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We develop a nonperturbative zero-temperature theory for the dynamic response functions of interacting
one-dimensional spin-1/2 fermions. In contrast to the conventional Luttinger liquid theory, we take into ac-
count the nonlinearity of the fermion dispersion exactly. We calculate the power-law singularities of the
spectral function and the charge- and spin-density structure factors for arbitrary momenta and interaction
strengths. The exponents characterizing the singularities are functions of momenta and differ significantly from
the predictions of the linear Luttinger liquid theory. We generalize the notion of the spin-charge separation to
the nonlinear spectrum. This generalization leads to phenomenological relations between threshold exponents
and the threshold energy.
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I. INTRODUCTION

One of the aspirations of condensed-matter physics is to
understand the physical properties of interacting many-body
systems. A successful example is Landau’s Fermi-liquid
theory1 which provides a comprehensive framework for the
description of repulsively interacting fermions. This theory is
based on the concept of fermionic quasiparticles, which can
be regarded as physical fermions surrounded by a cloud of
particle-hole excitations. The quasiparticles carry the same
quantum numbers as the physical fermions but generally
have a different effective mass. Even if the interactions be-
tween the physical fermions are strong, phase space con-
straints near the Fermi surface limit the scattering rates of
quasiparticles and they become stable toward low energies.
In this limit, the system can be described by a theory of
noninteracting fermionic quasiparticles.

Let us compare some properties of noninteracting Fermi
gases and interacting Fermi liquids in three dimensions. In a
Fermi gas, the occupation number n�k�= ��k

†�k� which mea-
sures the number of physical fermions with momentum k,
jumps from one to zero at the Fermi surface �k�=kF. For a
Fermi liquid the amplitude of the discontinuity at �k�=kF is
reduced to a positive value Z�1 but remains nonzero. The
so-called quasiparticle residue Z is a measure of the overlap
between the physical fermions and the quasiparticles. An-
other example is the spectral function A�k ,��, defined below
in Eq. �2�. For a Fermi gas with spectrum ��k�, the spectral
function is A�k ,��=���−��k��. For a Fermi liquid, the �
peak at energies close to the Fermi level evolves into a sym-
metric Lorentzian peak with a width proportional to ��k�
−kF�2.

The physical properties of interacting systems are drasti-
cally different in one dimension. The effect of interactions is
nonperturbative. For example, an arbitrarily weak repulsion
in one dimension leads to zero residue, Z=0, suggesting an
absence of fermionic excitations. Instead, the elementary ex-
citations are thought to be better represented by quantized
waves of density obeying Bose statistics.2,3 For low energies,
the spectrum ��k� of the physical fermions can be linearized
around the two Fermi points �kF. The interacting fermionic
theory can then be mapped onto a theory of noninteracting
bosons4 and all correlation functions can be calculated

exactly.5 The universality class formed by gapless interacting
one-dimensional �1D� systems at low energies is called Lut-
tinger liquid �LL�.6 It is entirely characterized by the velocity
of density waves v and the Luttinger parameter K which
depends on the interaction strength.7 The distinct nature of
these systems compared to their higher-dimensional counter-
parts manifests itself in many observables. The spectral func-
tion A�k ,��, for example, instead of becoming a Lorentzian,
displays asymmetric power-law divergencies.

The contrast between one-dimensional and higher-
dimensional interacting systems becomes even stronger for
spinful systems. The eigenmodes of a spinful LL are spin-
carrying and charge-carrying density waves with linear
dispersion.8 In general, the velocity of these two types of
excitations, vs and vc, respectively, can be very different. The
introduction of a physical fermion with charge and spin into
the liquid leads to the formation of independent spin- and
charge-density waves. This phenomenon is called spin-
charge separation and can be probed in experiments.9–11

When turning on the interactions, the �-function singularity
in the spectral function of a noninteracting system, A�q ,��
=���−vFq�, splits into two power-law singularities at the
threshold energies for spin- and charge-density waves,12,13

A�q ,��� ��−vsq�−�s
��−vcq�−�c

with exponents �c,s de-
pending only on the Luttinger parameter.

The linearization of the generic spectrum of particles is
the crucial simplification leading to the LL theory and it has
a substantial impact on density excitations. For an LL, the
charge- and spin-density structure factors defined below in
Eq. �1� have sharp peaks, S�q ,������−vc�q�� and
Szz�q ,������−vs�q��, respectively, because a linear spec-
trum entails a one-to-one correspondence between the energy
and the momentum of density excitations. This is the reason
why the eigenmodes of an LL are density excitations. Also
note that spin and charge modes are entirely decoupled.

For a quadratic spectrum, in contrast, a density excitation
of fixed momentum q may have energies in a range of width
proportional to q2. The peak in the structure factor remains
narrow in the sense that q2 / �vc,sq��q, as long as q remains
small compared to kF. This agrees with the general idea of
irrelevance of the curvature as a perturbation to the LL
theory.5 However, the form of the peak is far from being a
simple broadening to a Lorentzian.14 Moreover, a spectrum
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curvature leads to a coupling between the spin and charge
modes.15–17 The charge-density structure factor, for example,
acquires a peak at energies ��vsq characteristic for the
spinon excitations.18,19

Along with the structure factors, the spectral function is
also affected by the nonlinearity of the dispersion
relation.20–22 The energy domains in which the dynamic re-
sponse functions deviate from the predictions of the LL
theory expand with the particles’ momenta tuned away from
the Fermi points. It was shown, however, that even far away
from the Fermi points there is a certain universality in the
behavior of the response functions.21,22 The dynamic re-
sponse functions at arbitrary wave vectors of single-species
fermions or bosons were studied in detail.14,23–27 The case of
spin-1/2 fermions, despite its practical importance, is studied
far less.18,28

The experiments on momentum-resolved tunneling be-
tween 1D systems9,29 or between 1D and two-dimensional
systems,11 as well as angle-resolved photoemission spectros-
copy on quasi-1D systems,10,30–33 provide a tool to measure
the electron spectral function. Moreover, the density struc-
ture factor can be measured using the Coulomb drag23,34 or
neutron scattering on spin chains.35 Some of these experi-
ments may be interpreted, in a limited domain of wave vec-
tors, in terms of spin-charge separation.10,11,31 Moreover, ex-
periments using ultracold gases have been proposed36,37

which could allow the observation of spin-charge separation
in real space. The numerical calculation of dynamic response
functions has become possible using time-dependent density
matrix renormalization group techniques.38–43 None of the
developed methods is limited to low energies and momenta,
thus prompting the question of the nonlinear dispersion ef-
fects.

The main goal of this paper is to present quantitative re-
sults for the dynamic response functions �spectral function
and the density structure factors� for spinful 1D Fermi sys-
tems at arbitrary interaction strength. We extend the LL
theory by taking into account the nonlinearity of the fermion
spectrum exactly, and we obtain results for the dynamic re-
sponse functions which are valid for arbitrary momenta.
Moreover, we shall elucidate the fate of the spin-charge sepa-
ration away from the Fermi points. Our results apply to a
wide range of systems with gapless spectrum and will be
used to track the evolution of the dynamic response functions
all the way from the noninteracting to the strongly interact-
ing limit.

We restrict our analysis to spin-1/2 systems at zero mag-
netic field, i.e., without spin polarization. Spin-rotation sym-
metry then entails SU�2� invariance of the spin degrees of
freedom. On the other hand, spin-polarized one-dimensional
systems are interesting in their own right and have been in-
vestigated theoretically44 as well as experimentally.45 A non-
zero magnetic field breaks the SU�2� symmetry and the Zee-
man shift leads to different Fermi wave vectors for spin-up
and spin-down fermions. This splits the peaks in the dynamic
response functions, and for large magnetic fields spin and
charge degrees of freedom become coupled even within the
linear LL theory.46 These complications do not arise in the
absence of a magnetic field.

In order to calculate the dynamic response functions, it is
convenient to translate the bosonic spin and charge modes

into fermionic quasiparticles, spinons, and holons. For a lin-
ear spectrum, the bosonic or fermionic languages may be
used equally comfortably and both offer their particular ben-
efits. The advantage of the former is the direct relation be-
tween the bosonic modes and the density response functions.
On the other hand, the fermionic description connects to the
well-known physics of the Fermi-edge problem.47–49 For a
nonlinear spectrum, the fermionic basis is superior because it
avoids divergencies arising in the bosonic perturbation
theory.50 It leads to a generalization of the quantum impurity
model which was used previously to calculate dynamic re-
sponse functions for spinless systems.21,22

This paper is organized as follows: in Sec. II, we present
an overview of our results for the dynamic response func-
tions at zero temperature and the spin-charge separation, and
point out qualitatively the main differences between interact-
ing systems with linear and nonlinear spectrum. In Sec. III,
we rephrase the LL theory in the basis of fermionic spin and
charge quasiparticles and reproduce the known results for the
spectral function. We also discuss how the Hamiltonian
changes in the presence of a nonlinear spectrum. In Sec. IV,
we present in detail the method for the calculation of thresh-
old singularities of dynamic response functions for a nonlin-
ear spectrum. We express the threshold exponents of the dy-
namic response functions in terms of scattering phase shifts
and we calculate the spectral function at its edge of support
for �k�→kF. In Sec. V, we construct phenomenological rela-
tions between these scattering phase shifts and the shape of
the spinon spectrum �s�k� which are valid for arbitrary mo-
menta in Galilean invariant system. In Secs. V B and V C,
we use these relations to calculate the spectral function
A�k ,�� and density structure factors Szz�k ,��, S−+�k ,��, and
S�k ,�� near their respective edges of support for arbitrary
momenta. In Sec. VI, we construct phenomenological rela-
tions fixing the exponents of correlation functions near the
holon spectrum �c�k� in terms of its shape. In Sec. VII, we
apply our general theory to the limits of very strong and very
weak interactions. For strong interactions, we reproduce the
known results for the Hubbard model with infinite interac-
tion. For weak interactions, we complement the phenomeno-
logical result by a perturbative calculation in the basis of free
fermions in order to obtain A�k ,�� away from the spinon and
holon spectra. In Sec. VI, we estimate the width of the peak
of A�k ,�� at the holon mass shell by investigating the decay
rate of holons due to their interaction with spinons. Finally,
in Sec. IX, we present our conclusions.

II. QUALITATIVE PICTURE AND RESULTS

The LL theory is widely used to describe the low-energy
properties of gapless one-dimensional interacting fermionic
systems.6 The restriction to low energies usually justifies a
linearization of the spectrum of the physical fermions around
the right and left Fermi points, ��k��vF��k−kF�. Within
this approximation, the system remains exactly solvable even
for nonzero interactions and can be cast into a linear theory
of noninteracting bosonic fields.4 These eigenmodes are col-
lective density waves which correspond to many-particle ex-
citations when expressed in terms of the physical fermions.
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One of the notable features of spinful interacting systems
is the spin-charge separation.13 The Hamiltonian of the inter-
acting system splits into a sum of two commuting quadratic
terms which act on different Hilbert spaces and describe the
charge and spin degrees of freedom separately. For nonzero
interactions, the velocities of these two types of excitations
are different. The injection or extraction of a physical par-
ticle which carries both spin and charge thus leads to the
formation of spin and charge density waves which separate
in space.

Both the collective nature of the eigenmodes and the spin-
charge separation are clearly observable in various dynamic
response functions. The charge- and spin-density structure
factors are defined as

S�k,�� =	 dxdtei�t−ikx�	c�x,t�	c�0,0�� ,

S−+�k,�� =	 dxdtei�t−ikx�S−�x,t�S+�0,0�� ,

Szz�k,�� =	 dxdtei�t−ikx�Sz�x,t�Sz�0,0�� , �1�

where 	c�x� and S��x� denote the charge and spin density,
respectively, and S�=Sx� iSy. The density structure factors
measure the linear response of the system at momentum k
and energy � to a perturbation which couples to the charge
or spin density. The charge-density perturbation, for instance,
can be created by the absorption of a photon. For an LL, one
finds S�k ,������−vc�k�� and Szz�k ,��= 1

2S−+�k ,������
−vs�k��. The Dirac-� shape of these functions reflects the fact
that charge- and spin-density waves are eigenmodes and thus
have a sharp energy for a given momentum. Note that this is
a consequence of the linearized spectrum of the physical fer-
mions. Moreover, the functions demonstrate that charge- and
spin-density waves propagate with velocities vc and vs, re-
spectively, which depend on the details of the interaction
between the physical fermions.

The spectral function is defined in terms of the retarded
Green’s function by A�k ,��=− 1


 Im Gret�k ,�� and can be
written as

A�k,�� =
1



Re	

0

�

dt	
−�

�

dxei�t−ikx�
���x,t�,��
†�0,0��� .

�2�

The operator ��
†�x� creates a physical fermion of spin �

= ↑ ,↓. In the absence of a magnetic field, SU�2� symmetry
ensures that A�k ,�� is independent of �. A�k ,�� represents a
different type of dynamic response function which measures
the response of the system to the addition of a physical par-
ticle or hole with momentum k and energy �. This function
can be determined experimentally, for instance, by measur-
ing the momentum-resolved tunneling into LLs �Refs. 9 and
11� or by photoemission spectroscopy.10,32 For a noninteract-
ing system, A�k ,��=���−��k�� defines the spectrum for
single-particle excitations, ��k�. In the presence of interac-
tions, customarily described by an LL, this function develops

power-law singularities at the eigenenergies of spin- and
charge-density waves,

A�k,� � �c,s�k�� � �� − �c,s�k��−�c,s�k�. �3�

The qualitative shape of A�k ,�� is shown in Fig. 1. For an
LL, the spectrum of left- and right-moving spin- and charge-
density waves is linear, �c,s�k�=vc,s��k−kF�, and the expo-
nents �c,s are k independent. They only depend on the Lut-
tinger parameter Kc which encodes the interaction strength:
for a noninteracting system Kc=1 while repulsive interac-
tions lead to 0�Kc�1. For �=vc�k−kF�, the incoming par-
ticle leads to the formation of a charge density wave with
energy � while the spin-density wave carries no energy.
Similarly, for �=vs�k−kF�, the final state contains a spin-
density wave with energy � and a charge-density wave of
zero energy. Away from these thresholds, the final state may
contain multiple excitations of nonzero energy in the spin
and charge sectors.

