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It is shown that dynamic localization of the charge carrier is present in the simple Holstein Hamiltonian
�fully quantum and without random variables� if the polaron binding energy is sufficiently small and the small
polaron is not formed at high temperature. Previously, this idea was only explored in semiclassical models of
organic semiconductors. Band renormalization cannot be used in the presence of dynamic localization, which
is best studied with a vibronic basis set introduced here. The lifetime of these vibronic states can be estimated
using second-order renormalized perturbation theory. In the regime of dynamic localization the diffusivity
displays a transition between metal-like and insulator-like transport as the temperature increases, similar to that
predicted and observed in the nonadiabatic regime.

DOI: 10.1103/PhysRevB.82.245202 PACS number�s�: 71.38.Ht, 72.80.Le, 72.15.Rn

I. INTRODUCTION AND BACKGROUND

Numerous investigations in the charge transport proper-
ties of organic semiconductors have pointed out their pecu-
liarity with respect to their inorganic counterparts.1,2 The
most striking feature is the presence of narrow bands3,4 and
strong electron-phonon coupling,5,6 two elements that
prompted the study of dynamic localization in organic mate-
rials. These investigations are semiclassical in nature, i.e.,
the nuclei are treated classically at finite temperature and the
charge carrier is described quantum mechanically.7–10 It was
noted that the electronic Hamiltonian computed at frozen
nuclear configuration is that of a disordered system, because
the translational symmetry, at each given time, is broken by
the nuclear motions, and the instantaneous eigenfunctions
are therefore localized11 �a fraction of them may still be
delocalized12�. The time evolution of such localized wave
function have characteristics compatible with the experimen-
tal observation and lead to a satisfactory evaluation of the
absolute charge mobility without the need of adjustable
parameters.13

The fully quantum descriptions of the electron-phonon
Hamiltonian,14 however, do not include any dynamic local-
ization feature �its eigenfunctions must be translationally
invariant15�, making the semiclassical description of dynamic
localization a concept disconnected with most of the work
done on electron-phonon systems in the past years. In this
paper we try to remedy to this limitation discussing an alter-
native approach to the �quantum� electron-phonon problem
that incorporates the effect of dynamic localization and that
has, at sufficiently high temperature, the same qualitative
features of the semiclassical model. We plan to illustrate the
effect of quantum dynamic localization on one of the sim-
plest and most studied model Hamiltonian, to allow a better
comparison with the existing literature and to prove that dy-
namic localization is a general feature of Hamiltonians with
electron-vibron coupling and it is not related to more com-
plicated features of organic semiconductors �e.g., Peierls
electron-phonon coupling, multiple optical modes and elec-
tronic bands�, which will be neglected here.

A milestone for the study of the electron dynamics in
molecular crystal is provided by the work of Holstein16

whose one-dimensional model Hamiltonian is the starting
point of many investigations, including ours
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Here aj
† /aj �cj

† /cj� are the creation/annihilation operators for
the phonon �electron�, � the electron-phonon coupling pa-
rameter, � j the on-site electronic energy, and V0 the nearest-
neighbor electronic coupling. The �dispersionless� phonon
energy �� is taken as the energy unit of the Hamiltonian
which implies one electronic and one localized phonon state
per lattice site j.

Holstein’s discussion of the Hamiltonian above clarified
that there are two limit cases, easy to deal with, and a very
difficult intermediate regime investigated by many research-
ers for five decades after the original paper.14,17,18 The best
way to describe the conventional limiting cases is by per-
forming the Lang-Firsov19 transformation. The transformed
Hamiltonian takes the form
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Before the transformation �Eq. �1�� the Hamiltonian is repre-
sented by a set of wave functions �� j 	

k�j

�vk
�xk�
, where � j is

the electronic wave function localized on j and ��vk
�xk�
 are

the vibrational wave functions in the absence of charge �vk is
the quantum number, xk the displacement and � the har-
monic oscillator wave function�. The transformation consists
in the use of another diabatic basis set where the electronic
wave function � j is multiplied by the same vibrational wave
functions for k� j and by a vibrational wave function dis-
placed by �� 2�

m� for k= j. The notation ��j ;v1 . . .vk. . .
 will
be used in the following sections to indicate this latter basis
set. We note that this diabatic basis set corresponds to the
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exact eigenfunctions in the limit of vanishing V0.
The first limiting case is for low electron-phonon coupling

or temperature, when one can assume that the phonons, in
thermal equilibrium, modulate weakly the electronic Hamil-
tonian. In this limit one can substitute the complicated
electron-phonon coupling term with its thermal average, i.e.,

