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While the quantum Hall effect in graphene has been regarded as a realization of the anomaly associated with
the massless Dirac particle carrying half the usual topological integer, this is hidden due to the doubling of the
Dirac cones. In order to confirm the half-integer contribution from each Dirac cone, here we theoretically
consider a lattice model in which the relative energy between the two Dirac points is systematically shifted.
With an explicit calculation of the topological �Chern� number, we have demonstrated that each Dirac cone
does indeed contribute to the Hall conductivity as the half-odd-integer series �. . . ,−3 /2,−1 /2,1 /2,3 /2, . . .�
when the Fermi energy traverses the �shifted sets of� Landau levels. The picture is also endorsed, via the
bulk-edge correspondence, from the edge mode spectrum for the present model.
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I. INTRODUCTION

In the seminal discovery of the quantum Hall effect
�QHE� in graphene,1–3 a most striking point is that the
graphene QHE is regarded as a realization of the anomaly4 in
the massless Dirac particle, where each Dirac cone carries
1/2 of the usual QHE topological number.5,6 Namely, in
place of the usual Hall conductivity, �xy =0,1 ,2 , . . . �in units
of −e2 /h with the spin degrees of freedom dropped here�, we
have �xy =2n+1�n=0, �1, . . .�. The standard understanding
is that the honeycomb lattice has a couple of Dirac cones at
K and K� points in the Brillouin zone so that we just divide
the above formula by 2 to have �xy =n+1 /2 for the contri-
bution from each valley. The half integers are thus hidden in
the total Hall conductivity. Since the Nielsen-Ninomiya
theorem7 dictates that Dirac cones should always appear in
pairs as far as the chiral symmetry is present, we can pose an
important question: is it really impossible to resolve the half-
integer components?

In terms of field theory �as opposed to lattice models�, the
situation is simple: the Hall conductivity for a massive �m
�0� Dirac particle, in zero magnetic field, is given by �xy
= �1 /2�sgn�m� when the Fermi energy EF is in the mass gap.4

This can be readily shown by calculating Berry’s connection.
If we consider a field theoretical model concerning a single
Dirac fermion at k0 with a gap �m�, the Hamiltonian is given
by h=�kx�x+�ky�y +m�z=R ·�, where R= �R1 ,R2 ,R3�
= ��kx ,�ky ,m�, �k=k−k0.8 If we denote the eigenstate hav-
ing an energy −R=−���k�2+m2 as �, and its Berry connec-
tion as A=�†d�, the total Berry curvature over the �kx ,ky�
plane �represented as �m��R �R3=m�� is C= 1

2�i��m
dA

=��m
B ·dS=sgn�m� /2, where B=R / �4�R3�, which is the

flux from a magnetic monopole at the origin with div B
=�3�R� and dS=dkxdky�kx

R��ky
R=dkxdky�0,0 ,1�. We can

then see that we have 1/2 since just the half the total flux of
the magnetic monopole passes through the plane �m. This
implies that the topological change in the quantum ground
state �filled Dirac sea� is characterized by 	�xy = �1.9–11 Ge-
nerically speaking, a topological quantum phase transition is
naturally accompanied by a sign change in the mass in the
effective, low-energy Dirac fermions. Quantum Hall plateau

transition is a typical example, and the topological insulators
such as the quantum spin Hall system are also described
along this line, where the spin-orbit interaction induces the
sign change in the mass.12–14

While the quantization into the half odd integers is con-
ceptually interesting, if we go over to lattice models, how-
ever, we have a periodicity in the Brillouin zone, which im-
plies that the topological numbers should always be integers
as dictated by the celebrated but inescapable Thouless-
Kohmoto-Nightingale-den Nijs �TKNN� formula.5 The inte-
ger total Hall conductivity for graphene with a pair of Dirac
cones is an example of this. If we turn to a wider class of
lattice models, we can go around the Nielsen-Ninomiya theo-
rem. For instance, we can have a lattice model that has an
odd number of massless Dirac cones, but even in that case
we still end up with integer Hall conductivities, which may
be regarded as due to hidden massive Dirac fermions re-
quired to exist for the topological consistency in the lattice
system to be guaranteed. The massive Dirac fermions �some-
times regarded as “spectators”11� are hidden in the high-
energy region, which do not appear in the low-energy phys-
ics except that they make sure that the Hall conductivity are
topologically protected to be integers. In another manipula-
tion of Dirac cones,9 a quantum Hall effect in zero total
magnetic field has been considered, where the Hall conduc-
tivity is shown to take the value of e2 /h even in zero field in
a model containing complex hoppings in the situation where
the Dirac cones are made massive. It is thus rather difficult to
confirm half odd integers in the Hall conductivity for a single
Dirac cone.