In the following, we shall refer to this conventional de-
scription as the linear LL theory in order to emphasize the
distinction to the case of nonlinear spectrum. Away from the
Fermi points, the curvature of the physical spectrum ��k� can
no longer be neglected. It is convenient to refermionize the
system and to express the spin- and charge-density waves in
terms of fermionic quasiparticles, spinons, and holons.
Within the linear LL theory, the spinon and holon spectra
�s�k� and �c�k� are linear and the quasiparticles are noninter-
acting. In contrast, for nonlinear ��k� spinon and holon spec-
tra become themselves nonlinear and interactions among
spinons, among holons and between spinons and holons
come into existence.

Throughout this paper, we shall focus on the case of zero
temperature and repulsive interactions between the physical
fermions. Repulsion leads to vs�vc, as known from the lin-
ear LL theory. Let us discuss A�k
kF ,�� for nonlinear spec-
trum. For momenta close to the Fermi points, �s�k� bends
downwards away from the linear spectrum as depicted in
Fig. 1. The spinon spectrum �s�k� becomes the edge of sup-
port of the spectral function, i.e., A�k ,��=0 for −�s�k���
��s�k�. Near the edge, for ���s�k�, A�k ,�� is given by Eq.

FIG. 1. �Color online� Spinon and holon spectra, �s�k� and �c�k�,
and spectral function A�k ,�� for momenta k
kF. For repulsive
interactions, a nonlinear fermion spectrum reduces �s�k� and in-
creases �c�k� compared to the linear Luttinger liquid spectra. The
spectral function has a power-law singularity at the spinon mass
shell ���s�k� with exponent �s and �s�k� is the edge of support of
A�k ,��. The singularity at the holon mass shell ���c�k� is smeared
out �dotted line� away from kF for nonintegrable systems due to
holon decay.
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�3� with a k-dependent exponent �s�k�. This exponent coin-
cides with the LL prediction in the limit k→kF. In order to
calculate the spectral function away from kF, we derive phe-
nomenological expressions which yield the threshold expo-
nent �s�k� at arbitrary k in terms of the properties of �s�k�. As
the latter can be measured or calculated for many systems,
this provides a useful relation between two independently
measurable quantities.

On the other hand, as shown in Fig. 1, the holon spectrum
�c�k� bends upwards away from kF. For generic noninte-
grable systems, the singularity of the spectral function at �
��c�k� becomes smeared out because quasiparticle interac-
tions allow a decay of holons. Therefore, the power-law be-
havior at the holon mass shell of the form �3� manifests itself
only at k→kF. It turns out that for nonlinear �c�k�, the expo-
nent �c is different form the LL prediction even at k→kF.
The reason is that the leading quadratic curvature of �c�k�
introduces a new energy scale �k−kF�2 / �2m��, where m� is
the effective mass. The modified exponent only holds in an
energy window of this width around �c�k�. Since for a strictly
linear spectrum, the width shrinks to zero, this does not con-
tradict the linear LL theory. Thus for the charge mode the
effect of the spectrum nonlinearity is similar to the spinless
fermion case.22

The strict spin-charge separation of the linear LL theory
no longer exists once the band curvature is taken into ac-
count. The Hamiltonian does not consist of commuting spin
and charge terms any more. The dynamic structure factors
for the charge and spin density, S�k ,�� and Szz�k ,��, respec-
tively, cease to be � functions. Nevertheless, spin-charge
separation continues to hold in a weaker sense: for arbitrary
momentum k, the power-law singularity of the spectral func-
tion at its edge of support is determined by states where a
spinon carries the entire energy �s�k� and has the velocity
��s�k� /�k. The holon, in contrast, has zero energy and a
strictly higher velocity vc. Slightly away from the edge, the
excess energy is used to generate additional low-energy
particle-hole pairs in the holon sector but no additional
spinons. Moreover, spinon decay �in contrast to holon decay�
remains forbidden by energy and momentum conservation.
Therefore, the injection or extraction of a particle with mo-
mentum k and energy near the threshold, ���s�k�, still
forms spatially separating spin- and charge-density waves as
in the linear LL theory. However, in contrast to the linear LL
theory, this is no longer true for energies far away from the
threshold. The results for the spectral function and the den-

sity structure factors near the edges of support for arbitrary
momenta are summarized in Table I.

III. REFERMIONIZATION OF THE LUTTINGER LIQUID
THEORY

Let us start by recapitulating the results for the spectral
function of interacting fermions in one dimension using the
conventional linear LL theory. This theory is universal in that
it predicts the low-energy properties of microscopically very
distinct systems using only very few measurable
parameters.6 One of its cornerstones is the realization that the
elementary excitations of one-dimensional interacting fer-
mion systems are collective bosonic charge and spin-density
waves.2,4 This is in stark contrast to higher dimensional sys-
tems, where the Fermi-liquid theory1 predicts that the el-
ementary excitations are only weakly affected by interactions
and remain fermionic. Spin- and charge-density waves can
be encoded into the bosonic fields ���x� ��=s ,c� and the
canonically conjugate fields ���x�, where7

����x�,�y���y�� = i
�����x − y� . �4�

In the low-energy regime, the spectrum ��k� of the physical
fermions can be linearized around the two Fermi points,
�R,L�k��vF��k−kF�. For this spectrum, the kinetic energy
becomes quadratic in �� and ��. Moreover, the interaction
energy is generally quadratic in the charge and spin densities
	c,s,

	c,s�x� = −
�2



� �c,s�x� . �5�

Therefore, the interacting Hamiltonian, despite being quartic
in fermionic operators, remains quadratic in the bosonic ba-
sis. It can be shown that the full Hamiltonian H0 becomes a
sum of commuting harmonic charge and spin terms, H0
=Hc+Hs, which are given by7 �using �=1�

H� =
v�

2

	 dx
K������2 +

1

K�

�����2� �6�

for �=c ,s. Interactions between the fermions lead to differ-
ent velocities of charge and spin modes, vc�vs, and thus
remove the degeneracy which is present in the noninteracting
system. This leads to the spin-charge separation that has been
observed in experiments:9–11 once a spinful fermion is in-

TABLE I. Exponents for the spectral function A�k ,�� �see Fig. 7 for notations� and the charge-density
structure factor S�k ,�� �see Fig. 8 for notations� at the edge of support. The exponents are determined in
terms of the phase shifts ��

A =���c�k−2nkF� and ��
S =���c��2n+1�kF−k� calculated in Eq. �48�. Moreover,

m�= �n+1 /2�1 /2�mod 2. The exponents and the edge of support for the spin structure factors S−+�k ,�� and
Szz�k ,�� coincide with the ones for S�k ,��.

A�k ,��0� �2n−1�kF�k� �2n+1�kF �n,�
s 1− 1

2 �−
�2n+1��Kc

�2
+

�+
A+�−

A

2
 �2− 1
2 � 1

�2Kc
−

�+
A−�−

A

2
 �2−m�
2

A�k ,��0� k��2n�1�kF �n−
c − 1

2 − 1
4 ��2n+1�2Kc+ 1

Kc
�+ 1

�2Kc
+ �2n+1��Kc

2

S�k ,�� 2nkF�k�2�n+1�kF �n
DSF 1

2 − 1
2 �

2n�Kc

�2
+

�+
S+�−

S

2
 �2− 1
2 �

�+
S−�−

S

2
 �2
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jected into the system, it creates spin- and charge-density
waves propagating at different velocities, vs and vc. More-
over, interactions determine the value of the constants Kc,s
which characterize the dynamical correlation functions and
thermodynamic properties like the compressibility and the
magnetic susceptibility. We shall assume that the interactions
are repulsive. In the charge sector, this entails 0�Kc�1,
where Kc=1 corresponds to noninteracting fermions. Fur-
thermore, repulsive interactions lead to vs�vc. In addition to
H0, the spin part of the Hamiltonian will generally contain a
sine-Gordon term

Hg =
2g

�2
a�2	 dx cos�2�2�s�x�� , �7�

where a is a short-distance cutoff. In terms of the original
fermions, Hg corresponds to spin-flip scattering
��L↑

† �L↓�R↓
† �R↑ and g is proportional to the 2kF component

of the interaction potential. A renormalization-group �RG�
analysis shows that for repulsive interactions �Kc�1� the
interaction strength g flows to zero as the bandwidth is re-
duced, so Hg is irrelevant.51 In the absence of a magnetic
field, the system Hamiltonian must conserve SU�2� symme-
try, so the components S−+ and Szz of the spin-density struc-
ture factor in Eq. �1� must coincide. For g=0, this require-
ment leads to7,52

Ks = 1. �8�

For energies small compared to kF
2 /2m, where m is the

bare mass of the fermions, all interaction processes will in-
volve particles close to the two Fermi points �kF. The physi-
cal fermion operators �� ��= ↑ ,↓� can then be projected
onto linearized bands of right-moving and left-moving fer-
mions ����x� ��=R ,L� with momentum close to �kF, i.e.,
���x�=eikFx�R��x�+e−ikFx�L��x�. These are related to the
bosonic fields �� and �� via the bosonization identity5,7,53

����x� �
1

�2
a
e−i/�2���c�x�−�c�x�+���s�x�−��s�x��. �9�

The cut-off length a is used to regularize the ultraviolet be-
havior of the theory. One can choose a=1 /�, where ��kF
is the width of the linearized bands. In principle, the
bosonization identity also contains Klein factors to ensure
the correct fermionic anticommutation relations, e.g.,

����x� ,���

† �y��=��������x−y�. However, we did not write
them out explicitly because they commute with �� and ��

and drop out whenever Eq. �9� is used to calculate expecta-
tion values of an operator which conserves charge and spin.
The spectral function �2� contains the expectation value
�
���

† �x , t� ,����0,0��� which obviously satisfies this require-
ment and the same is true for the other dynamic response
functions we shall calculate.

The spectral function of a linear LL can be obtained by
expressing the chiral fermions ��� in terms of �� and ��

using Eq. �9� and then calculating the bosonic expectation
values with respect to Hamiltonian �6�. However, the bosonic
language is not well suited to include band-curvature effects
which generate anharmonic terms �in boson creation-
annihilation operators� in the Hamiltonian. Bosonic perturba-

tion theory in these anharmonic terms leads to divergences.50

The physical reason is that, e.g., the right-moving bosonic
spin/charge excitations with momentum k always have an
energy v�k ��=s ,c�, which remains linear in k, so the boson
velocity v� for right movers is momentum independent.
Roughly speaking, bosons with different momenta thus have
a long time to interact and this leads to a breakdown of
perturbation theory. It turns out to be beneficial to rephrase
the problem in a fermionic language by introducing left- and
right-moving fermionic spin and charge quasiparticles,
spinons, and holons. The fermionic spectra will be curved,
thereby avoiding the problem of the bosonic theory.

For spinless fermions, the transformation between the
physical, interacting fermions, and noninteracting fermionic
quasiparticles can be performed directly using a unitary
transformation54 or via bosonization and subsequent
refermionization.22 In the spinful case, we use the latter op-
tion. First, H0 is diagonalized by the canonical scaling trans-
formation

�̃� = �K���,

�̃� =
��

�K�

. �10�

Each of the Hamiltonians H���̃� , �̃�� ��=c ,s� has the form of
a free bosonic Hamiltonian with Luttinger parameters equal
to unity and should therefore be representable as a noninter-
acting fermionic Hamiltonian by reversing the bosonization
procedure. Indeed, the bosonization identity �9� can be used
to refermionize the theory by defining new fermionic opera-
tors as

�̃�� �
1

�2
a
e−i���̃�−�̃�� �11�

for �=R ,L=+,− and �=s ,c. Written in terms of spinons �̃�s

and holons �̃�c, the spin and charge parts of the LL Hamil-
tonian �6� assume the form of free fermionic Hamiltonians
with linear spectrum,

H� = − iv� �
�=R,L

�	 dx:�̃��
† �x� � �̃���x�: . �12�

The colons denote normal ordering with respect to the
ground state, which is given by filled Fermi seas: for �=R
��=L� all states within the bandwidth � with negative �posi-
tive� momentum are singly occupied whereas all other states
are empty.

The bosonic fields �̃� and �̃� are related to the densities of
the fermionic quasiparticles. In analogy to the conventional
bosonization result,7 the refermionization formula �11� leads
to

	̃���x� ¬ �̃��
† �x��̃���x� ª −

�

2

� ���̃��x� − �̃��x�� .

�13�

This allows us to establish the relationship between the
physical fermions and the spinons and holons. For this pur-
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pose, the physical fermions ��� are expressed in terms of the
rescaled bosonic fields. Using Eqs. �9� and �10� it is straight-
forward to show that

��↑�x� � �̃�c�x�F�c�x��̃�s�x�F�s�x� ,

��↓�x� � �̃�c�x�F�c�x��̃�s
† �x�F�s

† �x� . �14�

The Klein factors were discarded for the same reason as
before. The unitary string operators F���x� are functions of
the quasiparticle densities and are given by

F���x� = exp�− i�	
−�

x

dy��+�	̃���y� + �−�	̃−���y��� .

�15�

where the effects of the interactions are contained in the
Kc-dependent phase shifts

�+c

2

= 1 −� 1

8Kc
−�Kc

8
,

�−c

2

=� 1

8Kc
−�K�

8
,

�+s

2

= 1 −

1
�2

,

�−s

2

= 0. �16�

For the phases ��s, we used Ks=1 which is a consequence of
SU�2� symmetry. As an example consider the creation of a
right-moving spin-up fermion �R↑

† . According to Eq. �14�, it

corresponds to the creation of a holon �̃Rc
† and a spinon �̃Rs

†

as well as of low-energy spin- and charge-density excitations
FRc

† ,FRs
† . Conversely, the creation of a spin-down particle

corresponds to the annihilation of a spinon.
For a linear spectrum, the dynamics of the string operators

�Eq. �15�� is governed by the noninteracting Hamiltonian H0
and becomes very simple. Hence, A�k ,�� can be calculated
from the refermionized operators and one recovers the well-
known LL result which is applicable for k� �kF.12,13,52 Note
that in the conventional approach to calculating A�k ,��, one
first evaluates the correlators as functions of x and t, and only
then performs a Fourier transform. The latter step is a quite
complicated problem in contour integration due to the exis-
tence of singularities in the integrand at x= �v�t. Our
method yields the threshold exponents in a much simpler
way and provides a clear interpretation of A�k ,�� in terms of
holons and spinons.