Ṽ = V0cj
†cj+1e���aj

†−aj�−�aj+1
† −aj+1��

� �V0e���aj
†−aj�−�aj+1

† −aj+1��Tcj
†cj+1. �3�

The average is defined as �ṼT=�
�

exp�−�E�����Ṽ�� /�
�

�exp

−�E��, where ���
 are states with all possible distributions
of phonon energies. Qualitatively, one is considering a sys-
tem where the mixing between states with different phonon
occupation number is not important. The average in Eq. �3�
can be evaluated analytically20

�V0e���aj
†−aj�−�aj+1

† −aj+1��T = V0e−2�2�1/2+N� � VT
ef f �4�

with temperature-dependent N= �e1/T*
−1�−1 and reduced

temperature T�=kBT /��. The formula above expresses the
“band-narrowing” with temperature, i.e., the reduction in the
average intersite coupling to an effective value VT

ef f due to
the vibronic interaction and the consequent increase in effec-
tive mass. The charge carrier described in this limit is delo-
calized and its mobility decreases with temperature �because
the scattering time decreases as the number of phonons in-
creases with temperature�. Many recent contributions in the
field of organic electronics are based on a generalization of
this scheme to three-dimensional Hamiltonians with more
phonons and electronic states per unit cells21 and can be now
based on accurate ab initio calculations of the Hamiltonian
parameters.22,23

The opposite limiting case occurs at high temperature,
high electron-phonon coupling. Here the electron can be con-
sidered completely localized on one site because all the po-
laronic band states are degenerate, and the process of hop-
ping from one site to another can be studied in a model
two-site Hamiltonian
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for which it is possible to express the hopping rate in the
high-temperature limit16 as

khop = �V0
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2T��2�1/2
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This is also used by several authors24–27 in conjunction with
electronic-structure calculations, although it appears that
there are fewer molecular crystalline materials for which the
assumptions leading to Eq. �6� are valid. When Eq. �6� is
valid, e.g., for the study of transport in several insulating
metal oxides,28,29 the mobility increases with temperature. A
crucial feature of this limit case is that the charge mobility
can be entirely determined by the parameters of Hamiltonian
�1� while, in the delocalized case, the polaron is scattered by

impurities �or other mechanisms� which are not included in
the model Hamiltonian.

The existence of many materials which appeared to be far
from both limiting cases30,31 prompted the investigation of
the crossover between polaron band transport and small po-
laron incoherent hopping which was approached with many
methods32–43 covering almost the totality of the theoretical
solid-state physics methodologies. Since the charge dynam-
ics can be described by a suitable separation between zeroth-
order Hamiltonian and a small perturbation, the two limiting
cases of the Holstein Hamiltonian can be seen as two differ-
ent choices of the zeroth-order Hamiltonian suitable at low
and high temperature, respectively. It was therefore natural to
search for a temperature-dependent analog of the Lang-
Firsov transformation which make the off-diagonal terms of
the Hamiltonian sufficiently small at finite temperature. This
avenue, followed by Silbey and co-workers,32–34 always in-
volves a thermal average of the phonon degrees of freedom
�analog to Eq. �4�� which assumes the presence of a polaron
band in the system, i.e., a quasiparticle with a well-defined
crystal momentum and dispersion relation. Most of the alter-
native approaches to the intermediate cases �including dy-
namic mean-field theory35 and quantum Monte Carlo
approaches36–38� build a dispersion relation for the polaron
and involve at some point an averaging out of the phonon
degrees of freedom that decouple the electron and the boson
part of the Hamiltonian. The variational method proposed by
Bonča et al.39 also searches for a delocalized �Bloch-type�
ground state, linear combination of localized vibronic wave
functions and a similar ansatz it is found in alternative varia-
tional calculations.40–42 Diagrammatic techniques have been
used to study the situation where there is a coexistence of
polaronic band and incoherent hopping.43

However, the small polaron incoherent hopping limit �Eq.
�9�� is not the only high-temperature limit. As already recog-
nized in the original Holstein paper, the coupling V0 should
be smaller than the polaron binding energy in order to form a
small polaron localized on one site. When the two-site Hol-
stein problem is represented in the configuration coordinate
�Fig. 1� one can appreciate how, for small V0, one can use
perturbation theory to study the hopping between the

FIG. 1. �Color online� Dashed lines represents the energy of two
localized states in the Holstein Hamiltonian with two sites and V0

=0 �diabatic states� as a function of the relative displacement. Solid
lines are the adiabatic �Born-Oppenheimer� states for different val-
ues of the coupling V0 relative to the classical polaron binding
energy Eb �Eb��2 in the notation of this paper� For V0 larger than
Eb there are no localized states. The only localization possible is
due to thermal disorder and this is the regime investigated in this
paper.
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potential-energy wells, for larger V0, the hopping occurs
adiabatically in the lowest potential-energy surface and for
even larger V0 the two localized potential-energy minima
merge into a single delocalized minimum. In this regime,
where there is the largest disagreement between the different
methods,44 the source of localization at high temperature is
not the formation of a small polaron but dynamic localiza-
tion.

