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In this paper we present a semiclassical approximation to the Kramers-Heisenberg formula for calculating
x-ray emission �XE� spectra, including vibrational effects. We compare the method to the quantum Kramers-
Heisenberg formula for a test system consisting of a model water dimer where the hydrogen-bond donor is core
ionized and obtain excellent agreement. In the semiclassical approach we average spectra from classical
trajectories where the core-hole-induced dynamics is performed with initial conditions sampling the quantum
zero-point position and momentum probability distributions in the O-H vibration. We find very similar time
evolution of the squared quantum wave packet compared to the probability distribution under classical dynam-
ics until the proton interacts with the next water. We compare our semiclassical approach with other methods
to compute the XES spectra of water that have been used in the past and conclude that our approach gives
superior results while requiring the same computational effort.
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I. INTRODUCTION

Core-hole-induced dynamics has become an issue for the
interpretation of recently reported x-ray emission �XE� spec-
tra on liquid water where, in the lone-pair region, two well-
resolved sharp peaks appear.1–3 These have been interpreted
either as indicative of two specific structural motifs in the
liquid2,4—thus strongly questioning the picture of liquid wa-
ter as a continuous distribution around mainly tetrahedral
coordination—or as due to ultrafast core-hole-induced disso-
ciation giving emission from intact H2O and fully dissoci-
ated OH,1,5,6 supporting the traditional picture. Clearly the
creation of the core-hole represents a strong perturbation
which induces significant vibrational broadening and dynam-
ics on the core-ionized potential-energy surface �PES�,5,7,8

but can the two peaks be explained as due to dissociation? In
Refs. 2 and 9 experimental observations were given against
this interpretation and in Refs. 9 and 10 the importance of
the release of zero-point energy and of a sampling of the
zero-point position distribution when simulating excited state
dynamics on a repulsive PES was pointed out. In Refs. 5 and
6 it was, on the other hand, claimed that only classical initial
conditions should be used in classical dynamics, even when
simulating the effects of vibrational broadening and dynam-
ics on an inherently quantum system, such as hydrogen-
bonded liquid water. A first step in addressing these issues is
to investigate the different approximate methods of calculat-
ing XES for a small well-defined test system where a more
accurate calculation can be done for comparison.

A rigorous way of taking vibrational broadening and in-
terference effects into account when computing XES is to
use the Kramers-Heisenberg �KH� formula.11,12 Here a full
set of vibrational eigenstates must be determined for each
electronic state making the calculations cumbersome. A way
to avoid this is to go to the time domain which leads to
wave-packet propagation techniques.11,13,14 However, the full
PES of all electronic states must be computed in these ap-
proaches, which makes them impractical for systems with
many degrees of freedom. It is therefore essential to develop

approximate but still reliable schemes when dealing with
condensed phase systems such as liquid water or ice. Note an
important feature of liquid water, namely, that for an
H-bonded OH the core-ionized state PES is dissociative
along the OH stretch but still bounded by the receiving mol-
ecule. Due to the small spacing between vibrational levels in
the intermediate PES the scattering of x rays is strongly af-
fected by quantum interference, so-called lifetime vibrational
interference.15 Thus, when trying to simplify the strict quan-
tum scheme of simulations, we should keep this interference
effect in our semiclassical method.

In the present paper we compare different approximate
methods of computing XES, including those used in Refs. 9
and 10, to the KH method for a one-dimensional test system
consisting of a model water dimer with either the bonded or
the nonbonded hydrogen free to move. We develop a
method, the semiclassical KH �SCKH� method, which is
found to give very good agreement with KH, in contrast to
the other methods investigated. In the SCKH method the
electronic degrees of freedom are treated quantum mechani-
cally while the nuclear motion is treated classically. This is
realized by writing the KH formula in the time domain and
replacing the quantum ensemble average by an average over
classical trajectories on the core-hole state potential with ini-
tial conditions sampled from a quantum distribution in both
position and momentum. This method is in the spirit of Refs.
16–18 where the time-ordered exponential is used to rewrite
the time development on a single PES and the semiclassical
approximation is obtained by letting the operators in the
Heisenberg representation go to classical quantities. In the
present paper we start our derivation of the XES cross sec-
tion directly from the Kramers-Heisenberg formula instead
of from response functions17,18 and consider an excitation
process that ionizes an electron which further simplifies our
formulas. As the excitation process in our case changes the
PES significantly we need to start our trajectories from the
time of the excitation; we cannot simply average trajectories
from a ground-state simulation as is usually done in similar
methods. Finally, due to hydrogen being a light element,
quantum effects are important and consequently we have
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used quantum initial conditions for the classical trajectories
and calibrated against full wave-packet dynamics with excel-
lent agreement on the time scale relevant for XES.

Unlike the KH formula, the SCKH method can easily be
generalized to include more degrees of freedom which makes
it practical for more general systems of larger size. A full-
dimensional calculation with a realistic model of water is,
however, a separate investigation altogether and outside the
scope of this paper.

II. METHODS

A. Kramers-Heisenberg formula

For a nonresonant transition the Kramers-Heisenberg for-
mula is �see derivation in Appendix A�

����� = �
f
��

n

�f �D��n��n�D�i�
�� − Enf + i� �2

, �1�

where i denotes the initial state, n the intermediate states and
f the final states, Enf =En−Ef is the energy difference be-
tween intermediate and final states, and � is the half-width-
at-half-maximum �HWHM� lifetime broadening. �� is the
frequency of the emitted photon. D� is the dipole operator of
the emission process D�=E ·�iri with E the polarization of
the emitted radiation and the sum is over all electronic coor-
dinates. D is the dipole operator of the incoming radiation
and is written similarly. In the nonresonant case matrix ele-
ments of D are insensitive to both the polarization direction
and the intermediate state;19 in our numerical simulations we
will therefore set D to unity although it will be present
throughout the derivations.