As an example, let us discuss the spectral function for
��0 and k�+kF. Expressing �R↑�x� using Eqs. �14� and
�15� and Fourier transforming allow us to rewrite A�k ,�� as
a convolution of correlation functions involving right- and
left-moving spinons and holons. As k�+kF, we measure the
momentum relative to the right Fermi point, and use q=k
−kF. We then have

A�q,�� =
1

2

	 dxdteiqx−i�t��R↑

† �x,t��R↑�0,0��

=
1

2

	 d�Rc

2


dqRc

2


d�Lc

2


dqLc

2


d�Rs

2


dqRs

2


� GRc�qRc,�Rc�GLc�qLc,�Lc�

� GRs�qRs,�Rs�GLs�qLs,�Ls� , �17�

where qLs=q−qRc−qLc−qRs and �Ls=�−�Rc−�Lc−�Rs due
to energy and momentum conservation. We used the Fourier
transforms of the correlation functions

GR��x,t� = ��̃R�
† �x,t�ei�+��xdy	̃R��y,t�

� e−i�+��0dy	̃R��y,0��̃R��0,0�� ,

GL��x,t� = �ei�−��xdy	̃L��y,t�e−i�−��0dy	̃L��y,0�� . �18�

For linear spectrum, the time dependence of the chiral left-
and right-mover densities is simple, 	̃���x , t�= 	̃���x−�v�t�.
These correlation functions can be calculated most easily in
the bosonic basis but a direct calculation in the fermionic
basis is also feasible.54 For the Fourier transforms, one finds

GRc�q,�� � ��� − vcq���� + vcq��� + vcq���+c/2
 − 1�2−1,

GLc�q,�� � ��� + vcq���� − vcq��� − vcq���−c/2
�2−1,

GRs�q,�� � ��� − vsq���� + vsq��� + vsq���+s/2
 − 1�2−1,

GLs�q,�� � ��� + vsq���� − vsq� . �19�

The arguments of the � functions reflect the linear spectrum
of the quasiparticles. The distinct form of GLs�q ,�� is a con-
sequence of �−s=0. The Heaviside-� functions appearing
above have a simple interpretation in terms of the Fermi seas
of spinons and holons. For right movers �left movers� all
states with negative �positive� momenta are filled, thus only
excitations with positive �negative� momenta can be created.
The exponents occurring in these correlation functions can
be interpreted in the context of the theoretical treatment of
the Fermi-edge singularity problem by Schotte and Schotte.55

The quadratic “Anderson” terms �+c
2 , �−c

2 , and �+s
2 in the

exponents of Eq. �19� are a consequence of the orthogonality
catastrophe.48 They reflect the shake-up of the right-moving
and left-moving holons and of the right-moving spinons near
the Fermi points, respectively, as a reaction to the introduc-
tion of the hole into the system. Left-moving spinons are not
shaken up because SU�2� symmetry leads to �−s=0. The ex-
ponents linear in �+c and �+s, on the other hand, are “Mahan”
terms47 which arise because the injection of a right-moving
hole leads to the creation of a right-moving holon and a
right-moving spinon.

Consider A�q ,�� for ��vcq. The singularity at this en-
ergy is generated by points in the integrand where ���Rc
=vcqRc. Due to momentum and energy conservation, the en-
ergies �Lc and �Rs as well as the momenta qLc and qRs will
be small, so the functions GLc and GRs in the integrand lead
to power-law singularities. One finds the exponent
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�−
c = − 1 − 
��−c

2

�2

− 1� − 
��+s

2

− 1�2

− 1� . �20�

Similar arguments allow the calculation of the exponents at
the spinon mass shell. Because vs�vc, the spectral function
vanishes for ����vs�q�. It is characterized by power-law sin-
gularities at the mass shells of spinons and holons, A�q ,��
� ��−vc,sq�−�−

c,s
, with the exponents12,13

�−
c =

1

2
−

1

8
�Kc +

1

Kc
− 2� ,

�−
s =

1

2
−

1

4
�Kc +

1

Kc
− 2� . �21�

In addition, one finds a singularity at the inverted holon mass

shell, A�q ,��� ��+vcq�−�+
c
, where

�+
c = −

1

8
�Kc +

1

Kc
− 2� . �22�

The corresponding power law at �=−vsq is suppressed be-
cause the particular form of GLs�qLs ,�Ls� �Eq. �19�� entails
qLs=�Ls=0. This is a consequence of Ks=1. It means physi-
cally that the right-moving hole with energy � and momen-
tum k cannot excite left-moving spinons. Figure 2 shows a
cross section of the spectral function A�q ,�� along a fixed
q=k−kF�0.

Corrections to the linear LL theory for nonlinear fermionic
spectrum

If the fermionic spectrum is not linear, two types of cor-
rections have to be added to the Hamiltonian H0 �12�. First,
the spectrum of the holons and spinons �c,s�k� will start to
deviate from its linear behavior. In the case of the holons, the
leading correction for k→kF is quadratic,

�c�k� = vc�k − kF� +
1

2m�
�k − kF�2, �23�

where m� is an effective mass which is related to the bare
mass m and the compressibility of the system and is gener-
ally positive, see Eq. �77�. The spinon spectrum �s�k� also
becomes nonlinear but its form is restricted by SU�2� sym-
metry. The spin-up/spin-down symmetry of the physical fer-
mions translates into particle-hole symmetry of the spinons.
Therefore, the leading curvature is cubic,

�s�k� = vs�k − kF� − ��k − kF�3, �24�

where in general ��0. In addition to causing a band curva-
ture of the spinon and holon spectra, a nonlinearity in the
spectrum of physical fermions also leads to interactions be-
tween spinons and holons as well as within these two spe-
cies. The different forms of holon and spinon mass shells
Eqs. �23� and �24� entail strikingly different consequences as
far as the relevance of these interactions is concerned.

For the calculation of the spectral function A�k ,�� near
���c�k�, one needs to consider the scattering phase between
a holon at momentum k and holons and spinons at the Fermi
edge. To lowest order in the interaction,24 the scattering
phase with left- and right-moving holons and spinons is pro-

portional to Ṽ��
c �k−kF� / �vd−�v��, where Ṽ��

c �k−kF� for �
=R ,L=+,− and �=c ,s is the corresponding interaction po-
tential and vd=��c�k� /�k is the velocity of the holon with
momentum k. For k→kF, the Hamiltonian of the system
should reduce to that of a linear LL. In particular, this means

that spinons and holons become noninteracting, i.e., Ṽ��
c �0�

=0. Due to symmetry the expansion of the interaction poten-

tial starts with the quadratic term, Ṽ��
c �k−kF�� �k−kF�2 for

k→kF. For a quadratic spectrum, vd−vc� �k−kF� for k→kF
whereas vd�vs and vd+vc remain finite in this limit. There-
fore, all scattering phases vanish and interactions of the ho-
lon with other quasiparticles do not modify the spectral func-
tion for k→kF.

The quadratic form of the holon spectrum �Eq. �23��, on
the other hand, does lead to a change in A�k ,��. Let us focus
again on k�kF and ���c�k��0. As depicted in Fig. 3, the
injection of a hole with momentum k and energy � leads to
the formation of a holon with shifted momentum k+�k on
mass shell and low-energy spinons and holons near the
Fermi points with total momentum �k. If � is close to the
mass shell, i.e., ��−�c�k��� ��c�k�−vc�k−kF��= �k
−kF�2 / �2m��, energy and momentum conservation enforce

FIG. 2. �Color online� The spectral function A�q ,�� for a linear
Luttinger liquid with repulsive interactions along a cut for fixed q
=k−kF�0. A�q ,�� is characterized by sharp power-law singulari-
ties at the holon and spinon mass shells �=vc,sq and at the inverted
holon mass shell �=−vcq.

FIG. 3. �Color online� The injection of a hole with momentum k
and energy ���c�k� leads to the formation of a holon on the mass
shell and low-energy excitations around the holon Fermi edge. For
clarity, the created low-energy spinons are not displayed. For this
particular configuration, energy and momentum conservation lead
to vc�k= ��−�c�k+�k��. The impurity band �around k� and the low-
energy band �around kF� can be separated only if �k�kF−k. This is
the case for ��−�c�k��� �k−kF�2 / �2m��.

SPIN-CHARGE SEPARATION IN ONE-DIMENSIONAL… PHYSICAL REVIEW B 82, 245104 �2010�

245104-7



�k� �kF−k�. Therefore, the “deep” holon at momentum k
+�k becomes well separated from excitations near the Fermi
points and the respective regions of the spectrum cannot
overlap, see Fig. 3. In this case, the averages over the fer-

mion operator �̃Rc �which creates the deep holon at momen-
tum k� and the string operators �which create the low-energy
excitations near the Fermi points� in the definition �18� of
GRc�x , t� can be separated, similar to the case of spinless
fermions.22 Then, one finds a modified exponent near the

holon mass shell. For ���c�k�, A�k ,��� ��−�c�k��−�0,−
c

,
where

�0,−
c = 1 − ��−c

2

�2

− ��+s

2

− 1�2

− ��+c

2

�2

=−
1

2
−

1

4
�Kc +

1

Kc
� +

1
�2Kc

+
�Kc

�2
. �25�

This exponent can again be interpreted in the language of the
Fermi-edge problem: the quadratic exponents ��c

2 and �+s
2 are

Anderson terms indicating a shake-up of the right- and left-
moving holons as well as the right-moving spinons near the
Fermi points, respectively. The linear exponent �+s can be
interpreted as a Mahan term due to the creation of a spinon
near the right Fermi point. In contrast to Eq. �20�, there is no
Mahan term associated with �+c because, as explained above,
the holon at momentum k+�k is in a different part of the
spectrum than the Fermi point.

This exponent differs from the LL result �20�. The expo-
nent �0,−

c holds in a region of width �k−kF�2 / �2m�� around
�c�k�. Beyond this window, the curvature of the spectrum
becomes irrelevant and the exponent crosses over to the LL
exponent �−

c . Note that even for Kc→1, the exponent �0,−
c

→�2−1 differs from the LL prediction �−
c →1 /2.

For the calculation of the exponent near the spinon mass
shell, ���s�k�, the interactions among spinons become im-
portant. This is a consequence of the cubic term in the spinon
spectrum �Eq. �24��. Consider the scattering of a spinon with
energy � on low-energy left- and right-moving spinons and
holons near the Fermi points. As previously, the lowest-order
expansion of the respective interaction potentials for k→kF

is quadratic, Ṽ���k−kF�� �k−kF�2. The velocity of the spinon
is given by vd=��s�k� /�k. However, in contrast to the qua-
dratic holon spectrum, the leading curvature of the spinon
spectrum �s�k� is cubic, so vd−vs� �k−kF�2. As a conse-

quence, the scattering phase Ṽ+s�k−kF� / �vd−vs� remains fi-
nite even in the limit k→kF. Hence, the scattering among
spinons cannot be treated as a small perturbation. We shall
investigate the scattering phase shifts for excitations near the
spinon mass shell in the next section.

IV. QUANTUM IMPURITY HAMILTONIAN

The investigation of the spectral function for momenta
away from �kF necessitates a comment about the momen-
tum conservation when decomposing an injected physical
particle or hole with momentum k into a spinon-holon pair.
Let us start from noninteracting fermions with Fermi mo-

mentum kF. In terms of measurable quantities, kF can be
defined as the smallest positive momentum k for which
A�k ,�=0��0. According to this definition, kF is defined by
the singularities in the retarded Green’s function, which ac-
cording to Luttinger’s theorem56,57 are not shifted when the
interactions are turned on. Therefore, the value of kF is not
affected by interactions.

The charge density of the physical fermions is related to
kF by 	c=2kF /
, where the factor 2 results from the two spin
orientations. The spinful physical fermions can be expressed
in terms of two species, spinons and holons, of spinless fer-
mions. Since only the holons carry charge, their density must
be equal to the physical charge density. Hence, the holon
Fermi momentum kF

h =2kF. This has been found in the case
of a generic strongly interacting system58 as well as for in-
tegrable models at any interaction strength.59,60 In particular,
the Bethe-ansatz solutions for the Hubbard model at low
filling in both the noninteracting limit and in the limit of
infinite interaction lead to a parabolic holon spectrum �c�kc�
shown in Fig. 4.

In the same context, it has also been shown that the
spinon momentum is only defined up to multiples of 2kF.
This is well illustrated by the limit of strong repulsion.58 In
this limit, spinons live on a lattice provided by the holons.
Therefore, we restrict the spinon spectrum �s�ks� to mo-
menta −kF�ks�kF and place the spinon Fermi level at zero
momentum, �s�0�=0. For a physical particle with momen-
tum k, the momentum conservation can then be expressed
as61

k = kc + ks � kF for k � 0. �26�

The spinon and holon mass shells �c�k� and �s�k� can be
constructed from the spectra �c�kc� and �s�ks�, respectively,
by a combination of shifts and inversions.

The spectral function of interacting one-dimensional sys-
tems is generally characterized by power-law singularities.
To explain the physical mechanism, let us focus briefly on
the spinless case and consider a spinless hole with momen-
tum k�kF tunneling into the system. If the energy is on the
mass shell, the final state will contain a single deep hole with
momentum around k and energy ��k�. If the energy is close
to, but not precisely at, the mass shell, the final state will
contain the deep hole and, in addition, a number of particle-
hole pairs, see Fig. 3. Since the energy available for the
formation of these pairs is small, they will be located close to
the Fermi points �kF. It has been shown perturbatively20,24

that for a nonlinear excitation spectrum the deep hole can be

FIG. 4. Holon spectrum �c�kc� and spinon spectrum �s�ks� in
the noninteracting case. The holon spectrum has Fermi momentum
2kF. The spinon spectrum is defined for −kF�ks�kF and the Fermi
point is placed at ks=0. The spinon spectrum is particle-hole sym-
metric, so the dashed line indicates energies of spinon holes.
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regarded as separate from the particle-hole pairs at the Fermi
points. The Hamiltonian can be projected onto three sub-
bands, one containing the deep hole and two others contain-
ing excitations near the two Fermi points. The functional
form of the spectral function is determined by how the deep
hole interacts with the particle-hole pairs at the Fermi points.
The physical mechanism is thus similar to the Fermi-edge
problem,47,48,55 albeit in the present case with a mobile im-
purity instead of a static scattering potential.

