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We study spin conductance in a ballistic and quasiballistic two-dimensional electron system with Rashba
spin-orbit coupling. The system has a four-terminal geometry with round corners at the connection to the leads.
It is found that by going from sharp corners to more round corners in the ballistic system the energy-depended
spin conductance goes from being relatively flat to a curve showing a series of minima and maxima. It is also
found that when changing the size of the terminal area by modifying the roundness of the terminal corners the
maxima and minima in the transverse spin conductance are shifted in energy. This shift is due increased
�decreased� energy for smaller �larger� terminal area. These results were also found to be reasonably stable in
quasiballistic systems.
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I. INTRODUCTION AND MOTIVATION

Spin-orbit �SO� coupling in semiconductor nanostructures
has for some time been considered as one of the main can-
didates in controlling spin in semiconductor spintronic
devices.1–3 One of the main benefits of the SO coupling is
that it can be used to manipulate electron spins in semicon-
ductors through gate voltages instead of external magnetic
fields4 or magnetic doping.5 SO coupling arises from relativ-
istic effects and when combined with k ·p—calculation it
will lead to spin-orbit terms depending on the crystal struc-
ture, i.e., the Dresselhaus SO coupling6,7 in crystals that lack
inversion symmetry. In addition, further spin-orbit contribu-
tions can occur at heterostructure interfaces. This contribu-
tion is the so-called Rashba SO coupling.7,8 Voltages applied
to local gates can change the heterostructure confining po-
tential, thus modifying the Rashba SO coupling.9,10 More
recently, yet a new type of spin-orbit interaction has been
found in symmetric two-dimensional �2D� quantum struc-
tures with two subbands: the intersubband induced spin-orbit
coupling.11,12

In the field of spintronics the main goals is the creation
and detection of spin currents. In electron-doped semicon-
ductor structures one of the main candidates for spin-current
creation is the so-called spin-Hall effect.13 Although it has
been proved that in extended 2D systems the spin-Hall effect
vanishes,14–16 this results does not hold in finite-size systems.
The exception here are systems with the intersubband in-
duced spin-orbit coupling,11,12 which gives rise to a nonzero
spin-Hall effect,17 even for extended systems. The interplay
of in-plane confinement and spin-orbit interaction leads to
many interesting spin-related transport phenomena.

The Rashba SO coupling has been in recent years exten-
sively studied both experimentally10,18–23 and theoretically,
either in two-terminal setups,24–29 or in multiterminal
setups.27,30–34 Previous numerical studies hint that the shape
of the scattering area of the system plays a vital role in the
behavior of the spin current flowing through the transverse
leads.31,32

In this work we will present calculation of spin conduc-
tance through transverse leads in a four-terminal spin-Hall

setup where the shape of the scattering region is changed.
Most lattice model calculations27,30–34 used abrupt edges in
the way the leads where connected to the scattering region.
This abruptness leads to substantial scattering �both of
charge and spin� which can suppress spin-related phenomena
that one is interested in. We use smooth connection of leads
to the scattering area. Since most semiconductor heterostruc-
tures are defined by gates, one would expect relatively
smooth confining potentials.35 We study the spin conduc-
tance as a function of scattering area shape and propose an
explanation of the observed connection between the spin
conductance and the change in size of the scattering region.
We also observe that the values of spin conductance are rela-
tively large which is due to the smooth transfer of electrons
from the longitudinal leads to the transverse one.

The paper is organized as follows. In Sec. II we present
the theory behind the calculations. Section III defines the
parameters used in the calculations and presents the results
for the ballistic system in Sec. III A and for the quasiballistic
system in Sec. III B. Finally Sec. IV contains conclusions
and discussion.

