
Entanglement and inversion symmetry in topological insulators

Ari M. Turner, Yi Zhang, and Ashvin Vishwanath
Department of Physics, University of California, Berkeley, California 94720, USA

�Received 10 October 2010; published 13 December 2010�

Topological band insulators are usually characterized by symmetry-protected surface modes or quantized
linear-response functions �like Hall conductance�. Here we present a way to characterize them based on certain
bulk properties of just the ground-state wave function, specifically, the properties of its entanglement spectrum.
We prove that whenever protected surface states exist, a corresponding protected “mode” exists in the en-
tanglement spectrum as well. Besides this, the entanglement spectrum sometimes succeeds better at indicating
topological phases than surface states. We discuss specifically the example of insulators with inversion sym-
metry which is found to act as an antiunitary symmetry on the entanglement spectrum. A Kramers degeneracy
can then arise even when time-reversal symmetry is absent. This degeneracy persists for interacting systems.
The entanglement spectrum is therefore a promising tool to characterize topological band insulators and
superconductors beyond the free-particle approximation.
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According to the Landau Paradigm, distinct phases of sys-
tems can be classified according to their pattern of symmetry
breaking. A phase can therefore be identified by the appear-
ance of a nonzero expectation value for the spin �or another
variable breaking the symmetry�. It has been known for a
while now that this is not the only way to distinguish be-
tween phases. For example, a topological distinction can also
lead to a sharp definition of a phase. Even for noninteracting
fermions, in an insulating phase, it is possible to distinguish
between different topological classes. There is a trivial type
of insulator, corresponding to the standard picture of bring-
ing isolated atoms with filled sets of orbitals together, and
there are nontrivial phases known as topological insulators1

that can occur when electrons occupy bonding orbitals
shared between atoms. These include the quantum Hall
Chern insulators and the more recently discovered spin-orbit
topological insulators.

Our goal is to describe a bulk property, like the order
parameters of Landau, that can be used to distinguish be-
tween trivial and nontrivial topological insulators. Moreover,
we expect this information to be present in the ground-state
wave function since it is not possible to pass from a trivial to
a nontrivial insulator without a phase transition in the bulk.
We will seek the signature in the entanglement spectrum of
the insulator when cut in two. Any insulator except for per-
fectly isolated atoms has nonzero entanglement. But for the
topological insulator, the entanglement cannot be eliminated
continuously. The entanglement spectrum �introduced by
Ref. 2� has a qualitative property that guarantees a nonzero
entanglement entropy, as shown below.

The most concrete property of most topological insulators
is that its surface is metallic although the bulk is insulating.
Our first goal will be to deduce from this the robustness of
the entanglement: if physical surface modes exist throughout
a certain phase, then “entanglement modes” on an imaginary
cutting surface exist as well �also shown independently by
Ref. 3�. This result applies to quantum Hall states,4 spin
quantum Hall states, and topological insulators,5 which have
been treated earlier on a case-by-case basis. It also can be
generalized to describe entanglement of topological
superconductors6 �when pairing is allowed�.

Our main result is that the entanglement spectrum some-

times reveals more than the surface spectrum does. Spin-
orbit topological insulators require the presence of a symme-
try, time reversal, for their definition, but one can consider
instead insulators that are symmetric under inversion sym-
metry in a point. The inversion symmetry turns out to protect
modes in the entanglement spectrum �even when surface
modes are gapped� because inversion symmetry acts in a
special way on the entanglement spectrum. On the single-
body modes, inversion acts like a particle-hole symmetry; on
many-body entanglement states it is antiunitary.