The previous argument extends to spinful systems: in this
case, power-law singularities occur at the spinon mass shell
�s�k�. Let us consider the case of a right-moving spinful hole
with momentum 0�k�kF and energy close to �s�k�. The
final states giving rise to the power-law singularity will con-
tain a deep spinon impurity with momentum ks=k−kF= :kd
�0, a holon near its Fermi momentum and additional spin-
carrying and charge-carrying particle-hole pairs at all Fermi
points. Once more, the system can be projected onto narrow
subbands containing the impurity and the Fermi points, re-
spectively. This corresponds to decomposing the spinon op-
erator by retaining only Fourier components close to zero

and to kd, �̃Rs→ �̃Rs+eikdxd. The spectrum of the states near
the Fermi points can be linearized and they are thus de-
scribed by the LL Hamiltonian,

H0 = − i �
�=c,s

v� �
�=R,L

�	 dx:�̃��
† �x� � �̃���x�: . �27�

Located on the spinon mass shell, the impurity has a velocity
vd=��s�k� /�k. The Hamiltonians containing its kinetic en-
ergy and the interaction between the mobile impurity and the
subbands at the Fermi edges are given by

Hd =	 dxds
†�x���s�k� − ivd��ds�x� , �28�

Hint =	 dx�
��

Ṽ���k�	̃���x�ds
†�x�ds�x� , �29�

where 	̃���x�¬ �̃��
† �x��̃���x�: denotes the quasiparticle den-

sity in the bands around the Fermi edges, and the interaction

constants Ṽ���k� are yet to be determined.
In addition, the interacting system Hamiltonian will gen-

erally contain spin-flip interaction terms of the form

�
p,p�,q

�↑
†�p��↓�p + q�V�q��↓

†�p���↑�p� − q� . �30�

The projection of this term onto a reduced band structure
with bands around the Fermi edges and around the impurity
state leads to the following terms: �i� a density-density-type
interaction between particles near the Fermi edges.7 Such a
contribution merely renormalizes the Luttinger parameter Kc,
as well as the spinon and holon velocities, vc and vs; �ii� a
density-density-type interaction between the impurity and
particles near either the left or right Fermi point. This leads

to a term of the form �29� and can be absorbed into Ṽ��; �iii�
spin-flip interaction between particles at the two Fermi
edges. The bosonization of these terms leads to a sine-

Gordon term �7� which vanishes logarithmically when reduc-
ing the width of the linearized bands around the Fermi
points. In the SU�2�-symmetric case, Ks approaches unity
simultaneously with the reduction in g in Eq. �7� to zero; �iv�
spin-flip terms of the type e−�2i��s+�s�bs

†ds which transfer two
left-moving spinons with k�0 to the ds-impurity band �ks
�0� and to its mirror image �k�−kd, the “bs-band”�. The
process is illustrated in Fig. 5. These terms are the finite-k
counterparts of the sine-Gordon term in Eq. �7�. Similar to
the latter, these terms vanish in the limit of low energy of
excitations.

Therefore, considering an interaction term of the form
�29� is sufficient. The interacting Hamiltonian �27�–�29� can
be diagonalized using a unitary transformation,

U = exp�− i	
−�

�

dx�
��

����N���x�ds
†�x�ds�x�� , �31�

where N��=�xdy	̃���y�. The unitary operator U is character-
ized by the phase shifts

���� =
Ṽ���k�

vd − �v�

. �32�

This transformation removes the interaction term, U†�H0
+Hd+Hint�U=H0+Hd. The ds operator in the rotated basis
reads

U†ds�x�U = ds�x�exp�− i	
−�

x

dy�
��

����	̃���y�� . �33�

One can see from Eq. �15� that ���� simply adds to the
phase ��� which resulted from the refermionization, to pro-
duce the total shift ���

� =���+����. Power-law singularities
at the spinon mass shell in all dynamic response functions
will be characterized by the phases ���

� . The hole sector ��
�0� of the spectral function at momentum k is given by

A�k,� � 0� =
1

2

	 dtdxeikx−i�t

� ��R�
† �x,t��R��0,0��H0+Hd+Hint

, �34�

and is independent of �. It can be calculated by representing

the physical fermions as �R↑�eikx�̃RcFRcdsFRs. The correla-

FIG. 5. �Color online� Spinon interaction process generated by
the projection of the spin flip interaction in Eq. �30�: a spinon
particle-hole pair near the left Fermi point scatters into a spinon
hole at ks�0 and a spinon near −ks�0. The corresponding inter-
action operator is similar to the sine-Gordon term �7� and, analo-
gously, its amplitude flows to zero upon bandwidth reduction.
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tion function of the impurity after application of the unitary
transformation �31� is

�ds
†�x,t�ds�0,0��Hd

= ei�s�k�t��x − vdt� , �35�

and the correlation functions involving the string operators
can be calculated by using the bosonized expressions. One

finds that A�k ,��� ��−�s�k��−�0,−
s

for ���s�k�, with the ex-
ponent

�0,−
s = 1 − ��+c

�

2

− 1�2

− ��−c
�

2

�2

− ��+s
�

2

�2

− ��−s
�

2

�2

.

�36�

We have seen previously that the cubic spectrum of the
spinons means that the phase shift ��+s remains finite even
for k→kF and cannot be treated as a perturbation. Luckily
however, SU�2� symmetry can by used to fix ��s

� =��s
+���s for arbitrary momenta. As we shall show in Sec. V C,
the exponents of the power-law singularities in the spin-
correlation functions Szz�k ,�� and S−+�k ,�� can be calcu-
lated as functions of ��s

� . In an SU�2�-invariant system both
exponents have to coincide for all momenta and this is only
the case for

��s
� = 0. �37�

As we laid out after Eq. �19�, the phase shifts ��s
� can be

interpreted as the probability amplitude of a shake-up of the
spinons near the Fermi points. Vanishing phases ��s

� =0 mean
that the creation of the spinon ds due to the incoming hole
does not lead to such a shake-up and thus to a formation of
particle-hole pairs in the spinon sector. For ���� ��s�k��, any
excess energy can only be used to create particle-hole pairs
in the holon sector. In this important sense, spin-charge sepa-
ration remains meaningful even for systems with band cur-
vature.

V. DYNAMIC CORRELATION FUNCTIONS AWAY FROM
THE FERMI POINTS

A. Phenomenology for the scattering phase shifts

In the limit k→kF, the edge exponent can be calculated
from Eq. �36� by using ���c=0 in addition to the relation
��s

� =0 which is valid at arbitrary k. It turns out that �0,−
s ,

unlike �0,−
c , coincides with the corresponding LL exponent

�0,−
s = �−

s . �38�

Therefore, for ���s�k�, one finds A�k ,��� ��−�s�k��−�−
s

even in the presence of band curvature.
In this section, we shall extend this result to momenta k

away from the Fermi points. We argued that for repulsive
interactions, the edge of support of A�k� �kF ,�� coincides
with the spinon mass shell ���s�k�, and at this edge A�k ,��
is characterized by a power-law singularity. The state respon-
sible for this singularity contains a spinon on mass shell and
a holon at the Fermi point, so the mobile impurity ds has the
quantum numbers of a spinon. Since the edge exponents
must be continuous as a function of k, this must still be true

for momenta away from the Fermi points. Hence, in order to
calculate the dynamic response functions in this region, we
can still make use of the same mobile-impurity Hamiltonian
but in contrast to the limit k→kF, we can no longer use the
lowest-order expansion of the phase shifts ���c. Instead, we
shall derive phenomenological expressions which relate the
phase shifts to measurable properties of the spinon spectrum
�s�k�. In addition to the possibility of directly measuring
�s�k�, this function can be evaluated numerically by well-
developed routines. It can also be calculated exactly for in-
tegrable models.

Let us focus again on the case k�kF and investigate the
spectral function in the vicinity of the spinon spectrum �
��s�k�. The configuration responsible for the edge singular-
ity contains a spinon impurity near kd=k−kF, a holon close
to the Fermi point, as well as particle-hole pairs of spinons
and holons at the Fermi edges. The effective Hamiltonian is
given by Eqs. �27�–�29�. We express the quasiparticle densi-
ties 	̃���x� in terms of bosonic operators �� and ��. The
interaction between the impurity ds and the low-energy
spinons 	̃�s vanishes because ��s

� =0. The Hamiltonian H
=H0+Hd+Hint can be written as

H0 =
vc

2

	 dx
Kc���c�2 +

1

Kc
���c�2�

+
vs

2

	 dx����s�2 + ���s�2� ,

Hd =	 dxds
†�x���s�k� − ivd��ds�x� ,

Hint =	 dx
VR �
�c − �c

2

− VL �

�c + �c

2

�ds

†ds, �39�

and contains two parameters, VL and VR, which describe the
interaction between the impurity and holons at the Fermi
points. The interaction term can be removed using a unitary
transformation like Eq. �31� and leads to the following rela-
tions between phase shifts and interaction constants:

�Kc�VL + VR� = − ��−c�vd + vc� − ��+c�vd − vc� ,

VL − VR

�Kc

= − ��−c�vd + vc� + ��+c�vd − vc� . �40�

In order to fix VL and VR, we need two relations. The first
one can be derived by considering the response of the system
to a uniform charge density variation. Since the spinon spec-
trum �s�k� is defined with respect to the chemical potential �,
for fixed k the shift in the edge position upon a variation in
the density �	c is given by

�E = 
 ��s�k�
�	c

+
��

�	c
��	c = 
 ��s�k�

�	c
+


vc

2Kc
��	c. �41�

In the last equality, we used a phenomenological relation7

between Kc and the compressibility �=�	c /��=2Kc / �
vc�.
A second way to calculate the same energy shift is to use
Hamiltonian �39�. According to Eq. �5�, a density variation
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leads to a finite expectation value ���c�=−
�	c /�2. We use
Hamiltonian �39� to calculate the energy of a state containing
a spinon impurity ds with momentum kd and a holon at the
Fermi edge. Then, we investigate the change in this energy
due to the density variation. In this case, the interaction term
�39� shifts by

�Eint =
VR + VL

2

���c� = −

VR + VL

2�2
�	c. �42�

The impurity momentum is given by kd=k−kF. As the den-
sity variation affects the Fermi momentum, �kF=
�	c /2,
one obtains an energy shift in the operator Hd by

�Ed = −

vd�	c

2
= −




2

��s�k�
�k

�	c. �43�

Finally, the energy of the holon at the right Fermi point
changes due to the shift of the chemical potential and leads
to �E0= ��� /�	c��	c. Comparing the shift �Eq. �41�� to the
shifts �E0+�Ed+�Eint calculated using the effective Hamil-
tonian, one obtains the first relation,

−
VR + VL

2�2
=

��s�k�
�	c

+



2

��s�k�
�k

. �44�

In order to obtain a second relation which fixes the difference
VL−VR, we consider the effect of uniform Galilean boost of
the system. Let us assume the liquid is moving at velocity �u
and the incoming particle has momentum k. In a reference
frame moving with the liquid, the momentum of the injected
particle is k−m�u, where m is the bare mass of the physical
fermions. The total change in the energy acquired by the
liquid due to the boost is given by

�E� =
k2

2m
− �s�k� −

�k − m�u�2

2m
+ �s�k − m�u�

=�u
k − m
��s�k�

�k
� . �45�

Next, we calculate the same shift using Hamiltonian �39�.
The effect of a boost with velocity �u on the physical fermi-
ons is to shift the Fermi momentum of right and left movers,
kF

R,L→kF�m�u. This gives rise to a difference between
right-mover and left-mover density, 	R−	L=2m�u /
. This
density difference corresponds to a finite expectation value
���c�=�2m�u. We use again Hamiltonian �39� to calculate
to energy of a state containing an impurity ds and a holon at
the Fermi point. Now, we investigate how this energy
changes due to a finite ���c�=�2m�u. In the interaction
Hamiltonian Hint, one obtains

�Eint� =
VL − VR

2

���c� = �2m�u

VL − VR

2

. �46�

The energy shift due to the holon at the Fermi point is given
by �E0�=Kcvcm�u=vFm�u. Finally, the momentum of the
impurity kd changes due to the shift of kF and leads to �Ed�
=−m�uvd. Equating the shifts �E0�+�Ed�+�Eint� with Eq. �45�
leads to

VL − VR

2

=

k − kF

�2m
. �47�

Equations �44� and �47� allow us to fix the interaction
strengths VL and VR in terms of the derivatives of �s�k� with
respect to the density and the momentum. These, in turn, can
be related to the phase shifts using Eq. �40�. The result is

���c�k�
2


= �

k − kF

m�Kc

� �Kc� 2




��s�k�
�	c

+
��s�k�

�k
�

2�2� ��s�k�
�k

�
kF

mKc
� , �48�

and it is valid for all systems with Galilean-invariant micro-
scopic interactions. These relations are valid for all −kF�k
�kF. The knowledge of these phase shifts allows the calcu-
lation of all dynamic response functions for energies close to
the spinon mass shell at arbitrary momenta. Note that for the
case of the exactly solvable 1D Yang-Gaudin model,62,63 the
phase shifts predicted by Eq. �48� coincide with the exact
results obtained using the Bethe ansatz �which can be ob-
tained as a limiting case of 1D Hubbard model considered in
Ref. 64�.