By the Born-Oppenheimer �B-O� approximation the wave
functions are written as a product of an electronic wave func-
tion �parametrically dependent on the nuclear coordinates�
and a nuclear wave function

�i� = ��I�r;R����Ii�R�� � �I��iI� , �2�

where iI denotes the ith vibrational state on the Ith electronic
state PES. An operator can then be written in terms of the

electronic states as Ô=�IJ�I�OIJ�R��J� with OIJ�R�= �I�Ô�J�.
OIJ�R� is thus a matrix element of the operator with respect
to electronic states but still an operator with respect to
nuclear states, as indicated by the R dependence. A typical
full matrix element appears as

�iI��I�Ô�J��jJ� = �iI�OIJ�jJ� . �3�

Ignoring purely vibrational transitions the electronic dipole
operator is

D = �
I�J

�I�DIJ�R��J� . �4�

Putting this into Eq. �1� gives

����� = �
F

�
fF

��
nN

�fF�DFN� �nN��nN�DNI�iI�
�� − EnN,fF

+ i� �2

, �5�

where, e.g., DFN is given by DFN�R�= �F�D̂�N�. Equation �5�
will serve as our benchmark when evaluating the semiclas-
sical approximation and other methods.

B. Semiclassical approximation to the
Kramers-Heisenberg formula

For the semiclassical approximation to the Kramers-
Heisenberg formula �SCKH� we want to treat the nuclear
degrees of freedom in the time domain and use the relation-
ship

1

�� − EnN,fF
+ i�

= − i	
−�

�

dt��t�e−iEnN,fF
t−�tei��t

= − i	
0

�

dte−iEnN,fF
t−�tei��t. �6�

By using e−iEnN
t�nN�=e−iHNt�nN� and �fF�eiEfF

t= �fF�eiHFt,

where HN= �N�Ĥ�N� is the vibrational Hamiltonian on the
B-O PES of the electronic state N �similar for HF�, this leads
to

����� = �
F

�
fF

�− i	
0

�

dt�
nN

�fF�DFN� �nN�

��nN�DNI�iI�e−iEnN,fF
t−�tei��t�2

�7�

=�
F

�
fF

�− i	
0

�

dt�
nN

�fF�eiHFtDFN� e−iHNt�nN�

��nN�DNI�iI�e−�tei��t�2

. �8�

Expanding the square and using the resolution of the identity,
��i��i�=1, to remove the sums over intermediate and final
vibrational states we get

=�
F

�iI�	
0

�

dtDNI
+ eiHNt�DFN�+ e−iHFt�e−�t�e−i��t�

�	
0

�

dteiHFtDFN� e−iHNtDNIe
−�tei��t�iI� �9�

=�
F

�iI�DF
+����DF�����iI� = �

F

Tr
DF
+����DF����	�

�10�

with

DF
+���� = 	

0

�

dtDNI
+ eiHNtDFN�+ e−iHFte−�t�e−i��t. �11�

	 is the density matrix. Writing a trace instead of an expec-
tation value generalizes the expression to also describe en-
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sembles. In this expression we have time evolutions on both
intermediate and final states. To avoid this we rewrite the
final-state time-evolution operator18

e−iHFt = e−iHNte+
−i�0

t 
HF�
�−HN�
��d
, �12�

where the �positive� time-ordered exponential of a Hermitian
operator A is defined as18

e
+

−i�t0
t A�
�d


= 1 + �
n=1

�

�− i�n	
t0

t

d
n	
t0


n

d
n−1 . . .

�	
t0


2

d
1A�
n�A�
n−1� . . . A�
2�A�
1�

and the Hamiltonian operators are written in the Heisenberg
representation as

HF�t� − HN�t� = eiHNt�HF − HN�e−iHNt. �13�

Here everything moves on the intermediate PES and we can
rewrite Eq. �11� in the Heisenberg representation with
DFN�t�=eiHNtDFNe−iHNt

DF
+���� = 	

0

�

dtDNI
+ �0�DFN�+ �t�e+

−i�0
t 
HF�
�−HN�
��d
e−�te−i��t.

�14�

As of yet no approximations have been introduced; Eq. �14�
in combination with Eq. �10� is just a reformulation of Eq.
�5�. We now make the semiclassical approximation: the time
evolution is treated classically and the trace goes to a sum of
classical trajectories on the intermediate PES but started
from a sampling of the ground-state quantum distribution of
distance and momentum. The time-ordered exponential goes
to a normal exponential with the intermediate- and final-state
energies in the place of the Hamiltonians.

�class���� = �
traj

�
F

�DF
+class�����2, �15�

DF
+class���� = 	

0

�

dtDNI
+ �0�DFN�+ �t�e−i�0

t �EF�
�−EN�
��d
e−�te−i��t.

�16�

Equations �15� and �16� are the final expressions for the
SCKH approximation. In the present case we have sampled
the initial conditions such that all trajectories have equal
probability, which eliminates the need to include an addi-
tional weight factor for each trajectory in Eq. �15�.