In this Rapid Communication, we want to shed light to
this problem by posing the following question: if we can
manipulate the energies of the multiple Dirac points, can the
half-integer series confirmed through a systematic behavior
of the total Hall conductivity? Namely, we shall construct a
lattice model, where the two Dirac points are shifted with the
massless cones preserved for both of the Dirac points. We
shall identify, by directly computing the topological Chern
number for systematically varied relative position of the
Dirac cones, that each Dirac cone indeed has a half-odd-
integer series �. . . ,−3 /2,−1 /2,1 /2,3 /2, . . .� when EF
traverses �now shifted sets of� Landau levels belonging to the
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two Dirac cones. The picture is further endorsed, via the
bulk-edge correspondence, from the behavior of the edge
modes for the shifted Dirac cones for finite systems.

II. SHIFTED DIRAC CONES

A strategy to conceive a model in which two Dirac cones
are preserved but mutually shifted in energy is the following.
A simplest solution is to add a term that is proportional to �0
�unit matrix� in the space of Pauli matrices with a
k-dependent coefficient. Thus we can introduce a Hamil-
tonian,

H = 	
k

	

,�

ĉk

† 
hk

gr + 2t1�sin k1��0�
,�ĉk�,

hk
gr = t0
�1 + cos k1 + cos k2��1 + �sin k1 + sin k2��2� , �1�

where ĉk

† creates an electron in k space and �i’s are Pauli

matrices with 
 ,� denoting their components. In this Hamil-
tonian, we have added, on top of the nearest-neighbor hop-
ping t0, an extra �0 term with hopping t1 as a coefficient.
This only affects the band dispersion as an additive,
k-dependent term, which implies that we lift the degeneracy
between K and K� points if the k-dependent term has differ-
ent values at K and K�. A simplest choice is �sin k1. If we go
back to the real space, the tight-binding model is as depicted
in Fig. 1�a�, which has extra second-neighbor hoppings. The
added hopping has to be only between A-A and B-B for the
Dirac cone to be preserved and they have to be complex for
the degeneracy between K and K� �mutually time-reversal
pairs� to be lifted. So the model with a complex hopping is
rather fictitious but we do accomplish shifted Dirac cones as
depicted in Fig. 1�b�. In this model the chiral symmetry 
i.e.,
the presence of an operator ��z in the case of graphene� that
anticommutes with the Hamiltonian� is broken since appear-
ance of �0 in H invalidates �H ,�z�=0. Nevertheless, the
addition of �0 preserves the shape of Dirac cones, along with

the species doubling. If we expand Hamiltonian �1� around
k0 �K or K� points�, we have

hk � 	�0 − �vF
�kx�1 + �ky�2� , �2�

where =+1�−1� correspond to K�K��, 	=�3t1 is �half� the
shift, vF=�3at0 /2� the Fermi velocity, and �k=k−k0. So the
effective theory around these points are a pair of Dirac equa-
tions at K and K� with a shift �	 in energy as desired.

III. CHERN NUMBERS

The Landau levels in a magnetic field Bz expected from
the effective Dirac Eq. �2� are �n

=	+��c sgn�n��n 
�c

=31/4t0
�2�� , �= ��3a2Bz /2� / �hc /e� , n=0, �1, �2, . . .�.

However, we should of course go back to the original lattice
model for obtaining the Landau levels and, especially, the
Hall conductivity. The calculation of the Hall conductivity,
which is a topological Chern number, requires a bit of care,
since we have to question the behavior of the topological
number around E=0 which is just where the hole and elec-
tron branches meet in the Dirac cone dispersions. This im-
plies we have to sum over all the contributions from the
“Dirac sea” to get the total Hall conductivity. This ordinarily
poses a numerically difficult problem but we can overcome
the problem with a method that employs a noncommutative
Berry’s connection15 and its integration �Chern number� over
the Brillouin zone with a technique developed in the lattice
gauge theory.16

The result for the Chern number in the present model
obtained with the above method is displayed in Fig. 2, which
is the key result in the present work, and reveals an intrigu-
ing feature. For comparison, let us first look at Fig. 2�a�,
which is just the result for the ordinary graphene with the
usual graphene Landau levels at �n

=��c sgn�n��n. The nu-
merical result for the Chern number is simply the graphene
QHE, where the well-known Chern number sequence of
. . . ,−3 ,−1 ,1 ,3 , . . . for the honeycomb lattice coincides with
a sum over the two, half-integer contributions from the de-
generate pair of Dirac fields.

If we now turn to the result for the present lattice model in
Fig. 2�b�, the crucial question is: does the result conform to
the expectation from the effective Dirac model where
the sum of two half-odd-integer series �. . . ,−3 /2,
−1 /2,1 /2,3 /2, . . .� with a shift in energy between them
should give the total Hall conductivity as EF traverses shifted
sets of Landau levels �as displayed in the lower panel in the
figure�. The numerical result for the Chern number in the
lattice model is seen to agree with this. Namely, in a striking
contrast to the ordinary graphene where each QHE step has a
jump of 2 in the Chern number, the present model exhibits a
jump of 1 at each step. This, along with the positions of these
jumps, perfectly fit with the positions and the associated
Chern numbers of the shifted Landau levels as the figure
indicates. The agreement is rather surprising since there is no
obvious reason why the superposition of effective-field
theory for the vicinities of K and K� and the lattice model
should have the same Chern numbers. Thus, although we
have still no half integers for the total Hall conductivity
�since a sum of two half-odd integers is an integer�, we have

�i t1
t0

A

B
E
/ t
0

k

��

(a) (b)

FIG. 1. �Color online� �a� The honeycomb lattice model consid-
ered here with nearest-neighbor hopping t0 �solid lines� and second-
neighbor hopping which is it1 along each dashed arrow, −it1 in the
opposite direction. A unit cell and A, B sublattices are indicated. �b�
The dispersion relation in the present model, seen horizontally with
Dirac cones shifted in energy by 	=�3t1.
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indirectly confirmed the half integers. Since no half integers
can possibly appear according to TKNN, this is indeed as
best as we can confirm the half-integer property of each
Dirac cone.