B. Edge exponents of the spectral function

The phase shifts ���
� allow us to derive the edge exponents

of A�k ,�� for momenta k away from �kF. In the following,
we shall focus on a general momentum interval �2n−1�kF
�k� �2n+1�kF �with integer n� and energies near the spinon
mass shell, ���s�k−2nkF� and its shadow bands, ��
−�s�k−2nkF�, see Fig. 7. Similar to Sec. IV, for ��0 inject-
ing a hole into the system will create a spinon impurity with
momentum near kd,n=k− �2n+1�kF on its mass shell as well
as a holon at approximately the Fermi momentum. The re-
maining momentum 2nkF must be given to additional spinon
and holon particle-hole excitations near the Fermi edges, see
Fig. 6. In terms of the physical fermions, the most general
configuration of additional particle-hole pairs reads as fol-
lows:

 2nkF
ª ��R↑�nR↑��R↓�nR↓��L↑�nL↑��L↓�nL↓. �49�

All n�� are integer numbers. Positive values correspond to
powers of the annihilation operators ���, whereas negative
numbers denote powers of the creation operators ���

† . Since
spin and charge of the incoming hole are absorbed by the
deep spinon at momentum kd,n and the holon at the Fermi
point, the total charge and total spin of these additional ex-
citations must vanish. This means

nR↑ + nR↓ + nL↑ + nL↓ = 0,

nR↑ − nR↓ + nL↑ − nL↓ = 0. �50�

From these equations, one finds nL↑=−nR↑ and nL↓=−nR↓. As
an additional requirement, the excess momentum 2nkF must
be accommodated. This leads to the constraint nR↑+nR↑
−nL↑−nL↓=2n and therefore to nR↑+nR↓=n. This leaves one
free parameter m−, which must satisfy the selection rule
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m− � n�mod 2� . �51�

The general solution for integer n�� reads

nR↑ =
n + m−

2
,

nR↓ =
n − m−

2
. �52�

Therefore, the state in Eq. �49� can be written as

 2nkF
= ��R↑

† �R↓�L↑�L↓
† �−�n+m−�/2��L↓

† �R↓�n. �53�

Physically, the first term comes about as a result of spin-flip
scattering. Indeed, the fermionic representation of the sine-
Gordon term �7� produces exactly this type of scattering. The
second term comes about due to scattering between the right
and left Fermi points and absorbs the excess momentum
2nkF. The spectral function can be calculated by decompos-
ing the fermionic operators according to

�R↑ = eikx�̃RcFRcdsFRs �  2nkF
�54�

and bosonizing  2nkF
and �̃Rc using Eqs. �9� and �11�, re-

spectively. One finds that in the interval �2n−1�kF�k
� �2n+1�kF, it has a power-law singularity A�k ,��� ��
+ ��s�k−2nkF���−�n,−

s
with the exponent

�n,−
s = 1 −

1

2
�−

�2n + 1��Kc

�2
+

��+c + ��−c

2

�2

−
1

2
� 1

�2Kc

−
��+c − ��−c

2

�2

− m−
2 , �55�

where ���c����c�k−2nkF� is evaluated for momenta on
the main spinon branch, −kF�k−2nkF�kF. Since the selec-
tion rule requires integer m−, the leading exponent is given
by m−=0 for even n, and m−= �1 for odd n.

A similar line of reasoning can be applied to calculate the
edge exponents �n,+

s for �2n−1�kF�k� �2n+1�kF and �
�0 �see Fig. 7�. The configuration with this combination of
momentum and energy contains a spinon with momentum
kd=k− �2n−1�kF�0 as well as a holon near the Fermi point.
Similar to the previous case, the remaining momentum 2�n
−1�kF must be absorbed by additional particle-hole excita-
tions of the form �49�. Stipulating again charge and spin
neutrality leads to a modified selection rule m+�n
+1�mod 2�. As a result, one obtains A�k ,��� ��− ��s�k
−2nkF���−�n,+

s
where �n,+

s is similar to Eq. �55�,

�n,+
s = 1 −

1

2
�−

�2n + 1��Kc

�2
+

��+c + ��−c

2

�2

−
1

2
� 1

�2Kc

−
��+c − ��−c

2

�2

− m+
2 , �56�

except for the different selection rule for m+.

FIG. 6. �Color online� Mobile-impurity band structure for the
calculation of A�k ,�� for 3kF�k5kF �i.e., n=2� and ����s�k
−4kF��. The final state contains a spinon with momentum kd,2=k
−5kF�0, a holon at its Fermi momentum as well as two particle-
hole pairs in the holon sector which absorb the extra momentum
4kF. In this figure, we assume m−=2, so the spinon sector contains
two additional particle-hole pairs. The Hamiltonian is projected
onto narrow bands around these momenta. Within each band, the
spectrum can be linearized.

FIG. 7. �Color online� Spectral function A�k ,�� in the �k ,��
plane �a� and along a cross section for fixed 0�k�kF �b�. �a�
A�k ,�� is nonzero in the shaded areas. For repulsive interactions,
the edge of support is at the spinon mass shell �= � ��s�k��. At the
edge for ��0 in the momentum range �2n−1�kF�k� �2n+1�kF,
A�k ,�� has a power-law singularity characterized by the exponent
�n,�

s . A sharp power law at the holon mass shell �c�k� �dotted lines�
exists only for k��2n�1�kF. The corresponding exponents �n,−

c

are continuous at �=0. �b� Compared to the Luttinger liquid case,
the edge exponents is modified. The singularity at the holon mass
shell �c�k� is smeared out because the band curvature leads in gen-
eral to a finite holon lifetime.
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Using the formula for the phase shifts �Eq. �48��, it is thus
possible to express the exponents in Eqs. �55� and �56� en-
tirely in terms of the spinon spectrum �s�k� and the Luttinger
parameters. This establishes a relation between two distinct
sets of observable quantities, exponents and spectra, which
applies to a large range of systems and which can, in prin-
ciple, be checked in experiments.

As a consequence of the symmetry of the spinon spectrum
�s�k�=�s�−k�, the edge exponents also satisfy the k→−k
symmetry, �n,�

s �k�=�−n,�
s �−k�. Moreover, since the phase

shifts ���c vanish for k→kF, one can also verify that the
edge exponents change continuously when crossing a Fermi
point,

�n,�
s ��2n + 1�kF − 0� = �n+1,�

s ��2n + 1�kF + 0� . �57�

The final result65 for the edge exponents of A�k ,�� in all
regions of the �k ,�� plane is shown in Table I. The positions
of the edges and the corresponding notations for the expo-
nents are shown in Fig. 7.

C. Charge- and spin-density structure factors

The charge-density structure factor is defined as

S�k,�� =	 dxdtei�t−ikx�	c�x,t�	c�0,0�� , �58�

where 	c�x�=����
†�x����x� denotes the charge density. In

the case of a linear spectrum, spin- and charge-density waves
with momentum k have a uniquely defined energy vs,ck. One
of the predictions of the linear LL theory is that even for
nonzero interactions, these are stable excitations. Therefore,
one finds SLL�k ,��=2Kc�k����−vc�k�� where the effect of in-
teractions is limited to a renormalization of the velocity vc
�vF and the prefactor is fixed by the f-sum rule.1

In the case of finite band curvature, a one-to-one relation
between momentum and energy of particle-hole pairs no
longer exists. Let us illustrate the consequences for the non-
interacting case. The fermion spectrum is given by ��k�
= �k2−kF

2� / �2m� and it turns out that for 0�k�2kF, S�k ,��
is nonvanishing only in the interval �−�k�����+�k�,
where ���k�=vFk�k2 / �2m�, see Fig. 8. The density excita-

tion of lowest energy �− for given momentum k contains a
particle at the Fermi level and a hole at kF−k �see inset of
Fig. 8�. The upper threshold �+ reflects the highest energy
such an excitation can have. It corresponds to a particle at
kF+k and a hole at the Fermi level.

For spinless weakly interacting systems, a power-law sin-
gularity develops at �=�−�k� but the structure factor still
vanishes below it, S�k ,��=0 for ���−�k�.24 The upper
threshold, on the contrary, no longer exists since density ex-
citations can give away excess energy to create other
particle-hole excitations. Instead, for �!�+�k�, the density
structure factor decays as a power law. A schematic picture
of the domain of support of S�k ,�� in the �k ,�� plane is
shown in Fig. 8.

For spinful systems, the charge-density structure factor
describes responses in the charge sector. Its analog in the
spin sector is the spin structure factor. Since the calculations
of both functions are identical and the invariance of the spin
structure under spin rotations allows us to fix the phase shift
��s

� , we shall henceforth focus on the latter.
In the absence of a magnetic field, the system Hamil-

tonian is SU�2� invariant. One of the consequences of this
symmetry is identical power laws in different components of
the spin structure factor. In particular, the functions

S−+�k,�� =	 dxdtei�t−ikx�S−�x,t�S+�0,0�� ,

Szz�k,�� =	 dxdtei�t−ikx�Sz�x,t�Sz�0,0�� �59�

must be identical even in the presence of band curvature. In
terms of the physical fermions, the spin density is given by
S��x�= 1

2��,�����x����������x�, where �� denotes the vector of
Pauli matrices.

To be specific, let us first investigate S−+�k ,�� in the n
=0 band, i.e., for 0�k�2kF. Similar to the dynamic struc-
ture factor S�k ,��, the spin structure factor will vanish below
a threshold energy �−�k� and have a power-law singularity at
this threshold. The excitation which is responsible for the
singularity contains a spinon impurity at momentum k as
well as a spinon hole with small momentum. Therefore, we

can project the spinon operator on two bands using �̃Rs�x�
→ �̃Rs�x�+eikxds�x�. For SR

+�x�, one finds

SR
+�x� = �R↑

† �x��R↓�x� � e−ikxds
†FRs

† �̃Rs
† FRs

†

� e−ikxds
† exp�i��+s

2

−

1
�2

���̃s�x� − �̃s�x��� .

�60�

For the z component of the spin density, we use

SR
z �x� =

1

2
��R↑

† �x��R↑�x� − �R↓
† �x��R↓�x��

FIG. 8. �Color online� Density structure factor S�k ,��. For non-
interacting systems S�k ,�� is constant for �−�k�����+�k� and
vanishes otherwise. For nonzero interactions, a power-law singular-
ity with exponent �n

DSF forms at the lower threshold �−�k�. In the
inset: particle-hole excitation with momentum k giving rise to the
singularity at �−�k�.
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=�R↑
† �x��R↑�x� −

1

2
	Rc�x� , �61�

where 	Rc=�R↑
† �R↑+�R↓

† �R↓ denotes the right-moving charge
density. If the spectrum of the physical fermions is linear, the
spin-charge separation ensures that 	Rc does not involve
spinon operators. For a nonlinear spectrum, this strict sepa-
ration does not apply any more and 	Rc may indeed contain
spinon operators. This fact will become important in the cal-
culation of the charge-density structure factor. Since all
terms lead to the same series of exponents, it is sufficient to
only project the first term and use

SR
z �x� � e−ikxds

†FRs
† �̃RsFRs + H.c. � e−ikxds

†

�exp�i��+s

2

+

1
�2

���̃s�x� − �̃s�x��� + H.c.

�62�

The ensuing calculation of the exponent of S−+ is performed
using the mobile-impurity Hamiltonian �27�–�29� and gen-
eral phase shifts ���

� =���+���� and results in the leading
edge exponent �0,0

−+ .
In analogy to the previous section, the marginally irrel-

evant spin-flip scattering �Eq. �7�� may create a final state
with identical energy and momentum but which contains ad-
ditional particle-hole pairs and thus produces subleading ex-
ponents. To calculate these, the operators SR

+ and SR
z must be

multiplied by the operator  2nkF
�Eq. �53�� for n=0. A state

arising from �m� spin-flip scattering events will contribute the
exponent �for m�Z�

�0,m
−+ = 1 −

1

2
�2m + 1

�2
−

�+s
� + �−s

�

2

�2

−
1

2
� 1

�2
−

�+s
� − �−s

�

2

�2

−
1

2
���+c + ��−c

2

�2

−
1

2
���+c − ��−c

2

�2

, �63�

where ��s
� is evaluated at momentum k� �0,2kF� and ���c

at momentum kF−k. An analogous calculation yields the
leading and subleading exponents for Szz,

�0,m
zz = 1 −

1

2
�2m − 1

�2
−

�+s
� + �−s

�

2

�2

−
1

2
� 1

�2
+

�+s
� − �−s

�

2

�2

−
1

2
���+c + ��−c

2

�2

−
1

2
���+c − ��−c

2

�2

. �64�

It should be emphasized that each of the exponents in Eqs.
�63� and �64� actually generates an infinite “ladder” of expo-
nents differing by an integer power, and Eqs. �63� and �64�
give only the most divergent exponent. Indeed, when we
calculate, e.g., the exponent of S−+�k ,��, the expected be-
havior of mth term is

S−+�k,�� � �� − ��s�kF − k���−�0,m
−+

R�� − ��s�kF − k��� ,

�65�

where R is at most logarithmically divergent for �− ��s�kF
−k��→0. A Taylor expansion of this function generates an
infinite ladder of exponents. SU�2�-symmetry requires that

these full sets of exponents generated by different �0,m
−+ and

�0,m
zz should coincide. This is a weaker requirement compared

to coincidence of sets of �0,m
−+ and �0,m

zz . However, it turns out
that both these constraints lead to the same requirement

�−s
� = �+s

� = 0. �66�

By construction, this equality holds for arbitrary momenta.
Note that in order to fix both phase shifts ��s

� , a comparison
of only the leading �m=0� exponents is not sufficient.

In the momentum interval 2nkF�k�2�n+1�kF, a spinon
impurity will be created at momentum k−2nkF and the sec-
ond spinon near zero momentum. As in the calculation for
A�k ,��, the excess momentum 2nkF is accommodated by
scattering across the Fermi points. A number �m� of spin-flip
events will lead to a selection rule of the form �51�. If we
focus only on the leading �m=0� exponent, we can conclude
that the spin-structure factor near its edge of support is given

by S−+�k ,���Szz�k ,��� 
�− ��s��2n+1�kF−k���−�n
SSF

, where

�n
SSF =

1

2
−

1

2
�2n�Kc

�2
+

��+c + ��−c

2

�2

−
1

2
���+c − ��−c

2

�2

�67�

with ���c����c��2n+1�kF−k�. Here, the phase shifts are
related to the spinon spectrum by Eq. �48�.