II. THEORY

We are interested in a four-terminal two-dimensional elec-
tron gas �2DEG� in a semiconductor heterostructure. A sche-
matic of the scattering region of the system can be seen in
Fig. 1. The system is described by the following effective
mass Hamiltonian:

H�x,y� =
px

2 + py
2

2m�
+ VC�x,y� + HR�x,y� , �1�

where m� is the effective electron mass. VC�x ,y� describes a
hard-wall confining potential shape of the four-terminal junc-
tion with round corners. The roundness of each corner can be
controlled independently by varying the radii of the circular
corners, RC1 and RC2. In a region centered on the scattering
area we have a SO coupling which is described by the sym-
metrized Rashba Hamiltonian
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HR�x,y� =
1

2�
���x,y�,�py�x − px�y�� . �2�

Here ��x ,y� is the Rashba SO coupling strength which is
turned on smoothly at the edges of the scattering region.
Having Rashba SO coupling only in a finite area of the
sample can be achieved by using metallic gate on top of the
2DEG.36 The Hamiltonian is discretized on a square lattice
using the finite-difference method, resulting in an infinitely
large matrix. The corresponding matrix equation for the re-
tarded Green’s-function matrix of the system is

�EI − H�Gr = I . �3�

The scattering region part of the Hamiltonian, Eq. �3�, can be
made finite by treating the leads as self-energies in the stan-
dard way.37,38 The leads have no SO coupling. The finite
version of the matrix equation is

�EI − Hs − �
j

� j�Gs
r = I . �4�

Here the self-energy of lead j is � j, Hs is the Hamiltonian of
the scattering region and Gs

r is the retarded Green’s function.
All the matrices are 2NxNy �2NxNy matrices. In order to
save computational power only the necessary Green’s-
function matrix elements are calculated with the recursive
Green’s-function method.38 From the Green’s function both
the spin conductance and spin densities can be calculated.
The z spin density for a bias of eV0 is

�Sz�r�	 =
�

2



EF−eV0/2

EF+eV0/2 dE

2�i
Trspin��zG

��r,r;E�� , �5�

where �z is the Pauli matrix for the z direction,

G��r,r;E� = iGs
r�E���

j

f j�E�� j�E��Gs
a�E��

r,r

�6�

is the lesser Green’s function,39 � j =−2 Im�� j�, and f j�E�
=1 / �exp���E−� j��+1� is the Fermi function in lead j which
has the chemical potential � j =EF+eVj. We define the spin-
dependent conductance between the leads q and p as

Gpq
��� =

e2

h
�Tr��z�qGs

r�pGs
a���,��. �7�

Using the Landauer Büttiker formula we write the linear re-
sponse of the �= ↑ ,↓ spin-depended current through lead p
as

Ip
� = �

q,��

Gqp
�,���Vp − Vq� . �8�

III. NUMERICAL SIMULATIONS

The dimension of the scattering area is set within a Lx
�Ly box-shaped area, where Lx=Ly =600 nm. This area is
discretized on a 102�102-point grid with constant mesh size
a=5.88 nm and the effective electron mass is set as m�

=0.0447me, which is a reasonable value for Ga1−xInxAs
alloys.40 In the simulations all lengths where scaled in the
mesh size a and energies in the tight-binding hopping term
t=�2 /2m�a2=24.6 meV which results from the finite-
difference discretization of the Hamiltonian in Eq. �1�. Four
leads connect to the system, two main leads with width Wy
=41a=241 nm �leads 1 and 2� and two transverse leads with
width Wx=18a=106 nm �leads 3 and 4�. In the following,
the energy will be scaled in the lowest transverse energy of
the main leads, E0=0.145 meV=5.89�10−3t. Similarly we
also define Et=5.46E0 which is the lowest transverse energy
of the transverse leads. The effect of Rashba SO coupling is
turned on smoothly over a 10a=58.8 nm strip at the edge of
the scattering area, see the hatched area in Fig. 1, to its full
strength �0. Between the two main leads we apply a bias
eV0=1E0. This means that the chemical potentials at the
leads measured from EF will be eV1=eV0 /2, eV2=−eV0 /2,
and eV3=eV4=0. According to Eq. �8� the spin-depended
current ��= ↑ ,↓� is then