Given the ground-state wave function, and a partition of
the system into a left and right half, one can perform a
Schmidt decomposition

�G� = �
�

1
�Z

e−E�
e /2��L���R� . �1�

Measuring the left half of the system shows it to be in state

��L� with probability e−E�
e
/Z. The quantities E�

e form the
entanglement spectrum; they are the eigenvalues of the “en-
tanglement Hamiltonian” He and are somewhat like “ener-
gies” since they characterize how unlikely a given fluctua-
tion is to occur. �We use the superscript “e” when describing
the entanglement.�

For a noninteracting wave function, according to Refs. 7
and 8, these many-body entanglement energies can be writ-
ten as sums of single-particle entanglement energies

E�
e = �

i,k�

ni
��k���i

e�k�� . �2�

Here, i indexes the bands, and nik�

� =0,1 is the occupation
number of mode i for the many-body state �. Because the
cutting surface is translationally symmetric, one can classify
the modes by their momentum2 k� parallel to the cut, allow-
ing one to consider band-structure graphs, rather than a con-
tinuum of overlapping energy levels. The dispersions �i

e�k��
are related to the eigenenergies pi�k�� of a Hamiltonian Hflat
that is in the same topological class as the physical Hamil-
tonian �see below�. Therefore, if the phase of the system has
protected surface modes, the physical system does too.

Review of entanglement of noninteracting fermions. The
spectrum can be determined by decomposing the insulator
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into independent one-electron modes,8 each of which con-
tributes a term to the entanglement energy, Eq. �2�. Consider
the state of a single electron c†�Vac�, where c† creates F�r�.
This mode may be split into its parts on the left and right side
of the surface, F�r�=�pfL�r�+�1− pfR�r�. �The factors of
�p ,�1− p are normalizations.� Therefore c†�Vac�
=�p�l†�VacL��VacR��+�1− p��VacL�r†�VacR��, �where l†

and r† create the fL and fR states�. This gives the Schmidt
decomposition of the mode: either there is an electron on the
left and a hole on the right or vice versa. The entanglement
Hamiltonian which gives the right relative probabilities for
the two states on the left is He=�l†l, where p

1−p =e−�.
For many electrons occupying many modes Fik�

, the
same method can be applied one mode at a time provided
they are independent. This independence condition, formu-
lated by Ref. 7, requires that the modes appearing in the
decomposition

Fik�
= ��pi�k��fLik�

�x� + �1 − pi�k��fRik�
�x��eik�·r�, �3�

namely, fLik�
and fRik�

, each form orthonormal sets. This
orthonormality condition is equivalent to an eigenvalue prob-
lem for fL. They must satisfy �

x�0
r=�x,y,z�,C�r ,r��fLik�

�r�
= pi�k��fLik�

�r��, where C�r ,r�� is the correlation function
of the ground state. �Spin and orbital indices should be added
along with the spatial coordinates.� The entanglement Hamil-
tonian is then �ik�

�i
e�k��lik�

† lik�
, where

1

2
tanh

�i
e�k��

2
=

1

2
− pi�k�� . �4�

This gives an efficient way to compute the entanglement
spectrum: calculate C�r ,r��, restrict to the left half of the
system and diagonalize.

Topological protection of entanglement modes. This de-
scription of the entanglement modes has an intuitive inter-
pretation: the modes pi are the surface modes of an insulator
in x�0 with the following hopping matrix:

Hflatrr� =
1

2
�rr� − C�r,r�� . �5�

Since the correlation function decays exponentially with dis-
tance, this Hamiltonian could conceivably describe a physi-
cal system with hopping mostly to nearby neighbors.

Now this Hamiltonian has a simple relationship to the
actual Hamiltonian; if the latter’s plane-wave modes are H
=�����k�ak�

† ak�, where ak� refers to the Bloch states, then
Hflat has these same eigenstates but associated with different
energy dispersions. The bands are flat and degenerate for all
occupied bands and all unoccupied bands, i.e., Hflat
=���F�ak�

† ak� with

�F��k� = −
1

2
if � is an occupied band, �6�

�F��k� = +
1

2
if � is an unoccupied band. �7�

The proof of the topological protection of entanglement
modes can now be completed: Hflat is in the same phase as H

since the bands can be flattened without ever crossing the
Fermi level. Therefore, if H is in a phase with protected
surface modes, then Hflat has surface modes too, and they
must cross the bulk gap between + 1

2 and − 1
2 . Since these

modes’ dispersion is 1
2 tanh

�i
e�k��

2 , there are zero-energy en-
tanglement modes. In particular, there are many Schmidt
states with equal weights, corresponding to zero “energy,”
and thus continuously changing the system cannot bring the
entanglement entropy to zero, as it is in a crystal of uncom-
municating atoms.