For the calculation of the charge-density structure factor
S�k ,��, the operator 	c�x� needs to be examined. For a non-
linear spectrum of the physical fermions, this operator will
contain spinon operators. Therefore, 	c can create a state
which contains a spinon with momentum k on its mass shell
and additional spinons and holons near the Fermi points. For
a given momentum k, this state is the one with the least
energy, so the edge of support of S�k ,�� coincides with the
one for S−+�k ,�� and Szz�k ,��. Therefore, we project 	c onto

two subbands using again �̃Rs�x�→ �̃Rs�x�+eikxds�x�. Be-
cause the respective terms in the projection of the operator
	c�x� are identical to the terms in the projection of SR

z �x� in
Eq. �62�, it follows that for 2nkF�k�2�n+1�kF, near the

edge of support S�k ,��� 
�− ��s��2n+1�kF−k���−�n
DSF

, and

�n
DSF = �n

SSF. �68�

An overview of the edge exponents of the charge- and spin-
density structure factors in the different regions of the �k ,��
plane is contained in Table I.65

For small momenta k�kF, the spin- and charge-density
structure factors were investigated recently within the
Abelian19 and non-Abelian18 bosonization approaches. In the
former approach, the nonlinear spectrum of fermions pro-
duces terms which mix the spin and charge fields in the
bosonized Hamiltonian. The perturbation theory in these
terms developed in Ref. 19 corroborates one of our conclu-
sions �and of Ref. 18�: the edge of support of S�k ,�� actually
coincides with that of Szz�k ,��. For repulsive interactions, it
is located at the spinon mass shell, i.e., �=vsk for small
momenta. However, the second-order bosonic self-energy ac-
tually diverges at this edge. As a consequence, it was not
possible in Ref. 19 to investigate the shape of the edge sin-
gularity. Despite this drawback, the Abelian bosonization
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provides an easy access to S�k ,�� and Szz�k ,�� away from
the singularities, for instance to the high-frequency tails for
�!vck. These “off-shell” tails were studied in Ref. 19. The
broadening of the peaks in S�k ,�� near the spinon and holon
mass shells was addressed in Ref. 18. Its conclusions regard-
ing the threshold exponents agree with the limit k→0 of our
results.

VI. HOLON EDGE SINGULARITIES

So far, we have only discussed those power-law singulari-
ties which occur at the edges of support of a dynamical cor-
relation function. We argued that in the case of repulsive
interaction, the spinon-holon excitation with the lowest pos-
sible energy for a given momentum contains a holon at its
Fermi edge whereas the remaining momentum and the whole
energy are carried by the spinon. Therefore, the exponents at
the edges of support are characterized by the phase shifts
���c produced by the interaction of a spinon impurity with
low-energy holons.

For energies above the edge of support it is also possible
to create spinon-holon excitations which contain a spinon at
its Fermi point and give the entire energy to a holon. For a
generic system, such an excitation will not be stable since
energy and momentum conservation allow the decay of a
holon through the creation of spinon pairs. This will lead to
a broadening of the threshold. One important exception is the
case of integrable models, where holon excitations may be
stable. But also the cases of very weak and very strong in-
teraction allow long-lived holon excitations. In this section,
we shall therefore develop the theory for holon edge singu-
larities assuming the holon is stable.

Let us denote the holon threshold in the spectral function
by �c�k�. By definition, the configuration giving rise to this
threshold contains a spinon at the Fermi point as well as a
holon excitation of energy �c�k�. A first step toward the cal-
culation of the corresponding threshold exponents is gener-
alizing Sec. IV to calculate the phase shifts caused by such a
holon impurity. The derivation is very similar to the spinless
case.21 The Hamiltonians H0 and Hd describing, respectively,
the LLs at the Fermi points and the holon impurity are given
by

H0 =
vc

2

	 dx
Kc���c�2 +

1

Kc
���c�2�

+
vs

2

	 dx����s�2 + ���s�2� ,

Hd =	 dxdc
†�x���c�k� − ivd��dc�x� , �69�

where vd=��c�k� /�k. Interactions between the holon impu-
rity dc and the spinons at the Fermi points do not lead to
phase shifts because of SU�2� symmetry: a density-density
interaction of the type 	̃�s�x�dc

†�x�dc�x�, being linear in
spinon density would violate spin-up/spin-down symmetry.
Therefore, the interaction term only contains holon-holon in-
teraction and becomes in bosonized form

Hint =	 dx
VR� �
�c − �c

2

− VL� �

�c + �c

2

�dc

†dc. �70�

Removing the interaction term by means of a unitary trans-
formation as in the spinon case leads to phase shifts. In order
to distinguish them from the spinon phase shifts, we label
them "�. In analogy to Eq. �40�, these phase shifts are de-
termined by the equations

�VL� � VR��Kc
�1/2 = − "−�vd + vc� � "+�vd − vc� . �71�

In order to express the interaction potentials VL,R� in terms of
measurable quantities, we consider again the variations in the
energy of the system with respect to a variation in the density
and to a Galilean boost using the Hamiltonian H0+Hd+Hint.
A uniform density variation �	c leads to a nonzero ���c�=
−
�	c /�2 and thus shifts Hint by

�Eint = −
VR� + VL�

2�2
�	c. �72�

The density variation also causes a change in the holon
Fermi momentum but this does not lead to an energy shift in
H0 and Hd. Calculating the same shift in energy using the
definition of �c�k� �see Eq. �41�� and equating both expres-
sions leads to

−
VR� + VL�

2�2
=

��c�k�
�	c

+

vc

2Kc
. �73�

Next, we consider again the energy shift due to a uniform
change in momentum. For a system moving at velocity �u,
this leads to a finite ���c�=�2m�u. Equating the correspond-
ing shift in Hint with the shift calculated from the definition
of �c�k� �see Eq. �45�� leads to the second relation,

VL� − VR�

2

=

1
�2

� k

m
−

��c

�k
� . �74�

The phase shifts can now be determined from Eq. �71�. The
result is

"��k�
2


=
1

2��
��c

�k
− vc��

1
�2Kc


 k

m
−

��c

�k
�

��Kc

2 
 2




��c

�	c
+

vc

Kc
�� . �75�

This result is therefore a direct generalization of the relation
derived for the spinless case in Ref. 21. The symmetry of the
holon edge �c�k�=�c�−k� leads to the symmetry "��k�=
−"��−k�. Note that in contrast to the spinon momentum, the
holon momentum is not bounded. Therefore, the relation �75�
holds for arbitrary k.

The phase shifts �Eq. �75�� reproduce the correct universal
phase shifts in the vicinity of k→kF. Close to kF, one can
expand �c�k�=vc�k−kF�+ �k−kF�2 / �2m��, where m� is an ef-
fective mass which will generally be different from the bare
mass m of the physical particles. Using this form of �c�k� it
may easily be checked that
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"−�k → kF� = �−c, �76�

where �−c is defined in Eq. �16�. In order to verify the correct
behavior for "+, it is necessary to determine the effective
mass m�. This can be done by bosonizing the Hamiltonian
with quadratic spectrum and considering the response of the
system to a density variation. The result is similar to the
spinless case66 and reads as follows for a Galilean-invariant
system:

1

m�
=

�2Kc

2


�vc

�	c
+

1

2m�2Kc

. �77�

Using this effective mass, it can be shown that "+�k→kF�
=�+c.

Power-law singularities of the spectral function may ap-
pear at �c�k� as well as at the shifted holon lines �c�k
−2nkF� for n�Z. The configurations giving rise to singulari-
ties at ���c�k−2nkF� contain a holon which carries almost
the entire energy � of the incoming particle �or hole�, as well
as �n� additional low-energy particle-hole pairs with total mo-
mentum 2nkF. The calculation of these edge exponents is
analogous to the calculation in Sec. V B. The fermion anni-
hilation operator is projected as

�↑ = eikxdcFRc�̃RsFRs �  2nkF
, �78�

where  2nkF
is given by Eq. �53�. The edge exponents can

now be found by bosonizing  2nkF
and �̃Rs using Eqs. �9�

and �11�.
Assuming the holon energy is well defined, the spectral

function displays a power-law behavior near the holon spec-

trum, A�k ,��� ��−�c�k−2nkF��−�n,−
c

with

�n,−
c =

1

2
−

1

2

n�2Kc −

"+ + "−

2

�2

−
1

2

"+ − "−

2

�2

− m−�m−

+ 1� . �79�

Note that m− has to satisfy the selection rule in Eq. �51�, so
the leading exponent is always reached for m−�m−+1�=0.
The edge positions and the labels of the exponents in the
different regions of the �k ,�� plane are illustrated in Fig. 9.

VII. LIMITING CASES

A. Strongly interacting fermions

For strong repulsive interactions, it becomes increasingly
difficult for fermions in one dimension to pass each other.
The excitations can be separated into charge and spin parts
and the spin part can be modeled using a Heisenberg Hamil-
tonian, Hs=J� jS� j ·S� j+1, where S� j denotes the spin density on
site j of the lattice. A strong finite-range interaction leads to
an exponential58,67–69 suppression of J and, as a conse-
quence, the spinon spectrum becomes almost flat, ��s�k���J.
In this case, the phenomenological phase shifts defined in
Eq. �48� are

���c�k�
2


= −
�Kc

2�2

k − kF

kF
. �80�

The edge exponents �n,�
s in the range �2n−1�kF�k� �2n

+1�kF can then be determined from Eqs. �55� and �56� using
the proper selection rules for m�. They are given by

�n odd,−
s = �n even,+

s = −
Kc

4
� k

kF
�2

−
1

4Kc
,

�n odd,+
s = �n even,−

s = 1 −
Kc

4
� k

kF
�2

−
1

4Kc
. �81�

For k→kF, this reproduces the universal exponents in Eq.
�21� of the LL theory.

In general, the holon branch of excitations is broadened
by possible decay via the creation of pairs of spinons. How-
ever, in the limit J→0, we expect the interactions between
the holon and spinon branches to vanish.70 In this limit Eqs.
�75� and �79� are applicable. The resulting exponents depend
on details of the interaction which ultimately defines the de-
pendence of the holon spectrum on momentum and density.
Below we consider the special case of a Hubbard model, in
which the existence of holon mode is protected by integra-
bility, and the interaction becomes strong at low electron
filling factors.

The Hubbard model is described by the Hamiltonian

HHubbard = − t�
n�

��n�
† ��n+1�� + H.c.� + �U/2��

n

�n↑
† �n↑�n↓

† �n↓,

�82�

where �n� annihilates a fermion of spin �= ↑ ,↓ at the nth
lattice site, t is the hopping amplitude between neighboring
sites and U is the on-site interaction strength. For large in-
teraction, double occupancy of a single lattice site is sup-
pressed and the Hubbard Hamiltonian can be mapped onto a
t-J model,71 where the J-term describes a coupling between
neighboring spins with an exchange coupling J=4t2 /U. For
large U, the spinon spectrum �s�k� collapses. Moreover, U
→� ensures that double occupancy of a single lattice site is
forbidden and the charge degrees of freedom of the spinful
interacting fermions behave largely like spinless noninteract-
ing fermions of the doubled density. Therefore, the charge
part can be regarded as noninteracting particles with Fermi
momentum 2kF and hence Fermi velocity vc=2vF. Going

FIG. 9. �Color online� Position of power-law singularities in the
spectral function A�k ,�� for the strongly interacting Hubbard
model. At the main holon branch �c�k�, power-law singularities
have an exponent �0,−

c regardless of the sign of �. Weaker power
laws with exponents �n,−

c can be found at the shifted holon mass
shell �c�k+2nkF� for n�Z.
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back to the continuum case, this corresponds to a Luttinger
parameter Kc=vF /vc=1 /2. The edge exponents become

�n odd,�
s = �n even,�

s = �
1

2
−

1

8
� k

kF
�2

. �83�

They coincide with known results determined from the
finite-size corrections64 of the exact solution of the Hubbard
model using the Bethe ansatz and from the factorization of
the exact solution into charge and spin parts.72–75

Being an integrable model, it is expected that the Hubbard
model has stable holon excitations and that the power laws in
the spectral function at the holon mass shell are resolved.
The exponents are given by Eq. �79�, were the phase shifts
"��k� have to be determined using the holon spectrum �c�k�
for the strongly interacting Hubbard model. From Eq. �77�,
one finds that the effective mass for Kc=1 /2 is equal to the
bare mass, m�=m. Moreover, for U→�, the charge sector
behaves like noninteracting spinless fermions with Fermi
momentum 2kF. Hence, the holon energy as a function of the
holon momentum kc is given by �c�kc�=kc

2 / �2m�
− �2kF�2 / �2m�, see Fig. 9. This is also confirmed in the Bethe
ansatz solution. For k�0, the edge position in the spectral
function is given by �c�k�=�c�k+kF�. The symmetry �c�k�
=�c��k�� then fixes the threshold for arbitrary k. This thresh-
old position has been found numerically in Ref. 76. Using
Eq. �75�, one readily finds "� / �2
�=1 /4 independent of k.

Therefore, for ���c�k�, we find A�k ,��� ��−�c�k��−�0,−
c

with

�0,−
c =

3

8
. �84�

In the limit k→kF, this reproduces the universal result Eq.
�25�. A schematic picture of the spectral function for the
strongly interacting Hubbard model is shown in Fig. 9.

B. Weakly interacting fermions

For noninteracting fermions with dispersion ��k�,
A�k ,��=���−��k��. As we have seen in the previous sec-
tions, for ���
 ���k�� interactions generally turn the singular-
ity at the mass shell into a power law. Moreover, for �k�
�kF, the edge of support no longer coincides with the mass
shell but, in the limit of vanishingly small interaction, with
the shifted and inverted threshold �th=−��k�2kF�, see Fig.
11. In this section, we shall calculate the spectral function
using perturbation theory in the interaction.

For this purpose, let us start from the definition of the
spectral function in terms of the retarded Green’s function,
A�k ,��=− 1


 Im Gret�k ,��. Due to SU�2�-symmetry, all corre-
lation functions are independent of the spin orientation, so
the spin index was dropped. The exact retarded Green’s func-
tion of the interacting system can be expressed in terms of
the retarded self-energy as

Gret�k,�� =
1

� − ��k� − #ret�k,��
. �85�

The self-energy #ret�k ,�� will be calculated perturbatively
using the Hamiltonian H=H0+Hint, where

H0 = �
k

�
�=↑,↓

��k���
†�k����k� ,

Hint =
1

2L
�

k1,k2,k3

�
�,�=↑,↓

���
†�k1���

†�k2�V1�k3����k2 + k3����k1

− k3� − ��
†�k1���

†�k2�V2�k3����k2 + k3����k1 − k3�� .