C. Two-step approximations

The KH formula takes vibrational effects from the inter-
mediate and final states into account in one step, thus includ-
ing the interference of the intermediate-state wave
functions.15 This so-called lifetime vibrational interference
�LVI� �Ref. 15� is of crucial importance for dissociative core
excited states due to zero-energy spacing between continuum
nuclear states; in the present case, considering the water

dimer model, the PES is dissociative but bounded, leading to
LVI effects between closely spaced vibrational levels in the
potential well between the two oxygens.20 Simplified meth-
ods of calculating XES can still be obtained by using a two-
step approach where the absorption and emission processes
are treated separately.21 The simplest approximation can be
termed the vertical approximation �VA� and results from as-
suming the intermediate- and final-state vibrational wave
functions to be position eigenstates �Dirac delta functions�,
that is �fF�→ �R� and �nN�→ �R��. The sums over vibrational
states go to integrals.

����� = �
F
	 dR�	 dR�

�R�DFN� �R���R��DNI�iI�
�� − 
EN�R�� − EF�R�� + i�

�2

.

�17�

Since �R�DFN�R��=DFN�R���R−R�� all the cross terms van-
ish and inserting �dR��R���R�� between DNI� and �iI� results in

����� = �
F
	 dR

�DFN� �R��2�DNI�R��2��i�R��2


�� − ENF�R��2 + �2 , �18�

where �i�R�= �R � iI� is the ground-state vibrational wave
function. If DNI is set to unity, this corresponds to summing
the Fermi’s golden rule expression for transitions from inter-
mediate to final states calculated for point R, weighted with
the ground-state vibrational distribution. The VA 
Eq. �18��
clearly cannot handle dissociation since only geometries near
the ground-state geometry are sampled. To solve this prob-
lem one should use strict quantum theory of x-ray Raman
scattering, which treats the scattering through the dissocia-
tive intermediate states rigorously.22 However, this strict
wave-packet technique only allows treating rather small mol-
ecules. Keeping in mind the intended application to large
systems, such as realistic models of liquid water, we need to
introduce reasonable approximations.

Attempts to include the dissociative effects within the
two-step approach have been made in several studies2,5–10

where the latest efforts by Odelius,5,6 Tokushima et al.,2,9 and
Pettersson et al.10 are all equivalent except for a few impor-
tant points described below. As in the SCKH method pre-
sented here, classical trajectories on the core-hole PES are
used with either classical5,6 or quantum2,9,10 initial condi-
tions. The spectra are calculated at the instantaneous geom-
etry at each time step using Fermi’s golden rule �ignoring the
DNI� absorption matrix element�

�traj
��,R�ti�� = �
F

�DFN� 
R�ti���2

�� − ENF
R�ti���2 + �2 �19�

and summed together with an exponential damping factor
corresponding to the lifetime, 
, of the core hole, and aver-
aging over the trajectories

�tot���� = �
traj

�
i

�traj
��,R�ti��e−ti/2
. �20�

We denote this method spectra summed over classical trajec-
tories �SSCT�. The initial step, calculated for time zero, cor-
responds to the VA if the quantum initial position distribution
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is sampled. In earlier work a Gaussian broadening has been
used instead of a Lorentzian.

The lifetime 
 is commonly defined as � /��, where �� is
the full width at half maximum �FWHM� Lorentzian lifetime
broadening �we use the prime to distinguish the FWHM from
the � we use that corresponds to the HWHM�. In Ref. 23 the
FWHM of the lifetime broadening of O2 has been reported as
0.18 eV, giving a lifetime of 3.6 fs according to this defini-
tion and in Ref. 24 a lifetime of �3 fs was given based on a
lifetime width of 0.15 eV. In earlier work2,5,7–10 an exponen-
tial factor e−ti/
 has been used with this lifetime, which cor-
responds to the decrease in the population of a certain state,
see Appendix B. To compare with the earlier work we show
spectra computed with e−ti/
 as well as e−ti/2
 which is con-
sistent with the lifetime of the KH formula written in the
time domain. In the latter case the lifetime is effectively
twice that which has been used in previous work.2,7–10

A generalization of the methods described above is to use
full wave-packet quantum dynamics to do the time propaga-
tion and summing spectra for different times according to the
probability ��N�R , t��2, i.e., the wave packet squared, and fur-
thermore weighted with the exponentially decreasing life-
time factor. We call this the spectra summed over wave-
packet probability �SSWPP� method

����� = �
F

�
i

�
j

�DFN�Rj��2��N�Rj,ti��2


�� − ENF�Rj��2 + �2 e−ti/2
. �21�

Here we need ��N�R , t��2, which is obtained from quantum
wave-packet dynamics on the core-hole PES, see Sec. II F
below.

D. Electronic structure calculations and
core-hole-induced trajectories

Calculations were performed for a water dimer with the
O-O distance constrained to 2.75 Å but with all other geo-
metrical parameters fully optimized; this is a realistic O-O
distance for the dimer as a local model of liquid water and
ice. At this distance and distances shorter than the experi-
mental gas-phase dimer distance of 2.978 Å,25 the PES for
the H-bonded hydrogen in the nonresonant core-hole state is
dissociative. In earlier related work26,27 an optimized O-O
distance of 3.13 Å in the �H2O�2 dimer was used which
introduced an artificial barrier and too slow dynamics in the
simulated core-hole-induced proton-transfer reaction. In or-
der to have a direct comparison between a quantum treat-
ment of vibrational effects on a precomputed PES and core-
hole-induced trajectories with ab initio forces the forces were
projected on the same direction along which the PES was
computed �O-H¯O for the H-bonded OH and O-H for the
non-H-bonded�; the dynamics was thus constrained to be on
the same PES as for the full KH calculations. All electronic
structure calculations were made with the STOBE density-
functional theory code28 using the PBE gradient-corrected
functional29 and the IGLO-III all-electron basis set of Kut-
zelnigg et al.30 for the H-bond-donating oxygen while the
accepting oxygen was described using an effective core po-
tential �ECP� �Ref. 31� which simplifies the definition of the
core-hole state. The hydrogens were described using the 3s