Dynamic localization is a concept well defined, so far,
only in the semiclassical limit. The semiclassical limit of the
Holstein Hamiltonian corresponds to a one-dimensional
chain of energy levels whose on-site energy is linearly modu-
lated by the displacement of classical harmonic oscillators.
When the oscillators are displaced from the equilibrium at
finite temperature, the eigenfunctions of such a system are
localized at each given instant and they break the transla-
tional symmetry of the problem. While the �translationally
invariant� quantum description is obviously always valid, in
the semiclassical limit this would be very inconvenient and,
although one could express the dynamics in terms of super-
position of translationally invariant states, it is best to sepa-
rate electronic and nuclear degrees of freedom and describe
the latter classically. If we assume that the correspondence
principle is valid as the nuclear degrees of freedom become
more classical �for example, increasing the temperature or
decreasing their frequency�, there must be a transition regime
where the description in terms of localized electronic states
starts becoming more convenient than a description based on
translationally invariant states. We would like to propose a
description of the charge dynamics in the Holstein Hamil-
tonian which acts as a bridge between the polaronic descrip-
tion valid for high-frequency modes and the dynamic disor-
der description valid in the semiclassical limit, when a small
polaron cannot be formed.

We propose in this paper that this intermediate regime
between localized and delocalized transport can be studied
using a suitable localized vibronic basis set which allows to
incorporate the effect of dynamic disorder originally devised
for semiclassical models.

II. BREAKDOWN OF THE BAND NARROWING
APPROXIMATION

In the transformed Hamiltonian of Eq. �2� the electronic
and nuclear modes are coupled together by the term

V0cj
†cj+1e���aj

†−aj�−�aj+1
† −aj+1�� which makes the Hamiltonian not

exactly diagonalizable. Substituting this coupling with its
thermal average, as done in Eq. �4�, is a classic way to de-
couple electronic and nuclear degrees of freedom and to in-
troduce the idea that the band narrows as the temperature
increases. However, this averaging is meaningful as long as

the distribution of Ve���aj
†−aj�−�aj+1

† −aj+1�� around its average
value is sufficiently narrow.

A rapid way to estimate the validity range of the band-
narrowing concept is to plot the standard deviation 
V of

V0e���aj
†−aj�−�aj+1

† −aj+1�� for phonon distributions at different
temperature alongside the thermally averaged coupling VT

ef f

as done in Fig. 2 for a particular value of �. It is evident that,

already at relatively low temperatures, the standard deviation
of the coupling becomes of the same order of magnitude of
its average value, i.e., if we fix the phonon occupation num-
ber and build the corresponding electronic Hamiltonian the
elements of latter will be “disordered.” In particular, for fixed
phonon occupation numbers at high temperature the Hamil-
tonian of Eq. �2� will lead to a one-dimensional electronic
Hamiltonian with off-diagonal disorder. To better appreciate
the parameter range where the disorder due to the phonons is
relevant we defined the reduced temperature T0.5

* at which

V /VT

ef f =0.5, i.e., the disorder in the coupling is very high,
and we plotted this temperature as a function of the electron-
phonon coupling parameter � in Fig. 3. For �� �0.4 the
reduced temperature at which the disorder is very high ap-
proaches the unity. This result should not be surprising as
this is precisely the parameter range where the electron-
phonon coupling term �in the transformed Hamiltonian of
Eq. �2�� is of the same order of magnitude of the other terms
and the thermal averaging procedure of Eq. �4� hides part of
the physics. The presence of a large 
V /VT

ef f ratio can be
considered indicative of the presence of dynamic localiza-
tion, i.e., the phonon distribution creates sufficient distur-
bance to the electronic Hamiltonian to cause localization of
the wave function also if the electron-phonon coupling is not
leading to the formation of a small polaron.

FIG. 2. Temperature-averaged intersite coupling �Eq. �4�� and
standard deviation of the actual coupling between states for �
=0.6 as a function of the reduced temperature.

FIG. 3. Reduced temperature T0.5
* at which 
V /VT

ef f =0.5 as a
function of �.
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In this paper we wish to describe the wave function in
such a way that it behaves as a conventional polaronic wave
function at low temperature and as a dynamically localized
wave function at high temperature, so that we can put the
semiclassical concept of dynamic localization on a firmer
ground. Since the fully quantum description is translationally
invariant while the semiclassical description breaks the trans-
lational symmetry, the transition between the two should be
described in the lower symmetry. More specifically one
should modify the semiclassical description to make it ap-
proach the polaron description in the quantum limit, while
the opposite process would not work. In the semiclassical
limit one evaluates the electronic Hamiltonian at given
nuclear configurations and neglects the nuclear dynamics. To
be able to approach this limit while keeping a quantum de-
scription of the nuclear modes one has to assume that a good
description of the electronic Hamiltonian derives again from
neglecting nuclear dynamics, which, in the quantum descrip-
tion of the nuclei, corresponds to fixing the vibrational quan-
tum numbers while evaluating the electronic Hamiltonian.