�86�

The free fermion spectrum is ��k�= �k2−kF
2� / �2m�, and ��

���
†� denotes the annihilation �creation� operator for a physi-

cal fermion of spin �= ↑ ,↓. These operators obey the fermi-
onic commutation relations, 
���k� ,��

†�k���=����kk�. For
system length L, the momentum k=2
n /L �n�Z� is quan-
tized due to the periodic boundary conditions, but we shall
take the limit L→� in the following. The term Hint is the
most general two-particle interaction term allowed by
SU�2�-symmetry and translation invariance. In terms of the
charge density 	c�x� and the spin density S��x� defined in Sec.
V C, one can write it as

Hint =
1

2
	 dxdy�U	�x − y�	c�x�	c�y� + U��x − y�S��x� · S��y�� .

�87�

The interaction potentials of charge and spin densities are
related to V1,2 by V1=U	−U� /4 and V2=−U� /2.

The self-energy will be calculated perturbatively in the
interaction strengths V1,2. Separating real and imaginary
parts of the self-energy, the spectral function reads

A�k,�� =
1




− Im #ret

�� − ��k� − Re #ret�2 + �Im #ret�2 . �88�

The first-order contribution to #ret�k ,�� can be accessed
most conveniently by calculating the first-order self-energy
#�k , i�n� in imaginary time and then performing an analytic
continuation i�n→�+ i� in order to translate this to the re-
tarded self-energy. The only contributions in the first order
are the well-known Hartree and Fock terms. The result is
energy-independent and reads

#ret�1��k� = − 	
k−kF

k+kF dq

2

�V1�q� − 2V1�0� − 2V2�q� + V2�0�� .

�89�

Because the first-order term is real, it merely leads to a shift
of the edge position. As the energy � is measured with re-
spect to the chemical potential, the new edge position is
shifted to

���k� = ��k� − #ret�1��k� + #ret�1��kF� , �90�

and the spectral function up to first order in the interaction
strength remains a � function, A�1��k ,��=���−���k��.

The second-order self-energy could, in principle, also be
calculated using the imaginary-time Green’s functions. In
view of the calculation of the power laws in the spectral
function, however, our primary interest is in its imaginary
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part. The most convenient way to calculate the imaginary
part of the self-energy to second order is provided by Fermi’s
golden rule,

− Im #ret�2��k,�� = 2
�
f

��f �Hint�i��2��� − � f� . �91�

The initial state �i� has energy and momentum � and k, re-
spectively. The sum over final states �f� is over a complete
basis of the Hilbert space and � f denotes the energy of the
state �f�. The � function reflects energy conservation.

Let us investigate first the particle sector and assume k
�kF. In this case, the initial state is given by �i�=��

†�k��FS�,
where �FS� denotes the Fermi sea of spin-up and spin-down
particles where all states with �k��kF are filled. The most
general final state yielding a nonzero matrix element is given
by �f�=���

† �k−q����
† �p+q����p��FS�, so Eq. �91� measures

the decay probability of a single particle with momentum k
and energy � �not necessarily on mass shell� via the creation
of a particle-hole pair with momentum q. The physical pro-
cess is depicted in Fig. 10.

Let us first calculate Eq. �91� for k�kF for energies
slightly above the mass shell, ����k�. In this case, energy
and momentum conservation imply that either q�k+kF or
q�0. Both processes are identical since they can be mapped
onto each other by exchanging the momenta p+q and k−q of
the outgoing particles. Physically, for the quadratic spectrum
��k�, a right-moving particle with k�kF and ����k� can
only decay by creating a particle-hole pair near the opposite
Fermi point. For small �−��k�,

− Im #ret�2��k,�� =
2Ueff

2 �k + kF�



��� − ��k��
� − ��k�
�v + vF�2 ,

�92�

where we used v=k /m and vF=kF /m. For interaction poten-
tials V1,2�q� which do not vary appreciably on the scale �q
=m��−��k�� / �k+kF� near q=k+kF and q=0, the effective
interaction vertex is given by

Ueff
2 �k� = �V1�0� + V2�k��2 + �V2�0� + V1�k��2

− �V1�0� + V2�k���V2�0� + V1�k�� . �93�

Next, let us focus on k�kF but energies slightly below the
mass shell, ����k�. In this case, energy and momentum
conservation are satisfied for q�k−kF and q�0. As previ-

ously, both types of processes are related by exchanging the
momenta on the outgoing lines. The result reads

− Im #ret�2��k,�� =
2Ueff

2 �k − kF�



����k� − ��
�� − ��k��
�v − vF�2 .

�94�

The spectral function near the mass shell can now be ob-
tained from Eq. �88�. Due to the analytic structure of the
retarded Green’s function, the real part can be estimated from
Kramers-Kronig relations. Close to the mass shell, these pre-
dict a logarithmic divergence Re #ret�2��k ,���Ueff

2 ��
−��k��ln
��−��k�� /�F�, where �F is a high-energy cutoff on
the order of the Fermi energy. This indicates an expected
breakdown of the perturbation theory in a narrow vicinity of
the spectrum. For a sufficiently weak interaction and at fixed
�k−kF�2 /m there are domains of energy � where Eqs. �93�
and �94� are valid, while Re #ret�2� can be dispensed with in
comparison with ��−��k��. In these domains, the spectral
function reads

A�k,�� =
2Ueff

2 �k + kF�

2�v + vF�2

��� − ��k��
� − ��k�

+
2Ueff

2 �k − kF�

2�v − vF�2

����k� − ��
�� − ��k��

. �95�

Therefore, comparing this to the general structure A�k ,��
� ��−��k��−�0,−

c
, perturbation theory predicts an exponent

�0,−
c =1 in the vicinity of the mass shell. The singular lines of

the spectral function in the weakly interacting case are de-
picted in Fig. 11.

Next, we calculate the spectral function for kF�k�3kF
near the edge of support, ���th=−��k−2kF�. It turns out
that for small �−�th, due to energy and momentum conser-
vation, the only allowed momentum exchange must satisfy
q�k−kF. To lowest order in �−�th, one finds

− Im #ret�2��k,�� =
Veff

2



��� − �th�

� − �th

�v − vF�2 �96�

with the effective interaction vertex,

Veff
2 = �V1�k − kF� + V2�k − kF��2. �97�

The same caveats as previously about the applicability of
perturbation theory apply also near the threshold. In the

FIG. 10. Feynman diagram for the imaginary part of the second
order self-energy. The straight lines denote fermions with momen-
tum and spin quantum numbers. The wiggly line depicts the inter-
action with momentum exchange q.

FIG. 11. �Color online� Singular lines in the spectral function
A�k ,�� for a weakly interacting systems with spectrum ��k�= �k2

−kF
2� / �2m�. Up to second order in the interaction strength, singu-

larities appear at the mass shell ����k� for all k as well as at �
�−��k�2kF� for k� �kF. In the configurations giving rise to the
singularities, the energy is carried by a spinon along the red �solid�
line or by a holon along the green �dashed� line.
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range of applicability, one finds the spectral function from
Eq. �88�,

A�k,�� =
Veff

2


2m2�v − vF�6��� − �th��� − �th� . �98�

Therefore, the threshold exponent predicted by perturbation
theory is �1,+

s =−1.
The second-order self-energy can be calculated for −kF

�k�kF in a similar fashion. In this case, the initial state
reads �i�=���k��FS� while the final state is given by �f�
=��

†�p�����p+q�����k−q��FS�. The calculation of the matrix
elements �f �Hint�i� is performed as previously but now leads
to different integration ranges for the momenta p and q. For
����k��0, a hole with momentum k can relax by creating
a low-energy particle-hole pair near either the left or right
Fermi point by transferring the momentum k−kF or k+kF,
respectively. For �k��kF, the spectral function near the mass
shell reads

A�k,�� = 
Ueff
2 �k + kF�


2�v + vF�2 +
Ueff

2 �k − kF�

2�v − vF�2�����k� − ��

�� − ��k��
.

�99�

This corresponds to an exponent �0,−
s =1. For �k��kF, the

mass shell in the limit of vanishing interaction coincides with
the edge of support. However, note that second-order pertur-
bation theory is insufficient to explain the finite values of
A��k��kF ,�� near the shadow band ��−��k��0. The final
state in this region contains an additional particle-hole pair
with momentum �2kF and is thus not captured by the
second-order calculation. Note also that unlike the case of
spinless fermions, here Ueff�0��0, indicating problems with
the perturbation theory in the vicinity of Fermi points; we
have to require �k−kF� /m!Ueff. We note that the difference
between the holon and spinon velocities, vc−vs�Ueff, so the
latter requirement may also be viewed as the condition that
the spectrum curvature term in the fermion energy is appre-
ciable, �k−kF�2 /m! �vc−vs��k−kF�. Because the particle-
hole pair in the final state has to respect this constraint, per-
turbation theory can only be used to evaluate A�k ,�� for
energies � away from the true singularities, ��−��k�� , ��
−�th�! �vc−vs��k−kF�.

In order to calculate the exponents in closer vicinity of the
thresholds, we use the phenomenological relations, Eqs. �48�
and �75�. First, let us explain how to decompose a physical
fermion into spinons and holons in the weakly interacting
limit. We use the Bethe-ansatz solution of the Yang-Gaudin
model62,63 in the limit of zero interaction and compare the
thresholds ��k� and �th to its spinon and holon spectra.60 For
k�kF, the singularity at ����k� is created by configurations
which contain a holon at its Fermi point while the energy
��k� is carried by a spinon on mass shell. For k�kF, the
excitations at ���th are spinon excitations in the same
sense. Hence, the general observation that for repulsive in-
teractions the edge of support of the spectral function corre-
sponds to spinon excitations continues to hold in the nonin-
teracting limit. In contrast, for k�kF, the threshold at �
���k� corresponds to a holon excitation with energy ��k�
while the spinon rests at its Fermi point. The singular lines of

A�k ,�� in different regions of the �k ,�� plane along with the
nature of the respective excitations are depicted in Fig. 11.

Away from kF, the physical spectrum ��k� is only weakly
affected by the interactions, so we can calculate the expo-
nents in this region using the noninteracting spinon and ho-
lon spectra. For 0�k�2kF, excluding again a domain �k
−kF��mUeff�0� around the Fermi points, we can use �s�k
�kF�=vF�k−kF�� �k−kF�2 / �2m� and calculate the expo-
nents from the phenomenological relation �48�. For weak
interactions, the Luttinger parameter can be expanded as
Kc=1−�Kc, where �Kc→0+. Everywhere at �k��kF, except
the narrow vicinities of the Fermi points, �k�kF��mUeff, the
threshold exponent is given by �0,−

s �1−O��Kc
2� and thus is

compatible with the perturbative result �99�. For k�kF and
���th, the phenomenology yields the exponent �1,+

s

=O��Kc� at the threshold, different from the exponent Eq.
�98� valid away from the threshold.

Similarly, the holon spectrum at �k−kF�!mUeff can also
be approximated by its noninteracting limit, �c�k�kF�
=vF�k−kF�+ �k−kF�2 / �2m�. A calculation of the phenomeno-
logical phase shifts and the exponent using Eqs. �75� and
�79� then leads to �0,−

c =1 /2−O��Kc
2�. Note that this coin-

cides with the exponent at the holon mass shell predicted for
k�kF by the linear LL theory, see Eq. �21�. But it is different
from the perturbative exponent �0,−

c =1 in Eq. �95� which is
valid away from the mass shell.

We conclude that the lowest-order perturbation theory
performed here is only able to predict the behavior of A�k ,��
away from the true edge. Closer to the edge, the nonpertur-
bative spin-charge separation becomes important and the cor-
rect exponents can be derived using the phenomenological
relations.

VIII. HOLON RELAXATION

The spinon and holon excitations of the linear LL theory
are eigenstates of the Hamiltonian H0 �see Eq. �6�� and are
thus predicted to be stable. As a consequence of the infinite
spinon and holon lifetimes, the singularities of the spectral
function and other dynamic response functions at the spinon
and holon mass shells are characterized by true power laws.

In the case of nonlinear spectrum, bosonization leads to
spinon-spinon and holon-holon interactions, as well as to
spinon-holon interactions. This may give rise to finite life-
times for holons �we assume that spinons remain the lowest-
energy excitations�. In the spectral function, such a finite
lifetime generally leads to smearing of the singularities77 and
is thus directly measurable.

For spinless fermions, the effects of a nonlinear spectrum
on the particle and hole lifetimes were analyzed in Ref. 20.
For weakly interacting fermions with a generic short-ranged
repulsive interaction potential V�k�, it was shown that the
decay rate of a particle with momentum k�kF scales as $
� �k−kF�8. The exponent here comes from a limitation on the
phase space available for the decay combined with the q2

momentum dependence of the effective interaction at small
momentum transfer q. An important exception is the case of
integrable models,78–80 where these calculations predict infi-
nite lifetime for all momenta. Away from the limit of weak
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interactions, the rate is limited by the phase space argument
only, yielding the decay rate scaling14 $� �k−kF�4.

A similar phase space argument applied to the decay of a
holon with creation of two spinons would lead to $� �k
−kF�, possibly contradicting to the notion of a well-defined
holon branch at k→kF. However, as we show below, the
decay rate of a holon with small �measured from the Fermi
point� momentum must scale to zero with k→kF faster than
�k−kF�3.