contracted basis of Ref. 32 with one p-function added.
The ground state, the core-hole state and the first valence-

ionized state were self-consistently optimized—in the case of
the core-hole state the occupation of the oxygen 1s alpha
spin orbital was fixed to zero. Energies of all other valence-
hole states were approximated as the ground-state energy
plus the orbital energy �the energy of the Koopmans ion�
with a correction given by the difference of the highest oc-
cupied molecular orbital �HOMO� orbital energy and the
variationally determined HOMO ionization potential �IP�.
Transition dipoles for the XES were computed using the
ground-state orbitals to represent both core- and valence-hole
states following earlier work.33,34 The PESs of all states were
computed on a grid from 0.5 to 2.425 Å in steps of
0.025 Å; these PESs were subsequently used in all approxi-
mate methods discussed in the text.

For the simulations of the core-hole-induced dynamics
classical trajectories were run for 40 fs using the STOBE code.
Quantum initial conditions for the dynamics were obtained
sampling the position and momentum distributions of the
ground-state O-H stretch vibrational wave function since this
mode is in the ground state at room temperature. For a sys-
tem with more degrees of freedom the softer modes should
be sampled according to a thermal ensemble. Sampling the
position distribution was done by subdividing the quantum
O-H stretch position probability distribution into ten distor-
tions with equal integrated probability; the vibrational wave
functions for the H-bonded and free OH were approximated
as harmonic oscillators of frequency 3275 cm−1 and
3576 cm−1, respectively, as determined for the ground-state
PES �see below�. The sampling of the momentum distribu-
tion was obtained by subdividing the Fourier transform simi-
larly while accounting for the equal probability of having
positive and negative momenta since the expectation value
has to be zero for an initially bound system. Simulations
following Odelius5 were performed by combining a limited
subset of these initial conditions since the thermal energy
�kBT� at room temperature for a classical harmonic oscillator
corresponds to a significantly more limited range of initial
O-H stretch distortions and initial momenta.

E. Solving the vibrational problem

The vibrational eigenfunctions were calculated using a
sinc discrete variable representation �DVR�.35 A one-
dimensional DVR consists of a set of basis functions ui�x�
and a corresponding discrete set of DVR points xi.

36 The
functions ui�x� are localized at the corresponding points and
are exactly zero on all other DVR points, i.e., ui�xj�=�ij. The
DVR basis can be used to approximately expand any one-
dimensional function as k�x���ickiui and is particularly
useful because the localization makes it possible to approxi-
mate a matrix element of an operator depending on x as
being diagonal in the basis: �ui�O�x��uj��O�xi��ij. In the sinc
DVR the basis functions are

��x
sin
��x − xi�/�x�

��x − xi�
�22�

and the corresponding DVR points form an equidistant grid
xi= i�x, where i=0, �1, �2, . . . Kinetic-energy matrix ele-
ments are given by Colbert and Miller35 as
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Tij =
�− 1�i−j

2m��x�2�
�

3
i = j

2

�i − j�2 i � j .� �23�

We use atomic units, �=1, throughout this paper. The poten-
tial energy is diagonal Vij �V�xi��ij. The DVR Hamiltonian
H=T+V is then diagonalized to obtain the eigenvectors cki.
The matrix elements of an operator O�x�, depending on x, in
this basis are given by

�k�O�x��l� = �
i

cki�ui�O�x��
j

clj�ulj�

= �
i,j

ckicljO�xi��ij

= �
i

ckicliO�xi� . �24�

Since a sinc DVR basis set is associated with an equidistant
grid it can be used to describe the ground-, core-ionized, and
final-state vibrational wave functions on the same footing in
spite of the fact that these functions, in general, are centered
at different positions. The accuracy can be controlled by ex-
tending the grid and decreasing the spacing and is in practice
good despite the slow decay �1 /r2� of the kinetic-energy ma-
trix. In our calculations the ground-state vibrational wave
function was fully converged with respect to the DVR basis
set.

F. Wave-packet dynamics on the excited state PES

At t=0 we put the ground-state vibrational wave function
onto the excited state PES and expand it in the excited state
vibrational wave functions. After solving the vibrational
problem in the sinc DVR basis the excited and ground state
stretch vibrational wave functions are �nN�=�kbnk

N �uk� and
�iI�=� jcij

I �uj�, respectively, where �uj� are the DVR basis
functions. Now �uj� can conversely be expanded in the �nN�
states as �uj�=�nbjn�

N�nN�, where the coefficients bjn�
N=bnj

N

= �uj �nN� are real. Now we can expand �iI� into �nN� as �iI�
=� jcij

I �uj�=� j,ncij
I bjn�

N�nN�, where the time development of
�nN� is given by �nN�t��=e−iEnN

t�nN�0��. Combining it all to-
gether gives the time development of the initial wave packet
�iI�t�����N�t�� as ��N�t��=� j,n,kcij

I bnj
N bnk

N e−iEnN
t�uk� which, e.g.,

for DVR point l, becomes �N�xl , t�=� j,ncij
I bnj

N bnl
Ne−iEnN

tul�xl�
since uk�xl�=�k,lul�xl�. Squaring this expression gives us the
time-dependent probability distribution in the OH bond dis-
tance.