More specifically, we considered the basis set
��j ;v1 . . .vk. . .
 used to represent the Hamiltonian in Eq. �2�
�see above� where each basis function is the product of an
electronic state localized on site j and M vibrational wave
functions localized on the M sites of the system. We there-
fore defined subsets of this complete basis set containing a
fixed vector of quantum numbers �v1 . . .vk. . .
 and all the
electronic states j=1, . . . ,M, and we computed the electronic
wave function diagonalizing the Hamiltonian of size M.
These partially diagonalized vibronic wave functions
�PDVW� are therefore a linear combination of the localized
vibronic wave function all with the same vibrational quan-
tum numbers, i.e.,

��v1. . .vk. . .

�l� = �

j

Cj
�l��j ;v1 . . . vk. . . �7�

with l running over all the M eigenvalues. The ��v1. . .vk. . .

�l� are

the quantum analogs of the instantaneous electronic wave
functions considered in semiclassical models where they are
obtained by diagonalizing the electronic Hamiltonian at fixed
nuclear configurations.10

Diagonalization can be repeated for various sets of vibra-
tional quantum numbers randomly chosen from the Bose-
Einstein distribution and the results can be analyzed to study,
for example, �i� the density of electronic states as a function
of temperature and �ii� the average localization length as a
function of temperature and energy as done in Fig. 4 for the
coupling parameters �=0.6, V0=4.0. Finite chains of 200
sites have been used for this and the subsequent analyses.
The density of states �DOS� and localization length of one-
dimensional chains in the presence of off-diagonal disorder
have been studied extensively,45,46 with particular emphasis
on the unexpected differences with respect to the �more com-
mon� models with disorder in the diagonal matrix elements
of the electronic Hamiltonian. Albeit the distribution of the
random component of the Hamiltonian is different in the
present case, the results are qualitatively similar. The density
of states �Fig. 4�a�� starts departing from that of the periodic
chain already at T�=0.6, while a discontinuity at E=0 devel-

ops at higher temperatures �higher disorder� in agreement
with other one-dimensional disorder models in literature.45

The localization length  is computed from the expectation
value of the �square� position operator as = ��x2− �x2�1/2

and reported in Fig. 4�b�. As expected, the localization length
decreases with increasing temperature and possess a similar
discontinuity at E=0 which is extensively discussed else-
where �it will not have any impact on our discussion�.47

A more compact illustration of the parameter range where
dynamic localization can be important is given by a map of
the Boltzmann averaged localization length as a function of
the reduced temperature and the electron-phonon coupling
�given in Fig. 5�. The behavior is rather simple for ��1 and
T��2 showing an expected decrease in localization length

FIG. 4. Density of states �a� and localization length �b� as a
function of electronic energy for a model with �=0.6, V0=4.0 and
T�=0.6 �solid�, 1.0 �dashed�, 1.4 �dotted�.

FIG. 5. Map of the average localization length as a function of
the reduced temperature and electron-phonon coupling.
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with increase in T� or increase in �. The complicated behav-
ior for ��2 �not investigated in detail here� is due to the

complex pattern of Franck-Condon integrals, �v j�e��aj
†−aj��v j,

in this parameter range. The essential point of Fig. 5 is that
there is a very broad range of parameters where the PDWF
are localized in less than eight sites and in this regime, we
are arguing, the charge transport should be described by a
suitable localized basis set. It should be stressed that the
eigenfunctions of Hamiltonian �1� are certainly delocalized
and translationally invariant and we do not claim a symmetry
breaking of the eigenfunctions �which is forbidden by a theo-
rem discussed in Ref. 15�. On the other hand, when the band-
width vanishes �i.e., at high temperature�, one can argue that
it is not useful to describe the dynamic of the system in a
delocalized basis of Bloch wave functions. Whether the
high-temperature limit is the small polaron or dynamic dis-
order, the band structure is “washed out,” as recognized by
Holstein,16 and the polaron states are no longer Bloch
states.44 In this limit the localized and delocalized represen-
tations become equivalent, and the localized basis offers a
more convenient description of the electron dynamics.

