in addition the expectation values of the
scalar product between electron and impurity spin, S1 ·S2,
and their vector product, S1�S2. Finally, we also need to
introduce the quadrupole moment70,75

Qij =
1

2
�S1iS2j + S1jS2i� −

1

3
S1 · S2�ij . �4.13�

The quadrupole moment is a symmetric tensor, Qij =Qji. Its
diagonal elements are not independent of each other as they
satisfy the sum rule �iQii=0, i.e., the trace of Q vanishes.

In Appendix C we give the explicit expressions that relate
the above quantities to the density matrix elements in Eq.
�4.6�. We note that in the case B��, J�� where we only
have taken into account the S−T0 superpositions, we could
have expressed the reduced density matrix in terms of the
quantities just introduced as well. However, by choosing a
description in terms of the isospin, we obtain a much simpler
master equation.

Using the physical quantities we just discussed, we can
split the master equation into several sets. The first set

d

dt�P0

P1

Pd
� = �

r

�r�− 2fr
+��� fr

−��� 0

2fr
+��� − fr

−��� − fr
+�� + U� 2fr

−�� + U�
0 fr + �� + U� − 2fr

−�� + U�
��P0

P1

Pd
� + �

r

2pr�r� fr
−���

− fr
−��� + fr

+�� + U�
− fr

+�� + U�
�S1 · nr �4.14�

describes the evolution of the occupation probabilities. It takes a form identical to the case of a normal quantum-dot spin valve,
i.e., it exhibits a coupling of the occupations to the spin accumulated on the quantum dot. Interestingly, the occupations do not
couple neither to the impurity spin, the scalar or vector product of S1 and S2 nor to the quadrupole moments directly. They are
only influenced by these quantities due to their influence on the accumulated electron spin S1.

The equation governing the time evolution of the electron spin in the dot is given by

dS1

dt
= �

r
�pr�r� fr

+���P0 −
fr

−��� − fr
+�� + U�

2
P1 − fr

−�� + U�Pd�nr −
S1

�r
− S1Br,ex� − S1B + J�S1 � S2� , �4.15�

where

1/�r = �r
fr
−��� + fr

+�� + U��

and

Br,ex = −
p�r

� 
�r��� − �r�� + U��nr

is the usual exchange field acting on the electron spin accumulated on the dot. Again, we find a strong similarity to the case
of the normal quantum-dot spin valve. While the first term in brackets describes the accumulation of spin on the dot along nr
due to spin-dependent tunneling of electrons between dot and leads, the second term describes a relaxation of the dot spin due
to tunneling. The third term in brackets describes the precession of the dot spin in the exchange field generated by virtual
tunneling between dot and leads. The last two terms finally describe the influence of an external magnetic field and the
exchange coupling to the impurity spin.

The master equations for the impurity spin in the presence of zero, one and two electrons on the dot can be written as
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d

dt�S0

S2

Sd
� = �

r

�r�− 2fr
+��� fr

−��� 0

2fr
+��� − fr

−��� − fr
+�� + U� 2fr

−�� + U�
0 fr

+�� + U� − 2fr
−�� + U�

��S0

S2

Sd
� + �

r

2pr�r� fr
−���

− fr
−��� + fr

+�� + U�
− fr

+�� + U�
���Q +

1

3
S1 · S2� · nr

+
1

2
�S1 � S2� � nr� − �S0

S2

Sd
� � B + J� 0

S1 � S2

0
� . �4.16�

Here, the first term on the right-hand side describes transitions between the three quantities by tunneling of electrons in
analogy to the first term in the equation for the occupations, Eq. �4.14�. The second term characterizes the couplingto the
quadrupole moments as well as the scalar and vector product of S1 and S2. This resembles the coupling of the dot occupations
to the electron spin on the dot in Eq. �4.14�. Finally, the terms in the third line describe the precession of the impurity spin in
an externally applied magnetic field as well as the influence of the exchange interaction between electron and impurity spin.

The master equations governing the time evolution of the scalar and vector product between the electron and impurity spin
are given by

d

dt
�S1 � S2� = �

r
�− pr�r� fr

+���S0 −
fr

−��� − fr
+�� + U�

2
S2 − fr

−�� + U�Sd� � nr −
S1 � S2

�r
+ �Q −

2

3
�S1 · S2�� · Br,ex�

− �S1 � S2� � B +
J

2
�S1 − S2� , �4.17�

d

dt
�S1 · S2� = �

r
�pr�r� fr

+���S0 −
fr

−��� + fr
+�� + U�

2
S2 − fr

−�� + U�Sd� · nr −
S1 · S2

�r
+ �S1 � S2� · Br,ex� . �4.18�

Their structure closely resembles Eq. �4.15� in that there are terms which describe the accumulation, relaxation, and the
influence of the spin precession due to the exchange field. Furthermore, the vector product turns out to be sensitive to an
external magnetic field as well as to the exchange coupling between the spins.

Finally, the master equation for the quadrupole moment takes the form

d

dt
Qij = �

r
�pr�rfr

+����1

2
�S0,inr,j + S0,jnr,i� −

1

3
�S0 · nr��ij� − pr�r

fr
−��� − fr

+�� + U�
2

�1

2
�S2,inr,j + S2,jnr,i� −

1

3
�S2 · nr��ij�

− pr�rfr
−�� + U��1

2
�Sd,inr,j + Sd,jnr,i� −

1

3
�Sd · nr��ij� −

Qij

�r

−
1

2
�1

2
�S1 � S2�i�Br,ex� j +

1

2
�S1 � S2� j�Br,ex�i −

1

3
�S1 � S2� · Br,ex�ij� −

1

2
�ilmQlj�Br,ex�m −

1

2
� jlmQli�Br,ex�m�

− �ilmQljBm − � jlmQliBm. �4.19�

The first three terms on the right-hand side describe the ac-
cumulation of quadrupole moment on the quantum dot. Simi-
larly, the fourth term is related to the relaxation of the quad-
rupole moment. Finally, the other terms describe the
precesional motion of the quadrupole moment in the ex-
change field as well as due to an external magnetic field.