��N�xl,t��2 = ��
j,n

cij
I bnj

N bnl
Ne−iEnN

tul�xl��2
. �25�

III. RESULTS

We will decompose our analysis into three steps. �1� How
well does a sampling of quantum initial conditions in a clas-
sical simulation capture the time-dependent probability dis-
tribution from a wave-packet simulation, �2� based on the

approximated dynamics, how well do the various approxima-
tions to the spectrum calculations reproduce the KH results,
and �3� how important are the energy corrections to the spec-
tra.

Here we begin by discussing the various approaches to
the core-hole-induced dynamics and how they compare with
the full quantum wave-packet approach in terms of the time-
dependent position distribution. To evaluate the accuracy of
the sampling of the quantum initial position and momentum
distribution we compare the fully quantum-mechanical time-
dependent probability distribution of a quantum wave packet
moving on the dissociative PES, associated with the
H-bonded OH upon nonresonant core ionization,8 with the
corresponding probability distributions obtained from en-
sembles of classical trajectories based on different initial
conditions.

We first discuss approximations to the wave-packet dy-
namics given by ��N�xl , t��2 of Eq. �25�. In Fig. 1 we compare
the time-dependent position distribution from full quantum
dynamics with those obtained from classical dynamics with
quantum initial conditions with and without sampling the
momentum distribution as well as that obtained with the time
evolution of the “classical” distribution, i.e., sampling ther-
mal conditions with vibrational energy corresponding to kBT
at room temperature.5,6 The classical dynamics based on
sampling both the quantum momentum and spatial distribu-
tions as initial conditions is in very good agreement with the
quantum dynamics until the wave packet reaches the accept-

0.8 1 1.2 1.4 1.6 1.8 2 2.2

R(OH) [Å]

FIG. 1. �Color online� Time-dependent probability distribution
of the H-bonded OH in the dimer upon nonresonant excitation with
the initial state as the leftmost distribution. �a� Full quantum wave-
packet dynamics, �b� classical dynamics with initial conditions sam-
pling both the quantum distribution of OH distances and proton
momenta in the zero-point motion, �c� as in �b� but sampling only
the zero-point OH distance distribution, �d� classical dynamics sam-
pling classical �thermal� initial conditions.
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ing oxygen and is reflected; the potential from the other oxy-
gen becomes repulsive at a certain distance. When this hap-
pens the wave packet interferes with itself and nodes appear;
this cannot be reproduced by the classical trajectories which
correspond to the time evolution of the initial probability
distribution, not of the wave-function amplitude. However,
since the wave packet begins to significantly interact with the
accepting oxygen only after �7 fs interference effects from
reflection of the wave packet can be expected to not affect
the spectra significantly. If the distribution of momenta is
neglected the agreement is less satisfactory, with the distri-
bution actually becoming narrower for short times compared
to the initial distribution, which clearly is unphysical; this is
related to the gradient on the upper PES increasing for
shorter internal O-H distances, which gives a larger accelera-
tion for this part of the distribution and results in a more
compact probability distribution with time. The distribution
with strictly classical, thermal initial conditions, on the other
hand, does not spread out almost at all with time. In this case
the probability distribution moves as a unit without spread-
ing due to the neglect of momentum sampling and since the
thermal energy, �200 cm−1, of a room-temperature classical
harmonic oscillator only allows sampling a very limited re-
gion of the zero-point motion of a quantized OH oscillator
for which the zero-point energy is rather closer to
1800 cm−1. We conclude that sampling both the space and
momentum quantum distributions is necessary for a proper
description of the squared wave-packet evolution and note
that the agreement between the time evolution of the prob-
ability distribution using classical dynamics compared to the
quantum simulation is then excellent until interference ef-
fects become important as the wave packet reaches the re-
pulsive wall at the neighboring H-bond acceptor.

We now turn to the calculated XE spectra. For a single
gas-phase water molecule there are four molecular orbitals
from which electrons can decay to the 1s core level. Catego-
rizing the orbitals by their symmetry and starting from the
one with highest emission energy �computed in the vertical
approximation, i.e., neglecting lifetime interference effects�
we have the 1b1 lone-pair orbital ��527 eV�, next comes
the 3a1 ��524 eV� followed by the 1b2 ��521 eV� and
2a1 ��500 eV� orbitals. The nonbonding lone-pair orbital is
very sharp in the experimental spectrum1 while the bonding
3a1 and 1b2 orbitals show strong effects of core-hole-
induced dynamics and become considerably broadened. The
2a1 orbital is around 20 eV lower in energy and is usually
omitted in the spectrum. When the intermediate core-hole-
state PES is dissociative, as is the case for the bonded hy-
drogen in the dimer, the whole spectrum can be assumed to
be sensitive to the description of the dissociative dynamics
but the internally bonding orbitals will show the largest
effects.