It
� = �Gt2

�� + Gt2
��̄ − Gt1

�� − Gt1
��̄�

V0

2
t = 3,4. �9�

We define the spin-Hall conductance in transverse lead t as

GsHt
=

�

2e

It
↑ − It

↓

V0
t = 3,4. �10�

Note that in our scenario the total charge current through the
transverse leads is always zero because of how we define the
bias over the leads. Throughout the paper the full strength of
the Rashba SO coupling will be set as �0=10 meV nm
=2atSO, where tSO=3.46�10−2t. This value of Rashba SO
coupling is typical for Ga1−xInxAs alloys and is also in the
regime where we begin to see strong and interesting features
in spin conductance through the transverse lead.

FIG. 1. Schematic picture of the four-terminal system. Sharp
corners are replaced by round corners with radii RC1 and RC2, see
Fig. 1. The whole system has a length of Lx=102a=600 nm and
width of Ly =Lx. Leads 1 and 2 are the main leads into the system
with a width of Wy =41a=241 nm while leads 3 and 4 are the
transverse leads into the system with a width of Wx=18a
=106 nm. The Rashba SO coupling is turned on smoothly on a
10a=58.8 nm thick strip framing the system �hatched area in the
figure�. Inside the scattering region is shown a circle of width D
which we use to estimate the size of the terminal area.
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A. Ballistic system

We will start by showing the spin-Hall conductance
through the transverse leads in a clean system. In Fig. 2 the
spin-Hall conductance through lead 3, GsH3

, is plotted as a
function of Fermi energy EF for three types of shapes. Figure
2�a� corresponds to shape with RC=29a, Fig. 2�b� to RC
=26a. In both figures the spin conductance for a sharp corner
system �RC=0a� is plotted for comparison. Here we use RC
=RC1=RC2 when all the corners have the same curvature.

In Figs. 2�a� and 2�b�, we see that the spin conductance
curves corresponding to the round corner systems �RC=29a
and RC=26a� are rich in minima and maxima. These extrema
are most likely related to the resonance states in the scatter-
ing area which we will discuss below.

The resonance states form when the leads get adiabati-
cally larger which results in a downward shift in the trans-
verse energy bands of the leads,41 see Fig. 3. This causes new
states to become available at the Fermi energy which have
very low longitudinal velocity �vx�0�. Near the transverse
leads the adiabatic approximation ceases to apply and the
electron scatter in to different states, including the newly
opened low longitudinal velocity states which give rise to
conductance extrema in the transverse leads.

The sharp corner GsH3
curve, shown both in Figs. 2�a� and

2�b�, behaves differently. At high enough energies �EF
	30E0� the curve changes slowly with energy and has no
significant resonance peaks, apart from isolated peaks due to
divergence in the density of states at energies corresponding
to the band bottom in the longitudinal leads. The observed
behavior of the sharp corner GsH3

is due to the strong scat-
tering by the sharp corners. An electron coming in from the
left, with a definite k value, gets scattered into all possible
states, with the same energy, when it enters the scattering
region. For higher energies these states are very many, all
corresponding to different effective magnetic fields which
tend to average out the spin signal. Note that for low energies
we still see peaks and minima since only a few k states are
available at such low energies.

Comparing the round corner curves in Figs. 2�a� and 2�b�
we see that the extrema at EF=56E0 in Fig. 2�a� has shifted
to EF=60E0 in Fig. 2�b�. Other extrema in GsH3

seem also to
have been shifted by the change in corner radius RC. To
explore in more detail this shift of extrema in GsH3

with
change in curvature we make a surface plot of the spin-Hall
conductance through lead 3, GsH3

, as a function of Fermi
energy varied from 0E0 to 100E0 and RC varied from 0a
�sharp corners� to 30a with interval of 1a. The result can be
seen in Fig. 4�a�. There we see that for low corner curvatures
�RC
10a� the spin conductance becomes smeared out as
was discussed above.