III. CHARGE DIFFUSION IN THE DYNAMIC
LOCALIZATION REGIME

Basis functions for dynamic localization. We can now
compare the regime of dynamic disorder with the classical
limit cases of the Hamiltonian in Eq. �2�. In the low tempera-
ture or low electron-phonon coupling regime, the approxima-
tion of Eq. �3� holds and one can write a zero-order Hamil-
tonian with translational symmetry and a well-defined
dispersion relation for a delocalized polaron where the po-
laron wave vector is a good quantum number. At higher tem-
peratures, however, the translational symmetry of the elec-
tronic Hamiltonian is lost and with that the possibility of
defining a polaron and of using its wave vector as a good
quantum number for the electronic wave function. In this
regime of dynamic localization, the system is also very far
from the opposite limit of activated hopping transport, where

the matrix elements of Ṽ are small and can be treated as a
small perturbation. In dynamic localization these matrix ele-
ments are still comparable to V0 and it is their variation from
site to site that causes the charge to localize not their small-
ness. The two conventional limits of the Holstein Hamil-
tonian, characterized by two different sets of zero-order
eigenfunctions used to describe charge transport, are there-
fore entirely inappropriate for the dynamic localization re-
gime. It is proposed that, in this latter regime, the PDVW
basis set given in Eq. �7� is the most suitable basis to de-
scribe transport because it takes into account the effect of
localization due to disorder and it allows the evaluation of
each state’s lifetime. We should stress that, differently from
other works on the effect of disorder in model Hamiltonians
the “disorder” here is entirely due to finite temperature and
electron-phonon coupling, i.e., there is no random
variable48–51 or phenomenological dephasing52 in the model.

Lifetime of partially diagonalized vibronic wave func-
tions. The wave functions defined in Eq. �7� are not eigen-
functions of the Hamiltonian but become asymptotically the

correct eigenfunctions of the Hamiltonian in the limit of high
temperature. They form our zeroth-order set of wave func-
tions, which are corrected with a perturbative methods in this
section. Each PDVW ��v1. . .vk. . .�

�l� , with average localization
length , is coupled to the family of all states ���v1. . .vk. . .�

�l� 

with different distribution of vibrational quantum numbers
and it has therefore a characteristic lifetime �=� /� �� is the
imaginary component of the self-energy�. Since a state can
be only coupled to states localized close to it, the one-
dimensional diffusion coefficient for the charge should be on
the order of 2� /2�.

To evaluate the self-energy we use second-order renor-
malized perturbation theory53 adopted in the classical work
of Abou-Chacra et al.54 to study static electronic disorder and
identify the condition for localization. A similar method was
used by Logan and Wolynes for the study of vibrational en-
ergy flow,55 and, to some extent, this paper can be considered
a combination of the methods of Refs. 54 and 55. The self
energy is also used as an indicator of dynamic localization-
delocalization in the work of Hotta and Takada on infinite-
dimensional Hubbard-Holstein model �Ref. 56�. Since each
state is coupled to many states, which in turn are coupled to
many other states, a useful approximation is to assume that
the network of couplings behaves as a self-avoiding Cayley’s
tree and, in such case, the imaginary component of the self-
energy of state i can be written as

�i = �
j

���i�V�� j�2
� j

�Ei − E j�2 +
1

2
� j

2

, �8�

where Ei and E j are the total energy of states i and j �the real
component of the self-energy is neglected�. To adapt this
approach to our case we assume that the self energy can be
written as a function of the electronic energy ��i���Ei��,
essentially an average of the individual self-energies defined
as

��E� � �
k

�k��E − Ek�/�
k

��E − Ek� . �9�

In the transition from state i to state j, let w be the difference
in total vibrational energy �also the difference in total vibra-
tional quanta which are taken as energy units of our Hamil-
tonian�. Equation �8� can be modified as follows:

��Ei� = �
w

�
j�w�

���i�V�� j�2
��Ej�

�Ei − Ej − w�2 +
1

2
��Ej�2

.

�10�

The summation j�w� is extended over all states j with w
vibrational quanta more than in state i �w=0, �1, �2, etc.�.
The energies Ej, Ei are purely electronic energies. It is con-
venient to define an average coupling between states with
different electronic energy and a given difference in vibra-
tional quanta as

QUANTUM DYNAMIC LOCALIZATION IN THE HOLSTEIN… PHYSICAL REVIEW B 82, 245202 �2010�

245202-5



Ṽw
2 �E�,E� � �

i

��Ei − E���
j�w�

���i�V�� j�2

���Ej − E�/�
i

��Ei − E�� �11�

which allow to rewrite Eq. �10� as

��E�� = �
w
� Ṽw

2 �E�,E�
��E�

�E� − E − w�2 +
1

2
��E�2

dE .

�12�

To evaluate Eq. �10� one has to compute Ṽw
2 �E� ,E� by a

sufficiently accurate sampling of the coupling between
PDVW states, which can be carried out numerically �see
below�. Then the integral is solved iteratively by initializing
��E� to some arbitrary constant value. In this paper we
solved Eq. �12� by discretizing the energy variables in 19
bins between the edges of the electronic DOS and initializing
��E� to 0.1V0.