The current through tunnel barrier r is given by

Ir = �rfr
+���P0 − �r

fr
−��� − fr

+�� + U�
2

P1 − �rfr
−�� + U�Pd

− p�r
fr
−��� + fr

+�� + U��S1 · nr. �4.20�

Although this is precisely the same form as for the normal
quantum-dot spin valve, the current nevertheless contains in-

formation about the nontrivial spin dynamics on the dot, as
the master equation for the dot spin couples to the other
density matrix elements.

V. RESULTS—LARGE SPIN IN THE BARRIER

In this section we discuss the transport properties of a
quantum-dot spin valve with a large, anisotropic impurity
spin located in the right tunnel barrier. We will focus our
attention on systems that are symmetric in the sense that
pL= pR� p and �L=�R�� /2. Furthermore we assume the
bias voltage to be applied symmetrically, VL=−VR=−V /2.

A. Collinear magnetizations

In the following, we are going to discuss transport for
collinear magnetizations. Most of the time we will restrict
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ourselves to the case of parallel magnetizations as we focus
on moderate polarizations where the effects due to the impu-
rity spin are much more important than the effects due to the
relative orientation of the leads.

1. Interference between direct and exchange tunneling

From the form of the tunneling Hamiltonian �2.6� it is
obvious that interference can take place between electrons
tunneling directly through the barrier and electrons experi-
encing an exchange interaction with the impurity spin. For
transport through a single tunnel barrier containing a local-
ized spin,41,43,49,76,77 the interference contributions cancel be-
tween the spin-up and spin-down channel. Only for ferro-
magnetic leads48,56,57,78 or in the presence of spin-orbit
interactions, one is sensitive to the interference terms.

This is different for the system under investigation here.
We find that the interference terms influence the current even
for unpolarized leads. In contrast to the single-barrier case
where we just have to sum up the contributions from spin-up
and spin-down electrons to the current, in the quantum dot
case we have to separately compare the rates for tuneling in
and out of the dot for each spin direction. While in the non-
magnetic case equal amounts of spin-up and spin-down elec-
trons enter the dot from the left lead, the rates for leaving the
dot are different due to the interference terms. This in turn
gives rise to a spin accumulation on the quantum dot which
reduces the current through the quantum dot.

Unfortunately, in our system there is no way to tune the
phase of the interference terms experimentally as is possible,
e.g., in an Aharonov-Bohm interferometer and thereby check
the influence of the interference terms on the current. Nev-
ertheless, it should be possible to detect the presence of the
interference term experimentally and to detect its sign. Ap-
proximating the Fermi functions as step functions which is
reasonable away from the threshold voltages, we can calcu-
late the current through the system analytically in the various
transport regions.

We first consider the case of unpolarized leads, pr=0. In
this case, the current in region I where transport takes place
through the singly and doubly occupied dot �cf. Fig. 4� is
given by

II =
2�L��R + S2JR�

�L + 2��R + S2JR�
, �5.1�

i.e., it is sensitive to the couplings and the size of the barrier
spin but not to the interference term. Similarly, in region II
where spin excitations become possible, the current turns out
to be insensitive to the interference term

III =
2�L
�R + S�S + 1�JR�

�L + 2
�R + S�S + 1�JR�
. �5.2�

This is different in region III where transport takes place
through the empty and singly occupied dot but the spin can-
not be excited. Here, the current is given by

IIII =
2�L
��R + S2JR�2 − 4S2	�RJR

2�
��R + S2JR��2�L + �R + S2JR� −�4S2	�RJR

2�
,

�5.3�

i.e., the current now also depends on the interference term.
From Eq. �5.3�, we infer that for �R=SJR the current van-
ishes exactly in region III. Equation �5.3� also shows that the
current in region III is only sensitive to the absolute value of
the interference term but not to its sign.

This is different in the regime where the empty and singly
occupied dot contribute to transport and spin excitations are
possible. As the analytic result for the current in this regime
is rather lengthy, we do not give it here. Instead, we now
focus on transport for parallely magnetized leads. In region I,
the current is now given by

II =
2�L��R + S2JR + 2pS
	�RJR�

�L + 2��R + S2JR�
. �5.4�

Here, the current is clearly sensitive to the sign of the inter-
ference term which provides a way to access it in experi-
ments. Similar expressions for the current in regions II and
III can be found for parallely magnetized leads. As these
expressions are rather lengthy, we do not give them here.

2. Spin spectroscopy

Inelastic spin tunneling spectroscopy44–51,53–55,79,80 allows
to determine the spectrum of a spin embedded in a tunnel
barrier by studying the steps in the differential conductance
that occur whenever an inelastic transport channel opens up.
However, for a simple spin Hamiltonian of the form �2.4�
this does not allow to determine the parameters D and B
separately. In this case, the energy difference between the
ground state and the first excited state is larger than all other
excitation energies.80,81 In consequence, as soon as the sys-
tem can be brought into the first excited state, all other ex-
cited states can also be reached energetically. Hence, there
would be only a signal at �=ES−1−ES= �2S−1�D+B.

This is different for the system additionally containing a
quantum dot between the electrodes, as is shown schemati-

I

II

III

ε
0−U

V

FIG. 4. �Color online� Schematic of the differential conductance
as a function of level position and applied bias voltage. Thick black
lines mark the onset of transport through the dot. Dark �blue�
dashed lines indicate the onset of impurity excitations. Dashed lines
mark the gaining of energy from the impurity to allow all three
charge states of the dot.
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cally in Fig. 4. For level positions ��−U, the dot is doubly
occupied when no bias is applied. Upon increasing the bias,
we enter region I where transport takes place through the
singly and doubly occupied dot. When increasing the bias
voltage above the dark �blue� dashed line, exciting the spin
becomes possible, similarly as in a single barrier discussed
above which only provides information about a linear com-
bination of D and B. However, upon increasing the bias fur-
ther, we reach the dark �red� dotted line. At this point, the
electron on the dot with an energy below the right Fermi
level can gain enough energy to leave the dot to the right
lead by changing the impurity state from Sz=S−1 to Sz=S.
As this opens up a new transport channel, the onset of this
process yields a signal in the differential conductance. Simi-
larly, at the next bright �green� dotted line the process �↓ 

� �−S+1
→ �0
 � �−S
 becomes possible, again giving rise to
a conductance signal. This scheme continues for all transi-
tions of the impurity spin which are characterized by transi-
tion energies �2Sz−1�D+B for Sz�0 and −�2Sz+1�D−B for
Sz�0. When we finally reach the thick black line, the empty
dot state can also be reached by ordinary tunneling events.
For even larger bias voltages we find another series of con-
ductance signals which are now associated with electrons in
the lower level which become able to excite the impurity
when leaving to the right lead. The important difference to
the small bias case discussed above is that now transport
through the upper level can bring the impurity spin into all
excited states such that transitions between these states also
are all visible.