For higher corner curvatures �RC�10a� we get a spin
conductance curve which shows a series of minima and
maxima. Extrema in GsH3

also begin to shift in energy with
increasing corner curvature. For smoother corners the trans-
port gets more adiabatic and the extrema in GsH3

will be
more influenced by geometric resonances, i.e., changes in
shape will be adiabatically translated into a shift in the en-
ergy bands that will affect the transport. Changing the cur-
vature of the scattering region effectively changes its area.
For smooth enough corners, the shape of the system is not
affected by changing the curvature, only its size, which re-
sults in a universal shift of all bands in the scattering area.
This does not apply to the sharp corners, where a small
change in curvature can results in great change in scattering
properties.

The effective diameter of the scattering region is D= ��2
−1��RC1+RC2�+�Wx

2+Wy
2, see Fig. 1. The energy shift of a

given GsH3
extrema will be EC�D−2. The prefactor is not

known but this does not matter as we will show here below.
We can pick a reference energy EC0

, with reference size D0

= ��2−1��RC10
+RC20

�+�WA
2 +WB

2 , on the same extrema in
GsH3

. By dividing EC with this reference energy EC0
we get

rid of the unknown prefactor in EC and obtain
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3
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FIG. 2. �Color online� Spin conductance through lead 3 plotted
as a function of Fermi energy. �a� correspond to the four-terminal
shape where RC=29a and �b� correspond to RC=26a. In both fig-
ures the spin conductance through a RC=0a system �sharp corners�
is plotted for comparison. The bottom of the energy bands of trans-
verse leads �with energy scaled in Et� have been marked onto the
figure. Note that the y scale is unique for each of the figures.

FIG. 3. �Color online� Schematic picture showing the effective
shift in the transverse Rasbha energy bands, see �a�, when the sys-
tem gets wider, see �b�. In �a� the left energy bands corresponds to
the system where the width is WI and the right energy bands corre-
spond to the system where the width is WII. Here kx is the longitu-
dinal k vector of the electrons. The red lines �shifted to the right�
correspond to spin-up states and the blue lines �shifted to the left� to
spin-down states. At Fermi energies E1 and E2 we get additional
states with low longitudinal velocities �vx�0�, marked with white
dots, in addition to the states with positive velocities, marked with
red and blue dots. In the terminal area the electrons from the origi-
nal positive longitudinal velocity states can scatter into these newly
open states.
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EC = � ��2 − 1��RC10
+ RC20

� + �Wx
2 + Wy

2

��2 − 1��RC1 + RC2� + �Wx
2 + Wy

2 �2

EC0
, �11�

which describes the shift of the energy levels in the scatter-
ing area as a function of the shape of the scattering area.

In Fig. 4�a� we have plotted curves, shown with black
dashed lines, with reference points at RC0

=RC10
=RC20

=30a
on all the spin conductance maxima. As can be seen for RC
�10a the shift of the maxima curves fits well to the shift that
we expect for adiabatic change in size of the scattering area.
For RC
10a scattering from the corners gets more dominat-
ing, which is to be expected since the system is out the
adiabatic regime and the sensitivity to the corners takes over.

A shape where we keep RC2=30a fixed and only vary RC1
was also examined, see Fig. 4�b�. Here we also plot curves
based on Eq. �11�, shown with black dashed lines, with ref-
erence points at RC1=30a on all the maxima curves. We
notice that the for low RC1 corner curvatures, RC1
10a, we
get somewhat more structure than for than for low RC in the
equal corner shape. This is due to that only two corners are
contributing to the sharp corner scattering. We also notice
that for RC1�10a the shift in spin conductance maxima fol-
lows the expected shift calculated from Eq. �11�.