Evaluation of the coupling between PDVWs. The evalua-

tion of Ṽw
2 �E� ,E� is the most demanding part of the calcula-

tion and was carried out for a range of temperatures with
V0=4 and �=0.6. At each given temperature the vibrational
quanta �vk

0
 are distributed according to the Bose-Einstein
distribution and the electronic Hamiltonian is diagonalized to
give the initial basis set ��v1

0. . .vk
0. . .


�l� of Eq. �7�. For each state

l we compute all the non-negligible couplings with the other

vibronic states ��v1
m. . .vk

m. . .

�l�� , which should be, in principle, in-

clude all possible distributions of vibrational quanta �vk
m
.

Fortunately, the number of distributions �vk
m
 to be consid-

ered is large but limited as one can appreciate by writing
explicitly the coupling between two PDVWs corresponding
to distinct distributions of vibrational quanta,

���vk
0


�l� �Ṽ���vk
m


�l��  = �
j j�

Cj
�l�Cj�

�l���j ;�vk
0
�Ṽ�j�;�vk

m


= V0�
j

Cj
�l�Cj+1

�l���v j
0�e��aj

†−aj��v j
m

��v j+1
0 �e−��aj+1

† −aj+1��v j+1
m  	

j��j,j+1

�vj
0,vj

m.

�13�

Only a reduced sets of vibrational quanta distributions �vk
m


give rise to wave functions ��v1
m. . .vk

m. . .

�l�� that can be coupled to

��v1
0. . .vk

0. . .

�l� . More in detail:

�i� if �vk
0
 and �vk

m
 differ only in one site, i.e., v j̄
0
�v j̄

m and

v j
0=v j

m for j� j̄ the coupling is

���vk
0


�l� �Ṽ���vk
m


�l��  = V0Cj̄
�l�

Cj̄+1
�l���v j̄

0�e��a
j̄

†
−aj̄��v j̄

m�v j̄+1
0 �e−��a

j̄+1

†
−aj̄+1�

��v j̄+1
0  + V0Cj̄−1

�l�
Cj̄

�l���v j̄−1
0 �e��a

j̄−1

†
−aj̄−1��v j̄−1

0 

��v j̄
0�e−��a

j̄

†
−aj̄��v j̄

m , �14�

�ii� if �vk
0
 and �vk

l 
 differ in two consecutive sites, i.e., v j̄
0

�v j̄
l ;v j̄+1

0
�v j̄+1

l and v j
0=v j

l for j� j̄, j̄+1 the coupling is

���vk
0


�l� �Ṽ���vk
m


�l��  = V0Cj̄
�0�

Cj̄+1
�l� �v j̄

0�e��aj
†−aj��v j̄

m�v j̄+1
0 �e−��aj+1

† −aj+1�

��v j̄+1
m  , �15�

�iii� if �vk
0
 and �vk

l 
 differ in two nonconsecutive sites or in
more than two sites the coupling is zero

Moreover, the following two considerations further re-
duce the number of couplings to be considered: �iv� the
quantum numbers that differs must be in a region of j where
the wave function ��v1

0. . .vk
0. . .


�l� is localized. �v� The Franck-

Condon overlap �v j
0�e��aj

†−aj��v j
m decreases exponentially

with the difference between the vibrational quantum num-
bers and so one can limit the allowed values of v j

m as �v j
0

−v j
m���vmax ��vmax was set to 8 for the calculations with

�=0.6�.
To summarize, ��E�, i.e., the average inverse lifetime of

states with electronic energy E, is computed in the following
way. An initial set of vibrational quanta distribution �vk

0
 is
set and the PDVW ��vk

0

�l� are computed. A set of alternative

vibrational quanta distribution �vk
m
 whose corresponding

PDVWs could couple to the initial set is defined and, for
each set, the corresponding PDVWs ���vk

m

�l� � are computed

together with the coupling ���vk
0


�l� �Ṽ���vk
m


�l��  �only if there is

sufficient overlap between the electronic wave functions�.
These matrix elements are the input for Eq. �11� that is used

to define Ṽw
2 �E� ,E�. ��E�, is computed from Eq. �12�. To

improve the statistics of the results, the procedure is repeated
with four initial sets of vibrational states.