In the SSCT method, full agreement with the quantum-
squared wave packet will capture all the effects of the dy-
namics in the spectrum and will converge to the SSWPP
method. The expression for the SCKH cross section, Eqs.
�15� and �16�, does not contain the square of the wave
packet, however, so it is less certain that a sampling of initial
conditions will produce an improved spectrum. Furthermore
we have to investigate how large the effect of the sampling is

on the spectrum since it leads to a large increase in compu-
tational effort. In Fig. 2 we show the SCKH spectra obtained
with different samplings of initial conditions for the
H-bonded OH. Comparing the sampling of the quantum dis-
tributions of both momenta and OH distances �a� with the
strictly classical initial conditions �d� we see that quantum
initial conditions improve the agreement with the full KH
calculation. The inclusion of a quantum momentum sampling
seems to be more important than the sampling of the position
distribution; the substructure in the lone-pair peak is in better
agreement when the quantum distribution of momenta is
taken into account and the spatial distribution neglected �b�
than when the reverse sampling is done �c�. Except for this
feature, the spectrum with classical initial conditions �d� does
reproduce the KH spectrum qualitatively. A suitable sam-
pling of a few points in space and momentum should thus be
enough for reasonable agreement for this test system.

In Figs. 3 and 4 we show the different approximations to
the XES including dynamics for, respectively, the H-bonded
and non-H-bonded OH of the nonresonantly excited donor
molecule. Plotted with full lines, labeled A is the SCKH, B is
the SSWPP, C is the SSCT including quantum initial condi-
tions, D is SSCT with classical initial conditions, and E is the
vertical approximation; the reference KH spectrum is given
by the dotted line in each plot. We see in Fig. 4 that for the
non-H-bonded �free� OH all methods are in good agreement,
only the peak at approximately 521 eV resolves some vibra-
tional structure. Since the free hydrogen does not dissociate

518 520 522 524 526 528
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FIG. 2. �Color online� SCKH calculations for the H-bonded OH
using different initial conditions for the core-hole-induced classical
dynamics compared with full Kramers-Heisenberg formalism �dot-
ted�. �a� Sampling both position and momentum quantum distribu-
tions, �b� sampling quantum momentum and classical position dis-
tribution, �c� sampling classical momentum and quantum position
distribution, and �d� classical initial conditions based on thermal
energy only.
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upon nonresonant excitation8 there is no need for the inclu-
sion of dynamical effects at least in this one-dimensional
model system; in the case of a real system the bend modes
may also contribute, even for free OH groups,8 so dynamical
effects cannot, in general, be ignored. For the H-bonded OH,
however, we see large dynamical effects. If we compare the
vertical approximation with KH �plot E� we see that the
former has a too high and narrow lone-pair peak �around
526.5 eV� which is furthermore shifted to higher energies
and lacks the vibrational structure of the KH peak. The vi-
brational structure in the region �518–524 eV� is totally
missing in the VA spectrum, instead it shows a high and
narrow peak at 520.5 eV. The SSWPP spectrum using the
longer lifetime exaggerates the dynamical effect on the lone-
pair peak, which is too low and broad, while the second peak
is too high. In the low-emission energy region �1b2� we see
two smaller peaks instead of a broad distribution of intensity
as obtained in the KH spectrum. With the shorter lifetime the
dynamical effects in the lone-pair region are instead under-
estimated. We note that with a proper sampling of the initial
quantum conditions we can recover the SSWPP results as
seen in C. The SCKH spectrum, on the other hand, is in
excellent agreement with the KH spectrum, displaying all
vibrational structures of the first two peaks and near-
quantitative agreement in the low-energy region. We can
conclude that it is crucial to include dynamics particularly in
the case of the bonded hydrogen with dissociative interme-

diate PES. For the free hydrogen with no dissociation the
dynamics is unnecessary—even the VA method works very
well. Here we need to point out that resonant excitation into
the pre-edge feature of water or ice populates an antibonding
state localized on the free OH �Refs. 37–39� leading to dis-
sociative dynamics for the non-H-bonded OH while in that
case the H-bonded OH shows only minor effects.8 Nonreso-
nant excitation, as studied here, instead leads to strong dy-
namics for the H-bonded OH such that whether or not vibra-
tional interference and dynamical effects need to be included
for a free OH depends on the excitation energy. We summa-
rize this section by concluding that sampling the quantum
initial conditions �c� reproduces the SSWPP �b�, but this is
not sufficient for a good agreement with the KH. The SCKH
method �a�, based on an ensemble of trajectories sampling
the initial quantum distribution, is superior to the other ap-
proximations.

We will now discuss the PESs and the need for energy
calibration. Tokushima et al.2 and Pettersson et al.10 pointed
out the importance of the zero-point energy released in a
dissociative process and in the most recent work9 initial con-
ditions for the classical trajectories were sampled from the
ground-state vibrational OH-stretch quantum distributions in
terms of both position and momentum. The spectra were
calculated from the ground-state orbitals34 but, due to diffi-
culties in obtaining convergence of both HOMO and core IP
for the large clusters used �32 molecules�, a reliable absolute
energy scale could not be defined and instead the energy
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FIG. 3. �Color online� Comparison of the different methods with
the full Kramers-Heisenberg formalism �blue, dotted� applied to the
H-bonded OH. From bottom to top the full line represents: �a�
SCKH with quantum initial conditions sampling both momentum
and OH distance distributions, �b� SSWPP, �c� SSCT with quantum
initial conditions, �d� SSCT with classical initial conditions, and �e�
VA. In �b�–�d� the full line is spectra computed with the longer
lifetime and the purple line with closely spaced dots with the
shorter one.
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FIG. 4. �Color online� SCKH calculations for the free OH using
different initial conditions for the core-hole-induced classical dy-
namics compared with full Kramers-Heisenberg formalism �dotted�.
�a� Sampling both position and momentum quantum distributions,
�b� sampling quantum momentum and classical position distribu-
tion, �c� sampling classical momentum and quantum position distri-
bution, and �d� classical initial conditions based on thermal energy
only.
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scale was taken as the orbital energy difference; using an
ECP on all other oxygens in a larger cluster makes the core-
hole state unique and well-defined while it proved impos-
sible in Refs. 9 and 10 to obtain convergence for the HOMO
IP in the near-degenerate lone-pair band. In Refs. 5 and 6 the
initial conditions were taken from a classical MD simulation
with initial momenta set to zero. An absolute energy scale
was computed where the lone-pair IP was defined by elimi-
nating orbital mixing with the remaining cluster, but these
orbital mixings were subsequently included in the spectrum
calculations making the energy scale less certain. Thus, also
the energy scale has been an issue in all earlier work.