For unpolarized leads, the conductance pattern discussed
above allows to determine D and the absolute value of B. As
no spatial direction is distinguished, there is no possibility to
determine also the sign of B. This is different for polarized
leads where the spatial symmetry is broken by the magneti-
zations. In this case, one finds that the differential conduc-
tance shows an alternating pattern of positive and negative
differential conductance which depends on the sign of B. We
discuss the mechanism leading to this behavior in the follow-
ing.

3. Current-induced switching and spin-dependent transport

We now turn to our main result for the model containing
an impurity spin in the barrier, that is we discuss the inter-

play between the dot and impurity spin and its manifestation
in the transport properties. In particular, we investigate how
the the dynamics of the dot and impurity spin gives rise to
the sequence of positive and negative differential conduc-
tance features at the red and bright �green� dotted lines in
Fig. 4 for polarized electrodes and which is manifest in the
current oscillations of the I-V characteristics shown in Fig. 5.
�In our discussion, we focus on the case B�0. For B�0, the
impurity ground state is �−S
 and basically the role of the
cases 
=+1 and 
=−1 are interchanged.�

As tunneling into a ferromagnet is spin dependent, we
find that the rates for the impurity spin transitions
�m
→ �m+1
 and �m
→ �m−1
 are different, in general, be-
cause one transition involves tunneling of a minority spin
electron while the other involves tunneling of a majority spin
electron. We therefore have for the rates Wm→m+1�1− p and
Wm→m−1�1+ p. As a consequence, once exciting the impu-
rity spin becomes energetically possible, the spin-polarized
current through the right barrier has the tendency to flip the
impurity spin into the state �−S
 which in Figs. 5 and 6 oc-
curs at V=2��+U+��=295kBT.

At larger bias, transitions where energy is gained from the
impurity come into play. Alternatingly, they either lower the
z component of the impurity spin, �−S+ i
→ �−S+ i−1
, or
raise it, �S− i
→ �S− i+1
, with i� 
0,S�. Hence, the expec-
tation value of Sz is found to oscillate as a function of bias
voltage as is shown in Fig. 6.

The other key ingredient for understanding the conduc-
tance oscillations is the fact that tunneling through the right
barrier is spin dependent in two respects. On the one hand,
there is the dependence on the spin of the tunneling electron
due to the polarization of the lead, mentioned already above.
However, the tunneling also depends on the state of the im-
purity spin as the tunneling rate for spin-up �down� electrons
is proportional to �tR+SzjR�2��tR−SzjR�2�. This kind of spin
dependence is, then, responsible for relating the dot spin to
the impurity spin state. If, e.g., the impurity is in the
ground state �+S
, spin up electrons can leave more easily to
the right lead than spin down electrons. This results in a spin
down accumulating on the quantum dot, see Fig. 6,
2��+U��V�2��+U+��. When the z component of the im-
purity spin has a negative expectation value, the situation is
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FIG. 5. �Color online� Current as a function of bias voltage for
parallel magnetizations, p=0.3 and �L=�R=JR. Other parameters
are the same as in Fig. 3.
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reversed. Now, spin down leaves the dot more easily such
that spin up accumulates on the dot.

The spin accumulation on the dot affects the current
through the system. If the lower dot level is occupied by a
spin up electron, the Pauli principle prevents a second spin
up electron to enter the dot while transport of spin-down
electrons is suppressed by their smaller density of states.
Hence, the accumulation of spin up on the dot suppresses the
current. On the contrary, a spin down in the lower level does
hardly affect the current, as it can proceed by spin-up elec-
trons tunneling through the upper level.

Hence, in symmary we find that the interplay between the
current-induced switching of the impurity spin and the spin-
dependent tunneling through the right barrier results in an
interesting spin dynamics in the quantum-dot spin valve
which manifests itself in the transport properties of the sys-
tem. We emphasize that the transport signatures discussed
here are present for moderate polarizations. Hence, the po-
larizations of Fe, Co, or Ni �Refs. 17 and 82� should be
sufficient to experimentally detect them. For very large po-
larizations, the current oscillations discussed above are even
absent because in this case the current-induced switching
mechanism is so strong that the impurity will be kept in state
�−S
 once spin excitation becomes possible.

4. Giant Fano factor

In the above discussion of the current oscillations, we
found the current to be sensitive to the average impurity spin
only. The current noise however sheds more light on the
dynamics of the impurity spin. As can be seen in Fig. 7, in
the region where energy can be gained from the impurity to
allow electrons to leave the dot to the right �corresponding to
the region of dotted lines in Fig. 4�, the Fano factor is
strongly enhanced �note the logarithmic scale�.

The mechanism which gives rise to these giant Fano fac-
tors is the following. As can be seen in the upper panel of
Fig. 8, the probability to find the impurity in the states ��S

is finite for both states in the region where the Fano factor
becomes large. The dot spin follows the behavior of the im-
purity spin which means that it will point either up or down,
depending on the sign of Sz as shown in the middle and

lower panel of Fig. 8. The two dot spin configurations carry
a different current because only for the spin up accumulation
transport through the dot becomes spin blockaded. Hence,
the system switches between two current states on a rather
large time scale �as it takes several spin flip processes to
reverse the impurity spin� which gives rise to random tele-
graph noise. Similar behavior can be found, e.g., in arrays of
moveable colloid particles,83 transport through molecules
with strong electron-phonon coupling and strong vibrational
relaxation84 or double dot Aharonov-Bohm interferometers.85

It is interesting to note that the giant Fano factor occurs
for parallel as well as antiparallel magnetizations. This is due
to the fact that the moderate polarizations chosen here the
effects of bunching for parallel magnetizations and spin
blockade for antiparallel magnetizations are rather weak such
that they are unimportant compared to the random telegraph
switching.