Results. The computed ��E� is illustrated in Fig. 6 for
several reduced temperatures and coupling parameters set to
�=0.6, V0=4.0 for the rest of our discussion. The spanned
energy range is the same seen in Fig. 4�a�, corresponding to

FIG. 6. ��E� computed from Eq. �10� for a model with �=0.6,
V0=4.0 and various temperatures T�=0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.80, 1.40 �solid line� and T�=2.10 �dashed line�.
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the purely electronic energy �rigorously defined for PDVWs
but not for the exact wave function�. For T��1.4, ��E� is
almost temperature dependent and peaked at mid band. For
T��0.3, ��E� is effectively zero, i.e., the disorder is so mod-
est that the basis functions are very close to the exact eigen-
states of the system and the self-consistent procedure of Eq.
�12� converges to ��E�=0. The temperature averaged ��T�

can be defined as

��T� =� ��E�e−E/T�
dE/� e−E/T�

dE , �16�

where the integration extends within the range of nonvanish-
ing electronic DOS. A plot of ��T� versus T� is given in Fig.
7 which clearly illustrates the existence of two regimes. Be-
tween T�=0.3 and T�=0.6 a rapid increase in ��T� is ob-
served because in this temperature region the disorder be-
comes sufficiently strong that the PDVW start departing
from the true eigenfunctions and they acquire a finite life-
time. At higher temperature an almost linear increase in ��T�

is observed and this is due to the population of electronic
states toward the center of the band which are characterized
by slightly larger inverse lifetimes. Figure 7 also shows, for
the same parameter set, the temperature-averaged localiza-
tion length �T� =�e−E/T�

dE /�e−E/T�
dE. Figure 7 describe in

the language of PDVW a scenario similar to that presented
by Holstein model in the limit of existence of small polarons.
At low temperature we find delocalized �translationally in-
variant� wave functions with a very long lifetime, i.e., rare
scattering events �typically not included in the model Hamil-
tonian, like impurities� are responsible for the charge dynam-
ics. At high temperature we find localized wave functions
�which are not small polarons in this case� with a finite life-
time which is entirely determined by the model Hamiltonian
�i.e., there is no need to include the effect of impurities or
other scattering mechanisms�. The low-temperature limit has
the expected property of diverging localization length and
vanishing self-energy but the actual T�→0 limit cannot be
taken accurately within this numerical approach which works
well only in the presence of a certain degree of localization.

The process of charge diffusion in the regime of dynamic
localization can be seen as a series of transitions in time
�� /� of states with localization � into other states with
similar localization length and partially overlapping with
them. It is therefore natural to estimate the diffusion coeffi-
cient as ���2T /2�. This estimate would be correct at high
temperature when the electron-phonon interaction included
in the Hamiltonian is the main mechanism behind the charge
dynamics. At low temperatures, ��E� goes to zero and the
system appears to have no dynamics because the basis set is
too close to the exact eigenfunctions. For an assessment of
the model one should add a phenomenological lifetime � /�p

taking into account other scattering mechanisms outside the
model Hamiltonian and evaluate the diffusivity as

D � ��� + �p��2T/2� . �17�

The estimated dependence of the diffusivity with tempera-
ture for different �p is given in Fig. 8. At low T�, the diffu-
sivity decreases with increasing T� because of the decrease in
localization length; at high T� the localization length is ap-
proximately constant and the diffusion coefficient increases
due to the increase in the inverse lifetime �. The mobility
can be also readily estimated from the Einstein relation. The
regime of dynamic localization appears therefore as an inter-
mediate regime between delocalized metal-like transport
�diffusivity decreasing with increasing temperature� and hop-
ping insulatorlike transport �diffusivity increasing with in-
creasing temperature�. While the transition regime is qualita-
tively similar to the crossover between large polaron and
incoherent hopping,35,43 the high-temperature limit in our
case is very different. The high-temperature states are local-
ized by disorder not by the formation of a small polaron �the
coupling V0 is large compared to the polaron binding en-
ergy�. In this regime the hopping mobility expression pro-
posed within the Lang-Firsov-Hostein context would lead to
completely inaccurate results and, by extension, it is not pos-
sible to compare this result with existing crossover theories
valid in less adiabatic regime. We do not investigate here the
possible effect of dynamic disorder in the case of larger po-
laron binding energy but we can hypothesize that this effect

FIG. 7. Temperature-averaged localization length �solid line�
and self-energy �full circles� for the same model parameters of Fig.
6 �these two quantities are defined in the text�.

FIG. 8. Estimate of the �adimensional� charge diffusivity �Eq.
�17�� using an additional phenomenological self-energy �p=0.2
�solid�, 0.1 �dashed�, 0.0 �dotted, i.e., in the absence of the �p

correction�.
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is negligible in the nonadiabatic limit57 �confirming the va-
lidity of the classic works� and possibly more important as
the system becomes more adiabatic.