We expect such a decomposition of the Hall conductivity
into the contributions from each Dirac cone to systematically
occur when we vary the energy separation �2	� between the
two Dirac points. Figure 3 displays the loci of Landau levels
�solid lines� and the Chern number for each gap between the
Landau levels when t1�	 is varied. The result is just what is
expected from the above decomposition, as indicated by the
result for the two Dirac fields �shaded regions�, which almost
exactly coincides with the result for the lattice model.

IV. EDGE STATES

The QHE state is a topological state, which immediately
implies that edge states should appear at the boundaries of a
sample, where an intimate relation exists between the edge
topological number �i.e., the edge Hall conductivity� and the
bulk topological number �the bulk Hall conductivity�.6,17 So

it is an intriguing as well as necessary test to look into how
this property appears in the edge state in the present model.
Figure 4 displays a numerical result for the energy spectrum
against k2 for a finite sample with zigzag edges along x1. The
spectrum comprises the bulk Landau levels �horizontal lines�
and a series of edge modes �identified as curves that traverse
between Landau levels�.

According to the bulk-edge correspondence in a topologi-
cal argument,6 the bulk Chern number should coincide with
the number of pairs of �right and left� edge modes in the
Landau gap considered. In Fig. 4 we can clearly recognize
that the bulk Dirac Landau levels ���n with the shift� �hori-
zontal lines� are accompanied by right and left edge modes
�upturning for the electron branch, downturning for the hole
branch�. This occurs around each of K and K�. If we count
the number of pairs of edge modes, we have, for each of the
series, the beautiful sequence 1,2,3,… �as opposed to the
sequence 1,3,5,… for graphene, see Fig. 10 of Ref. 18� both
in the electron or hole branches. The two series of pairs of
edge modes arise with the energy shift between K and K� as
they should. We can thus reinforce our argument, via the
bulk-edge correspondence, that we can decompose the con-
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FIG. 2. �Color online� �a� For the ordinary graphene �t1=0� and
�b� for the present model with a shifted Dirac cones �t1�0� we
display the numerically calculated Chern numbers against EF �up-
per panels�, along with the Landau levels for each of the two Dirac
cones, where the Chern numbers are indicated for EF in each of the
gaps �lower panels�. The result is for the flux �=1 /100.
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FIG. 3. �Color online� Numerical result �black curves� for the
Landau-level spectrum when the shift �	� t1; the horizontal axis� is
varied with the Chern number indicated for each of the Landau gap.
The shading represents the Chern numbers expected from the effec-
tive theory �see text�, where the boundaries between different
shades �Chern numbers� almost exactly coincide with the numerical
result. Accumulation of lines around E= �1 corresponds to the Van
Hove singularity, which shifts quadratically with t1. The result is for
a magnetic field of �=1 /100, and two vertical lines indicate, re-
spectively, the situation for Figs. 2�a� and 2�b�.
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tribution from each of the Dirac cone that carries the bulk
Chern number of 1/2 �Fig. 2�.

V. SUMMARY

We have demonstrated that each Dirac fermion
contributes the half-odd-integer series �. . . ,−3 /2,

−1 /2,1 /2,3 /2, . . .� to the Hall conductivity when the Fermi
energy traverses the Landau levels in a lattice model in
which the energy between the two Dirac points is systemati-
cally shifted. The picture is also confirmed, via the bulk-edge
correspondence, in the edge mode of the Dirac fermions.

Recently it is recognized that massless Dirac fermions can
be realized as surface states of the three-dimensional �3D�
topological �quantum spin Hall� systems.14 There, the two-
dimensional surface of the gapped three-dimensional topo-
logical insulator accommodates gapless �massless Dirac� fer-
mions, which is a manifestation of the bulk-edge
correspondence.6 The massless Dirac fermions are again
doubled for the topological consistency but the doubling
partner exists at the other side of the system in this case.
Thus, whether we can decompose the topological numbers
into contributions from each Dirac cone is becoming a real-
istic question. It is an interesting future problem to consider
how the present toy model can be realized in actual materi-
als, where the surfaces of 3D topological insulators may be
one possible avenue. Another possible realization of our
model is a cleverly arranged cold atoms for an optical lattice
where non-Abelian gauge structure can arise from the intra-
atomic degree of freedom with a fine tuning of desired
parameters.19
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