In Figs. 5�a� and 5�b� we show the computed PESs for the
intermediate core-hole state and the lone-pair-ionized state
for the free and bonded hydrogen atoms. The upper �red� and
lower �blue� curves are, respectively, the PES with the ex-
plicit core hole and the PES for the lone-pair-ionized state;
the core-hole PES is clearly dissociative, but even lone-pair
ionization affects the PES leading to a double-well potential
with a small barrier ��0.2 eV� separating the molecular
from the deeper dissociated minimum. For the free hydrogen

Fig. 5�a�� neither PES is dissociative. Here it should be re-
membered that all other atoms are fixed in these one-
dimensional simulations such that the depth of the dissoci-
ated minimum can be expected to increase if also the
hydrogen atoms of the accepting water were allowed to re-
lax.

The resulting emission energies as function of the respec-
tive OH-stretch coordinate are shown in Figs. 5�c� and 5�d�
in comparison to a simple estimate based on the orbital en-

ergy differences. The latter was shifted in energy to make the
first peak of the spectra coincide �as in Fig. 6�. At longer
distances, and thus longer times in terms of the wave-packet
dynamics, the emission position of the H-bonded OH, based
on the orbital energy difference and the fully computed,
show very similar and near-parallel behavior. At shorter
times, however, the two curves are qualitatively different; the
fully computed curve shows reduced emission energy with
elongation while the estimate based on orbital energies
shows an increase up to an OH distance of 1.2 Å. With an
OH equilibrium distance in the ground state of 1.00 Å for
the H-bonded OH it is clear that the lone-pair peak based on
orbital energy differences will come out too sharp and nar-
row and lack the asymmetry toward lower emission energy
that is evident from the distance dependence of the fully
energy-corrected emission energy curve. The situation is
similar for the free OH but with smaller variations with the
orbital energy difference giving an asymmetry toward higher
emission energy; since there is no dissociation only a smaller
region around the equilibrium will furthermore be probed. In
Fig. 6 we show SCKH spectra for the free and H-bonded OH
using different energy calibrations comparing the fully cor-
rected case to spectra using transition energies either taken
from the ground-state orbital-energy differences �no correc-
tion, as in Refs. 9 and 10� or just correcting for the core-hole
state which gives the dominant effect.

The spectra have been shifted to the fully corrected posi-
tion to be able to compare their shapes; the shifts were
+23.3 eV for the uncorrected spectrum and −4.7 eV for the
spectrum only corrected for the core-hole energy. For the
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FIG. 5. �Color online� �a� and �b�: PES of core-hole and lone-pair states. Full lines �red� are total energies with an explicit core hole,
dotted lines �blue� are total energies with a valence hole. �a� is the free and B is the bonded hydrogen. �c� and �d�: emission energies with
explicit core and valence holes �red� or from orbital energy differences �blue�. �c� is the free and �d� the bonded hydrogen. The orbital
energies are shifted up in energy by 23.3 and 22.5 eV for the free and bonded hydrogens, respectively.
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free hydrogen the energy corrections do not affect the shape
much but including the core-hole correction improves the
spectrum somewhat to almost coincide with the fully cor-
rected one. For the H-bonded OH the core-hole correction is
crucial—the lone-pair peak is much too high and narrow
without it, as is now seen to have been the case in Ref. 10.
The same is the case for the second peak. For the free hy-
drogen, on the other hand, the core-hole correction gives a
higher and sharper peak.

IV. CONCLUSIONS

We have developed a semiclassical approximation
�SCKH� to the Kramers-Heisenberg formula for nonresonant
XES that gives excellent agreement with the quantum
Kramers-Heisenberg spectrum for our 1D water dimer model
system. Upon nonresonant core excitation the H-bonded hy-
drogen shows strong dynamical and vibrational interference
effects which are crucial for a reliable representation of the
spectrum; these are included through a summation over tra-
jectories based on classical Born-Oppenheimer dynamics
sampling both the initial position and momentum quantum
distributions as initial condition for the core-hole-induced
dynamics. The SCKH formula gives superior agreement
compared to the methods of Tokushima et al.2,9,10 and
Odelius5,6 �the SSCT method as defined above� for this test
system, and it also has a more rigorous theoretical founda-
tion. We finally note that, on the time-scale relevant for the

core hole, the time development of the O-H probability dis-
tribution from classical mechanics closely parallels that of
the quantum-mechanical wave packet once a proper sam-
pling of the initial quantum distribution of internal distances
and momenta is used as initial conditions for the core-hole-
induced dynamics as in Refs. 9 and 10.