Comparison with other approaches. It useful to consider
what the advantage is of considering PDVW to study the
Holstein Hamiltonian in the presence of many alternative
methods.32–42 We can compare the physics depicted in this
paper, for example, with the results of very accurate calcula-
tions such as quantum Monte Carlo algorithms36 �also fol-
lowing the Lang-Firsov transformation58� or Bonča et al.’s
variational method.39 The key results of these works are the
polaron spectrum, its effective mass �typically as a function
of the electron-phonon coupling parameters� and the extent
of the lattice deformation. The former are zero-temperature
theories and, as such, they do not incorporate the effect of
phonon population. The description in terms of delocalized
polarons is correct as long as the effective mass is not too
high. As the effective mass goes to infinity the polaronic
states become degenerate and will be localized by any ran-
dom disturbance including, as we have seen, the thermal
distribution of vibrational quanta. At high effective mass a
localized representation is always more convenient than a
delocalized one even though it breaks the translational in-
variance of the Hamiltonian. For example, the dynamic of a
particle in a symmetric double well should be described in a
localized representation if the mass of the particle is suffi-
ciently high that the tunneling between the two potential
wells is much slower that the thermally activated hopping.
Our theory does not allow the definition of the effective
mass, preventing a direct comparison with polaronic band
theories, as it starts from a localized representation, but has
conventional polaronic theory as a limit case at low tempera-
ture giving by construction the results of Holstein theory
�Bloch-type functions� for T→0. This last characteristics is
very important because, although we have constructed our
zeroth-order wave function from the high-temperature limit,
we described the vibrons quantum mechanically at all tem-
peratures and, therefore, we avoided the artifacts of other
adiabatic theories that neglect the kinetic energy of the
nuclei59 and predict self-trapped polarons at low temperature
and self-trapping phase transitions.15 We believe that our
theory is advantageous with respect to the existing models in
a well-defined parameter range �illustrated in Fig. 4 and al-
ways involving finite temperature� where dynamic localiza-
tion makes unhelpful the description in terms of polaron.
Whenever a delocalized basis is more convenient, our ap-
proach is unsuitable due to the large number of coupled
states that one has to consider �Eq. �13�� and, more generally,
because the chosen basis does not properly exploit the trans-
lational symmetry of the system. In agreement with Ref. 34
we therefore also conclude that the ideal basis set for the
study of Hamiltonians with electron-phonon coupling at fi-
nite temperature should be temperature dependent. It should
be noted however that, any polaronic band theories �includ-
ing finite-temperature theories60�, cannot describe the effect
of dynamic localization because it is the polaronic ansatz that
impose the absence of dynamic disorder, i.e., in the regime
of dynamic disorder the polaron band language may be in-
appropriate.

IV. CONCLUSION

The idea that dynamic localization of charge carrier may
take place in narrow band materials is certainly not new61 but
only recently it was translated into viable models for the
study of transport in organic semiconductors.7,11 These mod-
els are semiclassical in nature and, as such, are difficult to
put in the traditional framework of fully quantum model
Hamiltonians. The original motivation of this paper was to
study dynamic localization in one of the most studied model
Hamiltonians at finite temperature and, to do so, we have
defined partially diagonalized vibronic wave functions
PDWV obtained by diagonalizing the electronic Hamiltonian
while the number of vibrational quanta in each oscillator is
kept constant in a distribution compatible with the Bose-
Einstein distribution. This definition suggested by the corre-
spondence principle turned out to be particularly useful. In
fact, not only PDWVs allow the evaluation of the parameter
range where we can expect dynamic disorder but they also
form a natural basis for the study of charge transport in this
regime. We showed that it is possible to compute the finite
lifetime for these wave functions and to relate it to the dif-
fusivity of the electron in the lattice. Dynamic localization
seems to provide the appropriate framework when the po-
laron binding energy is small and the high-temperature limit
of transport is not small polaron incoherent hopping. Inter-
esting, also in dynamic localization, as the temperature in-
creases the electron diffusivity first decreases and then in-
creases again, giving the same qualitative behavior of the
transition between delocalized metal-like transport and local-
ized insulatorlike transport described by Holstein in a differ-
ent coupling regime. There is a growing number of experi-
ments that point to localized charge carrier �including
electron paramagnetic resonance measurements,62,63 tera-
hertz spectroscopy,64 and charge modulated spectroscopy65�
on samples of molecular crystals displaying metal-like mo-
bility. Many of these molecular crystals have very small po-
laron binding energy ��0.05 eV� and relatively large inter-
molecular coupling ��0.2–0.02 eV�.30 Understanding the
nature of the carrier in these experiments is ultimately the
driving reason to search for the origin of localized states in
translationally invariant defect-free systems.

This work establishes that charge diffusion limited by dy-
namic disorder is a feature of the basic Holstein Hamiltonian
and it is not limited to cases of dynamic off-diagonal disor-
der or to semiclassical descriptions. Moreover, it creates a
link between the theory of localization in disordered systems
and the theory and Hamiltonians with electron-phonon cou-
pling opening interesting avenues for future investigations.
For example, it is expected that additional physics can be
observed for even narrower band, such that the state at mid-
band with very large localization length can be populated as
the temperature is increased.
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