In order to elucidate the possible decay processes for ho-
lons, it is convenient to start again from a description in
terms of refermionized quasiparticles. The band curvature of
the physical fermions leads to interactions between the qua-
siparticles. Away from the Fermi points, it is advantageous to
classify the interaction processes by their relevance in the
RG sense and to consider all possible interaction operators
which are allowed by SU�2� symmetry and Galilean invari-
ance. Due to its built-in SU�2� symmetry, non-Abelian
bosonization52 is a convenient tool to achieve this. Expressed
using the left- and right-moving holon densities J��x� and
spinon densities J���x� ��=L ,R�, Hamiltonian �6� of the lin-
ear LL reads H0=Hc+Hs, where

Hc = 2
vc	 dx�JR
2�x� + JL

2�x�� ,

Hs =
2
vs

3
	 dx�J�R

2�x� + J�L
2�x�� . �100�

The operators J��x� are related to the physical charge density
by 	c�x�=2�Kc�JL�x�+JR�x��. This Hamiltonian emerges at
the low-energy RG fixed point and is valid in the narrow-
band limit. The leading correction for increased bandwidth is
an interaction between left-moving and right-moving spin
densities,52

Hg = − 2
vsg	 dxJ�R�x� · J�L�x� . �101�

Note that when expressed in terms of the Abelian spinon

fields �̃s and �̃s, the operator Hg generates the sine-Gordon
term �7�. The band curvature of the physical fermions leads
to interaction operators which are cubic in spin and charge
densities,

H% =
4
2

3
	 dx�%−�JR

3 + JL
3� − %+�JR

2JL + JL
2JR�� ,

H� =
4
2

3
	 dx��−�JRJ�R

2 + JLJ�L
2� + �+�JRJ�L

2 + JLJ�R
2�� ,

H& =
4
2&

3
	 dx�JL + JR�J�R · J�L. �102�

Note that these operators represent all cubic terms which are
compatible with SU�2� symmetry. In particular, this symme-
try prohibits terms linear in the vector operators J���x�. Inter-
action operators containing quartic and higher-order terms in

J���x� and J��x� do exist but their contribution is subleading
for small bandwidths.

The prefactors g ,& ,�� and %� can be fixed phenomeno-
logically by relating them to other observable quantities. For
this purpose, let us investigate the variation in the interaction
operators as a response to a uniform variation in the charge
density 	c�x�→	c�x�+�	c. This variation shifts J��x�
→J��x�+�J, where �J=�	c / �4�Kc�, and thus creates the fol-
lowing additions to the Hamiltonian:

�H% =
4
2

3
�J
�3%− − %+�	 dx�JR

2 + JL
2� − 4%+	 dxJLJR� ,

�H� =
4
2

3
�J��− + �+�	 dx�J�R

2 + J�L
2� ,

�H& =
4
2&

3
�2�J�	 dxJ�R · J�L. �103�

Combined with Hc, the Hamiltonian �H% leads to a renor-
malization of vc and Kc.

66 The shifts �H� and �H& modify Hs
and Hg, respectively, and thus renormalize the parameters vs
and vsg. Expressing the density variation as a variation in
chemical potential using �	c /��=2Kc / �
vc�,7 one finds18

�− + �+ =
vc

�Kc

�vs

��
, �104�

& = −
3

2

vc

�Kc

��vsg�
��

. �105�

In a similar way, the difference �−−�+ can be related to the
mass m of the physical fermions by considering a charge
current variation in the Galilean-invariant system. One
finds,18,81

�− − �+ =
1

m�Kc

. �106�

It is known that upon a bandwidth reduction g flows loga-
rithmically to zero.52 Assuming the initial bandwidth to be of
order kF, for a smaller bandwidth of order k the effective
coupling constant will flow to g�k�=1 / ln�kF / �k−kF��. As the
chemical potential � is proportional to kF, the derivative
�g /���−g2 /kF. The derivative �vs /��, on the other hand,
remains finite for small bandwidths. Therefore, in leading
logarithmic approximation, �g /�� can be neglected and the
coupling constants �� and & can be related as

& � −
3

2
g

vc

�Kc

�vs

��
= −

3

2
g��− + �+� . �107�

For repulsive interactions, the excitation of lowest energy
for a given momentum k is a spinon with energy �s�k�. Due
to the shape of the spinon spectrum �see Fig. 7�, the absolute
value of the velocity ��s�k� /�k reaches its maximum vs near
the Fermi points. As a consequence, spinon relaxation by
creation of low-energy spinons is ruled out by energy and
momentum conservation. Similarly, because vc�vs

��s�k� /�k, decay of spinons by the creation of holons is
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also forbidden. Therefore, spinon excitations are stable.
Holons, on the other hand, can relax via the creation of

low-energy spinons. Let us investigate the decay of an initial
state �i�= �k�c�0�s which contains an additional holon with
momentum above the Fermi edge and no spinon excitations.
Relaxation of the holon to a momentum k��k can happen
via the creation of two spinon density excitations with mo-
menta qL�0 and qR�0. This final state will be labeled �f�
= �k��c�qL ,qR�s. For momenta k close to the Fermi point, mo-
mentum and energy conversation for this process read

k = k� + qR + qL,

vck = vck� + vs�qR − qL� , �108�

and have nontrivial solutions �k�k�� for vc�vs.
The holon lifetimes associated with this decay channel

can be calculated using Fermi’s golden rule. Two combina-
tions of operators from the interaction term �102� have a
nonzero matrix element between the states �i� and �f�. To first
order in the interaction, �f �H&�i� is the only such term. To
second order, only �f �HgH��i� and �f �H�Hg�i� are nonzero.

The calculation of these matrix elements is greatly sim-
plified by the fact that the initial state �i� contains no excita-
tion in the spin sector and thus corresponds to an
SU�2�-invariant singlet state. Therefore, one can use
J���x� ·J���x��0�s=3J�

z �x�J�
z �x��0�s for � ,�� 
L ,R�. Moreover,

all interaction Hamiltonians Hg ,H% ,H� and H& conserve the
total spin S� =�dx�J�R�x�+J�L�x��. This can be verified by cal-
culating the commutators using the SU�2�-Kac-Moody alge-
bra for the operators J���x�.52 Therefore, the spin sector re-
mains in a singlet state even if acted on by the interaction
Hamiltonians. It means that only the z components of the
spin operators, J�

z �x�, are needed for the calculation of the
holon lifetime. A normal-mode expansion allows one to rep-
resent the Fourier transform J�

z �p� in terms of bosonic opera-
tors bp,

J�
z �p� =�L�p�

4

����p�bp

† + ��− �p�b−p� , �109�

where L is the system length and �=R ,L=+,−. The opera-
tors bq satisfy the commutation relations �bq ,bq�

† �=�qq�. Us-
ing the creation operators bq

†, the spin part of the final state
�f� can be written as �qL ,qR�s=bqL

† bqR

† �0�s. For the calculation
of the holon lifetime, the following spinon matrix elements
are needed,

s�q�J�
z �p��0�s =�L�q�

4

���q��p,q. �110�

For the expectation values of holon operators, on the other
hand, it is convenient to retain the description in terms of
fermionic quasiparticles where J��x�= 1

2 	̃�c�x�
= 1

2 �̃�c
† �x��̃�c�x�. The charge part of the initial and final states

can be expressed as �k�c= �̃Rc
† �k��FS�c and �k��c

= �̃Rc
† �k���FS�c, respectively, where �FS�c denotes the Fermi

sea of holons. Then, one finds the matrix element,

c�k��JR�p��k�c =
1

2
�k�,p+k. �111�

The first-order matrix element T&= �f �H&�i� can be calcu-
lated by using these matrix elements. One finds

T& =
2
2&

L2 �
p,p�

s�qL�JL
z �p��0�ss�qR�JR

z �p��0�sc�k��JR�− p − p���k�c

=

&

2L
�k−k�−qL−qR

��qLqR� . �112�

The matrix elements �f �Hg�i� and �f �H%�i� vanish because Hg
and H% do not couple spinons and holons. The remaining
first-order matrix element �f �H��i�=0 because it contains
only terms of the form J��

2�x�, which do not create spinons on
opposite branches.

To the second order, cross terms of the operators Hg and
H� may couple the same initial and final states as above.
Since these are second-order terms, the matrix elements can
be calculated using the S-matrix expansion77

T�g = �f �H�

1

E − H0
Hg�i� ,

Tg� = �f �Hg
1

E − H0
H��i� , �113�

where H0=Hc+Hs is the noninteracting Hamiltonian. The
energy E denotes the energy of the initial state, E=vc�k
−kF�. As Fermi’s golden rule imposes energy conservation, it
ultimately becomes equal to the energy of the final state.
After Fourier transforming Hg and H�, going over to bosonic
operators using Eq. �109� and using the spinon and holon
matrix elements �Eqs. �110� and �111��, one finds that

T�g =
3
g

4L
��− + �+��k−k�−qL−qR

��qLqR� ,

Tg� = 0. �114�

Other second-order terms exist but they contain higher pow-
ers of qL and qR and are therefore subleading compared to
T�g for holon momenta k near the Fermi points. According to
Fermi’s golden rule the lifetime is

$ = 2
�
�f�

�T& + T�g�2��� f − �i� , �115�

where �i and � f are the energies of the initial state �i� and the
final state �f�, respectively. The sum over all final states �f�
translates to a summation over the momenta qL�0, qR�0
and k�� �kF ,k�. It can be seen from Eqs. �112� and �114� that
each of the decay channels taken individually would lead to
a decay rate $� �k−kF�3. However, Fermi’s golden rule �Eq.
�115�� contains the square of the sum of the probability am-
plitudes T& and T�g. The prefactors of both amplitudes are
related according to Eq. �107� and one finds T&+T�g=0.
Therefore, the decay rate vanishes up to terms proportional
to g2�k−kF�3, in the calculation of $ performed in the second
order82 of g=1 / ln�kF / �k−kF��. Retaining in Eq. �105� the
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derivative �g /���g2 /�F exceeds the accuracy of our calcu-
lation. It is not clear if the evaluation of $ to order g4 would
yield zero. Possibly, in that order the distinction between
integrable and nonintegrable systems emerges.

In the limit of weak backscattering, V�2kF��V�0��vF,
the universal logarithmic dependence for g�k−kF� is reached
only at very low energies while its bare value g
�V�2kF� /vF is applicable as long as �V�2kF� /vF�ln�kF / �k
−kF���1. In that case, Eqs. �105� and �115� yield

$ � �F
V�0�
vF


V�2kF�
vF

�2
 k − kF

kF
�3

. �116�

This estimate should be viewed as the result of perturbation
theory in V�2kF� in the basis of well-defined holon and
spinon modes with linear spectrum, which sets a limit on
holon momenta, k−kF'mV�0� �we also used vc−vs�V�0�
in the derivation�. Curiously, the latter estimate for $ at the
limit of its applicability, k−kF�mV�0�, matches the relax-
ation rate of a spinful fermion evaluated, in the basis of free
fermions, by the perturbation theory with respect to the en-
tire interaction.83

IX. CONCLUSION

In conclusion, we have investigated spinful one-
dimensional interacting Fermi systems at zero temperature
beyond the low-energy regime and calculated their dynamic
response functions for arbitrary momenta near the edges of
support in the �k ,�� plane. Away from the Fermi points, the
nonlinearity of the fermion spectrum becomes important and
the physical properties can no longer be explained by the
linear Luttinger liquid theory. In particular, we shed light on
the meaning of spin-charge separation away from the low-
energy limit.

The Luttinger liquid theory is based on the assumption of
a linear fermionic spectrum. The eigenmodes are spin- and
charge-density waves and the theory can be formulated in
terms of noninteracting bosonic fields. Refermionizing these
fields in Eq. �11�, we introduced fermionic quasiparticles,
spinons, and holons, which constitute a convenient basis
even away from the low-energy regime. In contrast to the
linear LL theory, a curvature of the spectrum of the physical
fermions leads to interactions between spinons and holons.
For repulsive interactions and small �k�−kF, spinons are the
lowest-energy excitations. By continuity, we expect that for
generic repulsive potentials, the spinon spectrum �s�k� re-
mains the edge of support for the spectral function for arbi-
trary momenta.

We found that the spin-charge separation exists also for
nonlinear spectrum but in a weaker sense than in a linear LL.
If a particle with arbitrary momentum k and energy �
��s�k� tunnels into the system, it creates a single spinon
with energy close to �s�k�, momentum close to k, and veloc-

ity vd=��s�k� /�k. In addition, it creates low-energy holon
excitations with velocity vc�vd and momenta near the
Fermi points but no additional spinon excitations. The cre-
ated spinon separates in space from the charge excitations
due to its different velocity. This is reminiscent of the con-
ventional spin-charge separation in linear LLs. However, in
contrast to the linear LL theory, such a decoupling only sur-
vives for energies close to �s�k�.

The separation in the momenta of the spinon and the low-
energy excitations allows us to introduce an effective
mobile-impurity model as a tool for the evaluation of mea-
surable dynamic response functions, such as the spectral
function A�k ,�� and the charge and spin density structure
factors, S�k ,�� and Szz�k ,��, respectively. In analogy to the
Fermi edge problem, the created spinon acts as a mobile
impurity and causes a shake-up of the Fermi seas of holons.
The threshold exponents of A�k ,�� can therefore be ex-
pressed for arbitrary momenta and interaction strengths in
terms of scattering phase shifts ���c�k�, see Eqs. �55� and
�56�. In the vicinities of the Fermi points, ���c depend only
on the Luttinger parameter Kc, see Eq. �16�, which leads to
universal values of the exponents. For arbitrary momenta and
Galilean invariant systems, we related the phase shifts to
another set of measurable properties given by the depen-
dence of �s�k� on k and the charge density 	c, see Eq. �48�.
Using similar considerations, we calculated the threshold be-
havior of the spin- and charge-density structure factors
S�k ,�� and Szz�k ,��, see Eqs. �67� and �68�. These results
are summarized in Table I. The general evolution of the spec-
tral function with increasing interaction was considered by
the analysis of the limits of weak and strong interaction. In
the former one, we found A�k ,�� perturbatively, see
Sec.VII B. In the latter limit, we utilized the phenomenologi-
cal relations to calculate the threshold properties of A�k ,��
from the exactly known spectrum, see Sec. VII A.

Unlike spinons, the holon excitations do decay as a con-
sequence of the nonlinear spectrum of the fermions. The cor-
responding lifetime is long for holons with momenta near the
Fermi points, see Sec. VIII. For integrable models, the holon
spectrum �c�k� is well defined for arbitrary momenta. We
determined the exponents of the spectral function for �
��c�k� by deriving phenomenological expressions relating
the corresponding scattering phase shifts to properties of
�c�k�, see Sec. VI.
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