B. Noncollinear magnetizations

So far, we only discussed the transport properties for non-
magnetic or collinearly magnetized electrodes. When dealing
with noncollinear magnetizations, a new physical effect
comes into play: the precession of the dot spin in an ex-
change field generated by virtual tunneling between the dot
and the leads. As mentioned in the introduction, the interplay
between spin accumulation and spin precession gives rise to
a number of characteristic transport signatures. In the follow-
ing, we discuss how the dependence of the exchange field on
the state of the impurity spin influences the transport prop-
erties, in particular, the current and the finite-frequency Fano
factor.
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FIG. 7. Fano factor as function of bias voltage. Parameters are
the same as in Fig. 6. The sharp peak at V=295kBT arises at the
onset of spin excitations �dashed, blue line in Fig. 4�.
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1. Current

In the normal quantum-dot spin valve, the current-voltage
characteristics provides information about the exchange field
acting on the dot spin. At the particle-hole symmetric point
of the Anderson model ��=−U /2�, the exchange field van-
ishes. Hence, only the spin accumulation on the dot influ-
ences the current, leading to a reduced current in the noncol-
linear geometry compared to the parallel case. Away from
this point, a finite exchange field acts on the dot spin and
gives rise to a precession of the spin out of the blocking
position. As a consequence, the current flowing through the
system becomes larger than at the particle-hole symmetric
point, resulting in a characteristic U-shaped I-V curve with a
broad region of negative differential conductance.

For the quantum-dot spin valve with an impurity embed-
ded in one of the tunnel barriers studying the current as a
function of bias voltage allows us to investigate the depen-
dence of the exchange field on the state of the impurity. We
will first focus on the situation where the interference term
has positive sign and V�0. In this case, if the impurity is in
state �+S
, there is a large exchange field acting on the dot
spin �cf. Fig. 3�, giving rise to a strong precession and
thereby to a clear lifting of the spin blockade. If the impurity

is in state �−S
, however, there is only a small exchange field
acting on the dot. Consequently, the spin blockade persists
and the current is not much enhanced by the exchange field.

As is shown in Fig. 9�a� �solid black curve�, we therefore
find a large current at the onset of transport through the
quantum dot. When increasing the bias voltage, the current
decreases slightly as the exchange field becomes weaker.
When the bias voltage is increased above the threshold for
impurity excitations, the impurity is switched from its
ground state �+S
 into the state �−S
 by the spin-polarized
current �cf. upper panel of Fig. 10�. As a consequence, the
exchange field changes abruptly at threshold toward smaller
values. This implies that the spin blockade on the dot cannot
be lifted anymore and the current is suppressed compared to
its values below threshold.

When the interference term has a negative sign 
gray �red�
curves in Fig. 9�a��, the situation is reversed. Now the ex-
change field takes on small values when the impurity is in
state �+S
 while it takes large values when the impurity is in
state �−S
. Hence, the current is now suppressed below
threshold while above threshold we find a nontrivial bias
dependence of the current due to the energy dependence of
the exchange field.

When a negative bias voltage is applied, no switching
occurs at the impurity excitation threshold as the spin-
polarized current has the tendency to bring the impurity into
the state �+S
 which is the ground state. We therefore find
that now the exchange field effects are clearly visible for a
positive sign of the interference term while they are very
small for a negative interference term.

In summary, we have shown how the current-voltage
characteristics for noncollinear magnetizations provide ac-
cess to the dependence of the exchange field on the impurity
spin state as well as to the sign of the interference term. We

0 200 400 600 800 1000
V/kBT

0

0.1

0.2

0.3

0.4

0.5
I
(e

Γ
/h̄

)

η = +1

η = −1
η = +1, Bex = 0

η = −1, Bex = 0

−1000−800−600−400−2000
V/kBT

0

0.1

0.2

0.3

0.4

0.5

I
(e

Γ
/h̄

)

η = +1

η = −1
η = +1, Bex = 0

η = −1, Bex = 0
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result, for the dashed curves the exchange field was set to zero by
hand.

−3

−2

−1

0

1

2

3

〈S
z
〉

η = +1

−0.4

−0.2

0

0.2

0.4

〈s
i〉

0 200 400 600 800 1000
V/kBT

−3

−2

−1

0

1

2

3

〈S
z
〉

η = −1

−0.5

−0.25

0

0.25

〈s
i〉

〈sx〉
〈sz〉
〈sz〉
〈Sz〉

FIG. 10. �Color online� x, y, and z component of the average dot
spin and z component of the average impurity spin for perpendicu-
lar magnetizations as function of bias voltage for positive �upper
panel� and negative �lower panel� sign of the interference term.
Parameters as in Fig. 9�a�.

TRANSPORT THROUGH QUANTUM-DOT SPIN VALVES… PHYSICAL REVIEW B 82, 245319 �2010�

245319-13



note, however, that the observation of exchange field effects
in the current relies on large polarizations.

2. Frequency-dependent Fano factor

The effects of the exchange field switching on the I-V
characteristic occur only for large polarizations as otherwise
the spin blockade on the dot is too weak. Another method to
gain information about the exchange field which also works
for smaller polarizations is to study the frequency-dependent
Fano factor.35

In Fig. 11, the frequency-dependent Fano factor is shown
for different bias voltages and different parameters of the
spin Hamiltonian. Parameters are chosen such that for the
smaller of the two bias voltages �black curves� the impurity
spin cannot be excited. For the larger bias voltage, the impu-
rity parameters allow an excitation of the impurity spin only
for the red solid curves while for the red dashed curves the
impurity still stays in the ground state.

For large polarizations and voltages below the excitation
threshold, the finite-frequency noise shows a peak at the Lar-
mor frequency of the exchange field. As the impurity is in
the ground state, the system is not sensitive to the impurity
parameters and both curves practically coincide. If the bias is
increased but the impurity stays in the ground state, the ab-
solute value of the exchange field is slightly reduced, cf.
lower panel of Fig. 3, resulting in a small shift of the reso-
nance signal toward smaller frequencies. If the bias is in-
creased and a switching of the impurity spin occurs, we in-
stead find that the exchange field is significantly reduced, cf.
Fig. 3, and therefore the resonance peak is also shifted to
much smaller frequencies. Hence, by detecting the resonance
frequency as a function of bias voltage one can gain infor-

mation about the switching of the exchange field as a conse-
qunce of the switching of the impurity spin.