To examine the effect of corner curvature better we also
plot the density of the z spin component in the scattering
region for three types of all equal corner shape RC=29a, see
Fig. 5�a�, RC=29a, see Fig. 5�b�, and RC=0a, see Fig. 5�c�.
For all three types we set the bias as eV0=1E0 and tempera-
ture at T=1 K.

In Fig. 5�a� we have stronger spin densities along the
corner edges and within the transverse leads than in Fig.
5�b�. Also the spin densities averaged over the transverse
leads in Fig. 5�b� is lower compared to equivalent averaging
in Fig. 5�a�. These densities correspond to spin conductance
strength marked with black circles in Fig. 4�a� and as ex-
pected the more positive spin conductance yields more posi-
tive spin density averaged over the transverse leads. For
comparison we also include spin density in the sharp corner
system, see Fig. 5�c�. We see that the spin density in the
sharp corner system is more smeared out than in the round
corner systems, as could be expected in light of previous
discussion about the sharp corner system. Note though that
these spin densities seen in Fig. 5 are not large, only up to
�1.3�10−6� /2 nm−2.

The results presented in this section suggest that polariza-
tion of the spin current through the transverse leads can be
effectively controlled by tuning the curvature of the corners
in the scattering area. This could be realized by using, e.g.,
finger gates.42

B. Quasiballistic system

To test how robust the GsH extrema are, we add impurity
effects to our model. Two different methods of including
impurity effects were studied. The first method which we
will consider involves adding a few randomly distributed
Gaussian-shaped impurities to the sample. The second
method which we considered is the Anderson impurity
method which has already been extensively used for similar
simulations.27–30,43,44

1. Static impurities

Phenomena such as crystal defects can introduce extra
potential bumps in the otherwise uniform potential back-

FIG. 4. �Color online� Spin conductance through lead 3 plotted
as a function of radii of the corners and Fermi energy. In �a� all
corners are equally varied while in �b� two corners are varied
equally, the RC1 corners, and two corners are kept fixed, RC2=30a.
The black dashed lines show the shift of GsH maxima in energy
according to Eq. �11�. The horizontal black lines mark where the
spin conductance through lead 3 in Figs. 2�a� and 2�b� lie and the
black circles show the �RC, EF� coordinates of the spin densities
shown in Fig. 5. The vertical black lines mark the bottom of the
transverse energy bands scaled in Et=5.46E0.

FIG. 5. �Color online� Density of the spin z component in the
ballistic system at EF=56E0 for three different geometries. The
shape in �a� has RC=29a, the shape in �b� has RC=26a, and the
shape in �c� has RC=0a �sharp corners�. These �EF ,RC� values cor-
respond to the spin-Hall values marked with black circles in Fig.
4�a�.
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ground. These bumps can be described as static Gaussian-
shaped impurities in the scattering region which we add ran-
domly to our scattering region via the term

VI�x,y� = VI0�
i=1

NI

exp�−
�xi − x�2 + �yi − y�2

2I
2 � , �12�

which is added to the Hamiltonian in Eq. �1�. Here VI0
is the

potential height of the potential bump, NI is the number of
impurities, �xi ,yi� the center point of each impurity, and I
impurity range. We would expect the number of these impu-
rities to be just a few percent of the number of donors. We
choose 2% which corresponds to roughly NI=20 Gaussian
impurities in an 600�600 nm2 area and a delta donor den-
sity of �3�1011 cm−2. We are interested in seeing how
strong these Gaussian-shaped impurities must be to have sig-
nificant effect on the spin-Hall conductance. To accomplish
this four cases of impurity strength were studied: VI0

=1E0,
VI0

=5E0, VI0
=10E0, and VI0

=50E0, see Fig. 6. These values
of impurity strength are roughly the same order of magnitude
as a screened and unscreened point charge 17 nm away from

a 2DEG in Ga�Al�As heterostructure.35 The effect these im-
purities have on the spin-Hall conductance in leads 3 and 4
can be seen in Fig. 7. There we see that up to impurity
strength VI0

=10E0 the spin conductance is rather stable and
that spin conductance through lead 3 and 4 is symmetric
around zero.