Hence, we can finally settle the question about the impor-
tance of quantum initial conditions in XES calculations that
have been under debate.2,5,6,9,10 However, more importantly,
we conclude that the SSCT method is not sufficient to repro-
duce the KH spectrum, regardless of the initial conditions
used. Although it seems likely that the large spread in initial
conditions should lead to a smearing out of sharp spectral
features in computed spectra, as has been suggested in Refs.
2, 9, and 10, it is necessary to apply the here derived SCKH
approximation to reinvestigate the effects using more realis-
tic models of liquid water.
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APPENDIX A: THE KRAMERS-HEISENBERG FORMULA,
FROM THE RESONANT TO THE

NONRESONANT CASE

The Kramers-Heisenberg formula for the general case
treating both incoming and outgoing radiation is11,15

���,��� = �
f
��

n

�f �D��n��n�D�i�
�� − Enf + i� �2

��� − �� − Efi,�� ,

�A1�

where now � denotes the frequency of the incoming radia-
tion and � is an instrumental broadening function with
HWHM �. When an electron is promoted to the continuum,
which is the case for nonresonant transitions, we write the
wave function as �n�= �n����n� and �f�= �f���� f� where the
primed wave functions are the remaining bound state and ���
is the wave function of the outgoing electron, labeled by its
energy. Energies become Ef =Ef�+� f and En=En�+�n, sums
over states become � f =� f��d� f and �n=�n��d�n. We thus
have

���,��� = �
f�
	 d� f

���
n�
	 d�n

�� f��f��D��n����n���n��n��D�i�
�� − En�f� − �n + � f + i� �2

���� − �� − Ef�i − � f,�� . �A2�

The transition dipole operator can be written as D=DN−1

518 520 522 524 526 528

518 520 522 524 526 528
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FIG. 6. �Color online� Sensitivity to energy calibration in the
SCKH method. Upper: free hydrogen, lower: bonded hydrogen.
Full line: core hole and lone pair corrected, dotted line: only core
hole corrected, and line with closely spaced dots: no corrections.
The spectra have been shifted to make the first peak �lone pair�
coincide, which means 23.3 eV for the free and 22.5 eV for the
bonded hydrogen, respectively.
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+Dpe where the first part comes from the N−1 electrons in
the remaining ion and the second from the photoelectron.
Using this we can separate the transition dipole matrix ele-
ment as

�� f��f��DN−1 + Dpe�n����n�

= �� f��n��f��DN−1�n�� + �� f�Dpe��n��f��n��

� ��� f − �n��f��DN−1�n�� , �A3�

where in the last step we assume that only the first term
contributes, that is that there are no transitions for the pho-
toelectron. Performing the integral over �n picks out the
value of the integrand where � f =�n due to the delta function.
This gives

���,��� � �
f�
	 d� f��

n�

�f��D��n����n��n��D�i�
�� − En�f� + i� �2

���� − �� − Ef�i − � f,�� . �A4�

If we assume that the transition dipole matrix element be-
tween initial and intermediate states is independent of � f the
whole expression is independent of � f. The integral is then
just over the broadening function which gives a constant, one
if it is normalized. In the following we do not write out the
wave function of the photoelectron, assuming implicitly that
the transition dipole between intermediate and final states is
between the remaining ion states and that the photoelectron
should be included in the matrix element between initial and
intermediate states �the last one, however, is often assumed
to be a constant�. We then end up with the expression for the
nonresonant cross section applicable to cases where the in-
termediate state is core ionized and the interaction with the
emitted photoelectron can be neglected

����� � �
f
��

n

�f �D��n��n�D�i�
�� − Enf + i� �2

. �A5�

APPENDIX B: A NOTE ON THE LIFETIME

An energy eigenstate �i� has the time development

�i�t�� = ci�t��i�0�� �B1�

with

ci�t� = e−i�Ei/��t. �B2�

If the state has a finite lifetime there will also be a factor of
e−��/��t in ci�t�. We thus have

ci�t� = e−i�Ei/��te−��/��t. �B3�

Fourier transforming this expression gives a Lorentzian in-
stead of a delta function; the energy of the state is now un-
certain. To identify � we Fourier transform the Lorentzian
lifetime broadening

1

2�
	

−�

� 2�

��� − Ei�2 + �2e−i�td� =
1

�
e−i�Ei/��te−��/���t�

�B4�

which shows that � is the HWHM of the Lorentzian �assum-
ing positive times�. The square of ci�t� is the time-dependent
probability to find the system in state �i�

�ci�t��2 = e−2��/��t = e−t/
, �B5�

where the lifetime 
 has been introduced as the decay con-
stant of the probability and is defined as 
= �

2� or 
= �

��
with

�� being the FWHM broadening. This means that we can
write ci�t�=e−i�Ei/��te−t/2
 in terms of the lifetime defined
above. Thus, a factor of 2 is to be used in the denominator in
the exponent for ci�t� �but not for �ci�t��2�. In the formulas for
the absorption and emission processes we only encounter
factors of e−��/��t which translates into e−t/2
. The approach of
Refs. 2 and 7–10 considered the decay of a state at a speci-
fied time t with the population of the state decreased through
earlier decay processes. This lead to the use of the factor
e−t/
. Since the SSCT �and SSWPP� methods are not rigorous
approximations to the KH formula the question of which
lifetime to use becomes a bit arbitrary. The core-hole clock
method40–45 is used to determine ratios of lifetimes �or �
parameters� between spectator and nonspectator decay chan-
nels, as shown in Ref. 41. If one is consistent in the defini-
tion of the lifetimes then this method is not affected by a
possible factor of 2.
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