For small polarizations, the effect does not work the same
way as just described. Now, the exchange field just changes
sign upon switching the impurity spin, cf. Fig. 3. Therefore,
no clear shifting of the resonance position occurs. To over-
come this problem, an external magnetic field of strength
comparable to the exchange field can be applied perpendicu-
larly to the plane defined by the electrode magnetizations.
Now, the position is defined by the Larmor frequency of the
total magnetic field while the form of the resonance signal
depends on the relative angle between external field and ex-
change field as can be seen in the upper panel of Fig. 11. If
the impurity spin stays in the ground state, a peak shows up
in F��� while a shoulder occurs at the Larmor frequency if
the impurity spin can be switched by the current. Hence, we
have shown that the switching of the exchange field can be
monitored also for moderate polarizations by measuring the
finite-frequency current noise for a series of applied bias
voltages.

VI. RESULTS—SMALL SPIN ON THE DOT

In this section, we discuss the transport properties of a
quantum-dot spin valve containing an additional spin 1/2 on
the quantum dot. We will focus on the two transport regimes
�ii� and �v� introduced above, cf. Table II. In these regimes,
the exchange coupling is small, J��, making them particu-
larly suited to describe the influence of nuclear spins on
transport through a quantum-dot spin valve. In regime �ii�,
the externally applied magnetic field B is much larger than
the tunnel coupling between dot and leads. In this regime, we
show that the coherent superpositions of the singlet and one
of the triplet states do not show up in the current. However,
they do lead to a signature in the finite-frequency Fano
factor. In regime �v�, the external magnetic field is weak,
B��. In this case, we discuss how to extract the exchange
coupling and external field from measurements of the
finite-frequency Fano factor.

A. Large magnetic field

We start our discussion with the case B��, J��, where
only superpositions of the singlet S and the triplet state T0 are

0.55

0.6

0.65

0.7

0.75

0.8
F

(ω
)

p = 0.3

0 0.5 1 1.5 2 2.5
ω/Γ

0.5

0.6

0.7

0.8

F
(ω

)

p = 0.9

V = 70kBT,B = 25kBT

V = 80kBT,B = 25kBT

V = 70kBT,B = 50kBT

V = 80kBT,B = 50kBT

FIG. 11. �Color online� Frequency-dependent Fano factor for
moderate �p=0.3, upper panel� and large �p=0.9, lower panel� po-
larizations. For p=0.3, an external magnetic field perpendicular
Bext=1.5� is applied to the quantum dot alongs its quantization
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relevant. In Fig. 12 we show schematically the differential
conductance as a function of bias voltage V and level posi-
tion �. The thick black lines indicate where a dot level is in
resonance with either the left or right Fermi energy. Hence,
they separate the Coulomb-blockaded regions from the re-
gions where sequential through the dot is possible. For con-
creteness, we will now discuss the sequence of transport pro-
cesses that come into play upon increasing the bias voltage
for a fixed level position �=B /2. For small bias voltages,
transport is possible only through the states �0↓
 and �T−
 as
transitions from �0↓
 to any of the other singly occupied
states are energetically forbidden while transitions from �T−

to �0↑
 are impossible as they violate spin conservation.

When the bias voltage is increased across the dark �blue�
dashed line, the bias window becomes large enough to also
allow transitions from �0↓
 to �T0
 and �S
. As for both of
these states there is a finite probability to find the impurity
spin in state ↑, both, �T0
 and �S
, can serve as a starting point
for a transition into the state �0↑
 which then allows transi-
tions into state �T+
. Hence, we find that as soon as the bias is
large enough to excite the �0↓
− �T0
 and �0↓
− �S
 transition,
all empty and singly occupied dot states contribute to trans-
port.

Upon increasing the bias voltage further across the red
dashed line, another set of transport processes becomes en-
ergetically possible. While transitions from singly occupied
dot state with the lowest energy, �T−
, to the doubly occupied
state �d↓
 are still not possible, it is nevertheless possible to
occupy the dot with two electrons by taking as a starting
point either �T0
 or �S
.

Finally, when crossing another black line, the bias voltage
is large enough to allow transitions between any two dot
states that conserve spin.

Approximating the Fermi function as step functions, one
can derive the following analytical expressions for the cur-
rent through the quantum dot in the different transport re-
gimes:

II =
�L�R

�L + �R
=

1 − a2

2
� , �6.1�

III =
2�L�R

2�L + �R
=

2�1 − a2�
3 + a

� , �6.2�

IIII =
�L�R��L + 2�R�

�L + �R
=

�3 − a��1 − a2�
4

� , �6.3�

IIV =
2�L�R

�L + �R
= �1 − a2�� . �6.4�

The Fano factor at zero frequency is given by

FI =
�L

2 + �R
2

��L + �R�2 =
1

2
�1 + a2� , �6.5�

FII =
4�L

2 + �R
2

�2�L + �R�2 =
5 + 6a + 5a2

�3 + a�2 , �6.6�

FIII =
�L

3 + 3�L
2�R + �R

2

��L + �R�3 =
1

8
�5 + 3a + 3a2 − 3a3� , �6.7�

FIV =
�L

2 + �R
2

��L + ��2 =
1

2
�1 + a2� . �6.8�

It is interesting to note that these expressions are precisely
the same as found by Thielmann et al.86 for transport through
a single-level quantum dot subject to a large magnetic field
coupled to normal leads. Hence, in the chosen parameter
regime, the current through the system and the zero-
frequency Fano factor are neither sensitive to the presence of
the impurity spin nor to the presence of ferromagnetic leads.
The absence of any magnetoresistance is due to the presence
of the large external field perpendicular to the plane spanned
by the magnetizations which renders the system insensitive
to the relative orientation of the magnetizations in this plane.