2. Anderson-type impurities

The Anderson impurity potential adds to each point in the
scattering area a random value of potential energy in the
range �−U /2,U /2�, where U describes the disorder strength.
To study the effect of the Anderson-type impurities on GsH
we focus on an extrema in GsH3

at EF=56E0 for a RC=29a
scattering shape, see Fig. 2�a�. In Fig. 8 the spin-Hall con-
ductance is plotted for impurity strength ranging from U
=0.05t to U=1.0t. Each data point is averaged over 1000
impurity configurations. For comparison we include the re-
sult for the ballistic system, seen also in Fig. 2�a�. In Fig. 8
we see that the structure of the spin conductance is stable up
to U=0.2t=34.2E0 although its amplitude diminishes and the
structure shifts with increasing disorder strength. For U
=0.5t=85.5E0 the spin conductance seems to be disappear-
ing as has been shown for such large disorder values.34

These results can be compared with the mean-free path l
which in two-dimensional systems is given by44

l =
6�F

3

�3a2�EF

U
�2

= 48
�EF

U2 t3/2a , �13�

where �F is the Fermi wavelength. We see, e.g., for systems
with EF=56E0 and impurity strength U=0.05t �U=0.20t�
that the mean-free path is l=65 �m�l=4 �m� which is
large compared to the system size, L=600 nm. This corre-
sponds to systems in the quasiballistic regime. On the other
hand for impurity strength U=0.50t the mean-free path is l
=647 nm which is comparable to the system size. For this
value of U, or larger, the system is entering the diffusive
regime.

FIG. 7. �Color online� The spin conductance through lead 3 and
4 as a function of energy for the cases shown in Fig. 6 compared to
the spin conductance of the clean system, see Fig. 2�a�. Note that
the GsH scale is shifted incrementally for each VI0

curve from the
VI0

=1E0 curve.
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FIG. 8. �Color online� The spin conductance through lead 3 as a
function of Fermi energy for a range of disorder strengths U. To
compare we also plot he spin conductance of the ballistic system
which we mark with U=0t. These results have been averaged over
1000 runs and the disorder strength is scaled in the tight-binding
hopping term t=171E0.

FIG. 6. �Color online� Scattering shape using RC=29a corner
radii and with NI=20 static impurities added on random locations in
the whole box of the scattering area. All impurities are set to have
range I=2a, and the impurity strength is set at VI0

=1E0 for impu-
rities in �a�, VI0

=5E0 for impurities in �b�, VI0
=10E0 for impurities

in �c�, and VI0
=50E0 for impurities in �d�.
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IV. CONCLUSIONS AND DISCUSSION

In this paper the effect of scattering area shape on spin
conductance in a four-terminal 2DEG structure with Rashba
SO coupling is studied numerically. The change in the scat-
tering region was implemented by modifying the curvature
of the corners between different leads. Both the ballistic re-
gime and the quasiballistic regime were considered. It is
found that above a certain curvature the spin conductance,
GsH, shows a series of minima and maxima, as a function of
energy. These minima and maxima are shifted in energy with
increasing curvature. We propose a relation between this
shift of the extrema and the change in the size of the scatter-
ing area when the curvature is increased. This is due to the
increased energy for smaller scattering areas and describes
the observed shift of the extrema reasonably well. With this
relation the polarization of the spin current through the trans-

verse leads could effectively be controlled by tuning the cur-
vature of the corners in the scattering area.

In addition, we have also test the robustness of the spin
conductance extrema by adding impurities to the scattering
area. Static and Anderson-type impurities were considered.
The amplitude of the spin conductance extrema are sup-
pressed with increasing impurity strength but the structure is
shown to be stable under reasonable values of impurity
strength, i.e., when the system is quasiballistic.
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