The fact that the system is insensitive to the presence of
the impurity spin and to the coherent superpositions between
�S
 and �T0
 deserves some further investigation. Typically in
systems where coherent superpositions of different states
have to be taken into account as, e.g., a normal quantum-dot
spin valve32,33 or double quantum dots,87 the current shows a
nontrivial bias dependence with broad regions of negative
differential conductance due to the energy-dependent level
renormalization that arises from virtual tunneling between
the dot and the leads. Such effects are clearly absent here. To
understand this behavior, we analyze the term describing the
isospin accumulation, Eq. �4.9�, in more detail. Due to the
Fermi functions in this expression, a finite isospin accumu-
lation can arise only in the regions marked III in Fig. 12.
When plugging in the expressions for the occupation prob-
abilities, we find however that
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FIG. 13. �Color online� Finite-frequency Fano factor for differ-
ent values of the exchange coupling J. The Fano factor shows a
peak at the Larmor frequency associated with the exchange field.
Parameters are �L=2�R, kBT=10�L, B=50kBT, U=5B, �=B /2,
and V=11B.
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�dI

dt
�

acc

= �− �L
�L

2�R
2

4��L + �R�2��L
2 + 2�L�R + 2�R

2 �

+ �R
�L

3�R

4��L + �R�2��L
2 + 2�L�R + 2�R

2 ��ex = 0,

�6.9�

i.e., the contributions to the isospin accumulation from the
left and right lead cancel precisely. In consequence, the iso-
spin vanishes on average in the stationary state such that the
aforementioned level renormalization effects cannot influ-
ence the current and zero-frequency noise.

So far, it seems that the coherent superpositions of �S
 and
�T0
 do not influence the transport through the system at all,
such that a description in terms of ordinary rate equations
which neglects the coherences suffices. This is not true, how-
ever, as can be seen from the finite-frequency Fano factor,
which is shown in Fig. 13. Here, apart from the usual peak
which arises at zero frequency, the Fano factor additionally
shows a peak associated with the Larmor frequency of the

exchange field in Eq. �4.11�. The coherent superpositions
play a role here as the finite-frequency noise is sensitive to
the dynamics of the dot spins while the current only captures
stationary properties of the quantum dot. While the contribu-
tions form the left and right lead to the isospin accumulation
cancel on average, indivdual processes can nevertheless give
a finite isospin accumulation.

In contrast to the normal quantum-dot spin valve, where
the Larmor frequency associated with the exchange field de-
pends on the level position and applied bias voltage,35 we
find that in the system under investigation here, the Larmor
frequency is simply given by the exchange coupling strength
J. This is due to the fact that the energy-dependent contribu-
tions to the exchange field arise only in the x component
which is parallel to the isospin accumulating on the dot and
hence cannot influence its precessional motion. The
frequency-dependent Fano factor may, therefore, be used to
experimentally determine the exchange coupling.

B. Small magnetic field

In the last section, we saw that coherent superpositions
can give rise to a signal in the frequency-dependent Fano
factor F��� which could be interpreted as the precession of
the isospin with the Larmor frequency of the exchange field.
In the case where B ,J��, the situation is more complicated
as now superpositions between any two states with the same
number of electrons on the dot have to be taken into account.

In Fig. 14, we show the finite-frequency Fano factor F���
as a function of the frequency � and the externally applied
magnetic field B for fixed exchange coupling J and vice
versa. In both cases, the Fano factor shows a number of
features at frequencies which all show a nontrivial depen-
dence on the external field B and the exchange coupling J.
To gain a better understanding of these features, we consider
a simpel spin model for the quantum dot. This is reasonable
as the dot is singly occupied most of the time for the chosen
parameters due to the asymmetric coupling to the leads. We
model the dot as consisting of two spin 1/2 particles that are
exchange coupled and subject to external magnetic fields.
While the impurity spin only couples to the externally ap-
plied field, the electron spin additionally experiences the ex-
change field generated by quantum charge fluctuations on the
dot. Hence, the Hamiltonian of our model is given by

H = JS1 · S2 + B1 · S1 + B2 · S2, �6.10�

where B1=Bex,LnL+Bex,RnR+Bez is the sum of the external
magnetic field and the exchange field while B2=Bez is sim-
ply given by the external field. To show that this is indeed the
correct way to describe the quantum dot system, in Appendix
D we give the equation of motion for the density matrix
elements of the two spins. Comparing them to the master
equation for the quantum dot system, Eqs. �4.14�–�4.19�,
shows the correspondence between the two systems. The
only difference is the absence of dissipative terms in the
equations for the spin model.

The differences between the energies of the various eigen-
states of Eq. �6.10� as a function of exchange coupling and
external field are indicated as black dotted lines in Fig. 14.
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We find a nice agreement between these energy differences
and the features observed in the Fano factor. On the one
hand, this indicates that the finite-frequency Fano factor is
indeed sensitive to level splittings comparable to the tunnel
couplings which cannot be resolved in the differential con-
ductance as the conductance peaks are broadened by tem-
perature which satisfies ��kBT. This can provide experi-
mental access, e.g., to the coupling between the dot and
impurity spin.

On the other hand, our results nicely demonstrate that the
exchange field which arises due to virtual tunneling pro-
cesses and not due to stray fields from the ferromagnetic
leads, acts only on the electron spin but not on the impurity
spin. If one could measure the Fano factor at finite frequency
as computed above, one could therefore clearly distinguish
exchange field effects from stray field effects as the latter
ones would act in the same way on both spins and thereby
give rise to a trivial dependence of the energy differences on
the exchange coupling and the external field.

VII. CONCLUSIONS

In this paper, we investigated transport through quantum-
dot spin valves containing magnetic impurities. First, we
considered the case where a large, anisotropic impurity spin
is localized in one of the tunneling barrier. Our main focus
was on the spin excitation and spin switching on the impurity
spin. We pointed out how the Coulomb interaction on the dot
allows a more detailed spectroscopy of the impurity spin. For
magnetic electrodes, the spin-polarized current through the
system can switch the spin of the impurity. As the state of the
impurity spin influences the current, an interplay between the
current and the impurity arises which gives rise to a series of
positive and negative differential conductance as a function
of bias voltage. We, furthermore, found that the dynamics of
the impurity spin gives rise to a random telegraph signal
associated with a huge Fano factor. Additionally, we found
that for tunneling through the barrier containing the impurity
interference between direct and exchange tunneling takes
place even for nonmagnetic systems. This is in contrast to
tunnel barriers where such interference effects arise only for
magnetic electrodes. Finally, we found that the exchange
field acting on the dot spin becomes dependent on the impu-
rity spin state. This dependence allows the observation of the
impurity switching in the current as well as in the finite-
frequency noise for noncollinear magnetizations.

Second, we considered a spin 1/2 impurity localized on
the dot in the regime of small exchange coupling to the elec-
tron spin. Here, our main focus was on the coherent spin
dynamics on the quantum dot. For a large external magnetic
field, only coherent superpositions between the singlet �S

and triplet �T0
 are relevant. However, they influence neither
the current nor the zero-frequency noise as they vanish in the
stationary state. Nevertheless, as the superpositions can be
excited, they give rise to a signal in the finite-frequency
noise at �=J. For small external magnetic fields, all coher-
ences have to be taken into account. They give rise to a large
number of features in the finite-frequency noise. These pro-
vide informations about the level splittings that are influ-

enced by renormalization effects due to virtual tunneling to
the leads.

To summarize, we found that in both cases, for the large
as well as for the small impurity spin, there is an intricate
interplay between the electron and impurity spin that mani-
fests itself in the transport properties of the system. The de-
tails of of this interplay vary, however. The large impurity
spin does not show any coherent dynamics in the sequential
tunneling regime as its level splittings generated by the an-
isotropy are large compared to the tunnel couplings and the
temperature. In consequence, these splittings can be resolved
in the current which also allows to study the current-induced
switching of the impurity. In contrast, for a small impurity
spin, both, the electron and the impurity spin behave as one
object that displays a coherent dynamics as level splittings
are of the order of the tunnel coupling. Clear signatures of
this dynamics can be found in the finite-frequency noise that
allows to resolve level splittings of the order ��kBT.
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APPENDIX A: DIAGRAMMATIC RULES

In this appendix, we summarize the diagrammatic rules to
evaluate the self-energies entering the generalized master Eq.
�3.1� and the expressions for the current in Eq. �3.4� and

current noise in Eq. �3.5�. To compute the self-energy W
�2�2�
�1�1�:

�1� Draw all topological different diagrams with tunneling
lines connecting vertices on either the same or opposite
propagators. Assign to the four corners and all propagators
states � and corresponding energies E� as well as an energy
� for every tunneling line.

�2� For each part of the diagram between adjacent verti-
ces, assign a resolvent 1 / ��E+ i0+�, where �E is the differ-
ence between the energies of left- and right-going tunneling
lines and propagators.

�3� For each tunneling line, the diagram acquires a factor
of 1

2� fr
���� where the sign is determined by whether the line

runs forward �−� or backward �+� with respect to the
Keldysh contour.

�4� For each pair of vertices connected by a tunneling line
the diagram is multiplied by 1+p

2 �r��i��Cr↑��i
��f��Cr↑
† ��f


+ 1−p
2 �r��i��Cr↓��i
��f��Cr↓

† ��f
, where �i and �i� ��f and �f�� are
the states that enter and leave the vertex the tunneling line
begins �ends� at, respectively. The operators Cr↑ and Cr↓ are
the coefficients �including the dot operators!� of ark+

† and ark−
†

in the tunnel Hamiltonians �2.5�, �2.6�, and �2.9�, respec-
tively.

�5� Each vertex connecting the states d and ↓ gives rise to
a factor of −1.

�6� The diagram obtains a factor
�−i��−1�a+b, where a is the number of vertices on the lower
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propagator and b is the number of crossings of tunneling
lines.

�7� Sum over all leads r and integrate over all energies �.

The diagrams for W
�2�2�
I�1�1� and W

�2�2�
II�1�1� are obtained by re-

placing one, respectively, two tunneling vertices by current
vertices. These give rise to a factor of +1 /2�−1 /2� if the
vertex is on the upper �lower� branch and corresponds to an
electron tunneling into the right �left� lead or out off the left
�right� lead.

APPENDIX B: MASTER EQUATION

1. Model A: Large spin in the barrier

In this appendix, we give explicit expressions for the vari-
ous quantities that occurred in the master equations for the
occupation probabilities and the spin, Eqs. �4.2� and �4.3� of
model A, i.e., a quantum-dot spin valve with an impurity
spin embedded in the right tunnel barrier. Introducing
�=�R+m2JR+2mp
	�RJR, �̃= p�R+m2pJR+2m
	�RJR,
	�=B+ �2m�1�D, and A��m�=S�S+1�−m�m�1�, we find
for the coupling to the left lead

WL
�0� = �L�− 2fL

+��� fL
−��� 0

2fL
+��� − fL

−��� − fL
+�� + U� 2fL

−�� + U�
0 fL

+�� + U� − fL
−�� + U�

� ,

�B1�

VL
�0� = 2p�L� fL

−���
− fL

−��� + fL
+�� + U�

− fL
+�� + U�

� , �B2�

�dsm

dt
�

acc,L

�0�

= p�L� fL
+���P0,m −

fL
−� � − fL

+�� + U�
2

P1,m

− fL
−�� + U�Pd,m�nL, �B3�

�dsm

dt
�

rel,L

�0�

= − �L
fL
−��� + fL

+�� + U��sm, �B4�

which is identical to the expressions found for the ordinary
quantum-dot spin valve in Ref. 33. For the coupling to the
right lead, we have

WR
�0� = � WR,00

�0� �fR
−��� 0

2�fR
+��� WR,11

�0� 2�fR
−�� + U�

0 �fR
+�� + U� WR,dd

�0� � , �B5�

where the diagonal matrix elements are determined by the
sum rule eTW=0

VR
�0� = 2�

�fR
−���

�̃
− fR
−��� + fR

+�� + U�� + A+�m − 1�JR�1 + p

2
fR

−�� − 	−� +
1 − p

2
fR

+�� + U + 	−��
− A−�m + 1�JR�1 − p

2
fR

−�� + 	+� +
1 + p

2
fR

+�� + U − 	+��
�fR

+�� + U�
� , �B6�

WR
�+1� = A−�m + 1�JR� 0

1 + p

2
fR

−�� − 	+� 0

�1 − p�fR
+�� + 	+� 0 �1 + p�fR

−�� + U − 	+�

0
1 − p

2
fR

+�� + U + 	+� 0 � , �B7�

VR
�+1� = A−�m + 1�JR� − �1 + p�fR

−�� − 	+�
0

− �1 − p�fR
+�� + U + 	+�

� , �B8�

WR
�−1� = A+�m − 1�JR� 0

1 − p

2
fR

−�� + 	−� 0

�1 + p�fR
+�� − 	−� 0 �1 − p�fR

−�� + U + 	−�

0
1 + p

2
fR

+�� + U − 	−� 0 � , �B9�
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VR
�−1� = A+�m − 1�JR� �1 − p�fR

−�� + 	−�
0

�1 + p�fR
+�� + U − 	−�

� , �B10�

�dsm

dt
�

acc,R

�0�

= ��̃fR
+���P0,m − �̃fR

−�� + U�Pd,m + ��̃
− fR

−��� + fR
+�� + U�

2
+ A+�m − 1�

JR

2
�1 + p

2
fR

−�� − 	−� +
1 − p

2
fR

+�� + U + 	−��
− A−�m + 1�

JR

2
�1 − p

2
fR

−�� + 	+� +
1 + p

2
fR

+�� + U − 	+���P1,m�nR, �B11�

�dsm

dt
�

acc,R

�+1�

= A−�m + 1�JR
�1 − p�fR
+�� + 	+�P0,m+1 + �1 + p�fR

−�� + U − 	+�Pd,m+1�nR, �B12�

�dsm

dt
�

acc,R

�−1�

= − A+�m − 1�JR
�1 + p�fR
+�� − 	−�P0,m−1 + �1 − p�fR

−�� + U + 	−�Pd,m−1�nR, �B13�

�dsm

dt
�

rel,R

�0�

= − ��
fR
−��� + fR

+�� + U�� + A+�m − 1�JR�1 + p

2
fR

−�� − 	−� +
1 − p

2
fR

+�� + U + 	−��
+ A−�m + 1�JR�1 − p

2
fR

−�� + 	+� +
1 + p

2
fR

+�� + U − 	+���sm. �B14�

2. Model B: Small spin on the dot

The vector V occurring in the master Eq. �4.7� of model B, i.e., the quantum-dot spin valve containing a spin 1/2 on the dot
is given by

V = �
r

�r�
− fr

−�� − B/2�
fr

−�� + B/2�
0

fr
−�� − B/2� − fr

−�� + B/2� + fr
+�� + U + B/2� − fr

+�� + U − B/2�
0

− fr
+�� + U + B/2�

fr
+�� + U − B/2�

� . �B15�

APPENDIX C: DENSITY MATRIX ELEMENTS

In this section, we give the relation between the physical
quantities introduced in Sec. IV B 2 and the density matrix
elements in Eq. �4.6�. For the occupation probabilities of the
dot we have

P0 = P0↑ + P0↓, �C1�

P1 = PT+ + PT0 + PT− + PS, �C2�

Pd = Pd↑ + Pd↓. �C3�

For the expectation values of the impurity spin when the dot
is empty, we get

S0x = Re P0↑
0↓, �C4�

S0y = Im P0↑
0↓, �C5�

S0z =
P0↑ − P0↓

2
. �C6�

When the dot is singly occupied, we have

S2x =
− Re PT−

S + Re PT+
S + Re PT−

T0
+ Re PT+

T0

	2
, �C7�

S2y =
Im PT−

S + Im PT+
S + Im PT+

T0
− Im PT−

T0

	2
, �C8�
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S2z =
PT+ − PT− − 2 Re PT0

S

2
�C9�

and for the doubly occupied dot, we find

Sdx = Re Pd↑
d↓, �C10�

Sdy = Im Pd↑
d↓, �C11�

Sdz =
Pd↑ − Pd↓

2
. �C12�

The expectation value of the electron spin on the dot can be
expressed as

S1x =
Re PT−

S − Re PT+
S + Re PT−

T0
+ Re PT+

T0

	2
, �C13�

S1y =
− Im PT−

S − Im PT+
S + Im PT+

T0
− Im PT−

T0

	2
, �C14�

S1z =
PT+ − PT− + 2 Re PT0

S

2
. �C15�

For the scalar product of the electron and impurity spin, we
find

S1 · S2 =
PT+ + PT0 + PT− − 3PS

4
�C16�

while for their vector product, we get

�S1 � S2�x =
Im PT−

S − Im PT+
S

	2
, �C17�

�S1 � S2�y =
Re PT+

S + Re PT−
S

	2
, �C18�

�S1 � S2�z = Im PT0
S . �C19�

Finally, the quadrupole moments are given by

Qxx =
2PT0 − PT− − PT+ + 6 Re PT+

T−

12
, �C20�

Qyy =
2PT0 − PT− − PT+ − 6 Re PT+

T−

12
, �C21�

Qzz =
PT+ − 2PT0 + PT−

6
, �C22�

Qxy =
Im PT+

T−

2
, �C23�

Qxz =
− Re PT−

T0
+ Re PT+

T0

2	2
, �C24�

Qyz =
Im PT−

T0
+ Im PT+

T0

2	2
. �C25�

APPENDIX D: EQUATION OF MOTION FOR TWO SPIN
1/2 PARTICLES

The equations of motion of two exchange-coupled spins
S1 and S2 subject to magnetic fields B1 and B2, respectively,
as described by the Hamiltonian �6.10� are given by

dS1

dt
= − S1 � B1 − J�S1 � S2� , �D1�

dS2

dt
= − S2 � B2 + J�S1 � S2� , �D2�

d

dt
�S1 · S2� = �S1 � S2� · �B1 − B2� , �D3�

d

dt
�S1 � S2� = −

1

2
�S1 � S2� � �B1 + B2�

+ �Q −
2

3
�S1 · S2�� · �B1 − B2� +

J

2
�S1 − S2� ,

�D4�

d

dt
Qij = −

1

2
�1

2
�S1 � S2�i�B1 − B2� j +

1

2
�S1 � S2� j�B1 − B2�i

−
1

3
�S1 � S2� · �B1 − B2��ij� −

1

2
�ilmQlj�B1 + B2�m

−
1

2
� jlmQli�B1 + B2�m. �D5�

It is interesting to note that some terms contain the sum of
the two magnetic field while other couple to the difference.
In consequence, for the quantum-dot system under investiga-
tion, some terms are only sensitive to the exchange field as
the external field acts on both spins in the same way while
other terms are sensitive to both field contributions.
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