Topological Protection in three-dimensional time-reversal
symmetric insulators. We will now illustrate this result for
topological insulators. Some classes of topological phases
require a symmetry for their protection; for topological insu-
lators, this is time reversal. Topological insulators have an
odd number of metallic Dirac nodes on their surfaces, lo-
cated at the four surface TRIMs �� �the “time-reversal in-
variant momenta” modulo the reciprocal lattice�. In Figs.
1�a� and 1�b� are depicted the surface modes and entangle-
ment modes of a strong topological insulator, given by a
spin-orbit model on a diamond lattice9

H = �
ij

tijci�
† cj� + 8i�SO �

		ik��
ci�

† �dik
1 	 dik

2 � · ����ck��, �8�

where the first term contains the four nearest-neighbor hop-
ping elements which are taken as t for three of the bonds, and
t+�t for the fourth bond oriented along the �−1,1 ,−1� direc-
tion; we will also add a second-neighbor hopping t2 which is
the same for all directions. The spin-orbit interaction appears
in the second term, inducing hopping between second-
neighbor sites. In this term, dik

1 ,dik
2 are the two nearest-

neighbor bond vectors leading from site i to k, and � are the
spin Pauli matrices. This model respects time-reversal sym-
metry, and a strong topological insulator is obtained when
�t
0. We calculated the surface states on the �111� surface,
and the entanglement states on a parallel cut, for the param-
eters t=1.0, �SO=0.125, �t=1, t2=0.1. Thus, for this system,
the topology of the entanglement modes is the same as that
of the surface modes.

Modes protected by inversion symmetry. Our argument
only showed that the entanglement spectrum has at least as
many protected modes as the surface spectrum. In fact, in-
version symmetric insulators can have phases with entangle-
ment modes but not physical surface modes. The key point is
that the imaginary cut used for defining the entanglement
spectrum does not “damage” the system and its symmetry;
the inversion interchanges the two sides of the cuts. Near a
physical surface, there is no inversion symmetry, however.

The time-reversal symmetry of the model on the diamond
lattice can be broken by applying a Zeeman field, HT
=h�ici

†�zci. Figures 1�c� and 1�d� show the surface and en-
tanglement modes �for h=0.9�, demonstrating a Dirac node
that is protected �as we will show� by the inversion symme-
try about bond centers of this model. Such a node is not
present in every system �see the inset of Fig. 1�d�� but it
cannot disappear without a phase transition. �The inset is the
entanglement spectrum for the diamond lattice model with
different parameters: the exceptional bond is perpendicular
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to the cutting surface and �t=−.9t. This system is a weak
topological insulator with no modes along this surface.�

A mysterious property of Figs. 1�b� and 1�d� gives a clue
as to how inversion is able to protect this mode: the entangle-
ment modes are particle-hole symmetric even though �be-
cause of the second-neighbor hopping� the Hamiltonian and
its surface modes are not. This suggests that the inversion
symmetry I of the physical Hamiltonian takes on the guise
of a sort of particle-hole symmetry for entanglement. Invert-
ing Eq. �3� gives

Fik�
�− x�e−ik�·r = ��1 − pifRi�− x� + �pifLi�− x��e−ik�·r,

�9�

which has to be the same �apart from a phase� as another
state of the opposite momentum Fī−k�

with pī=1− pi. Since
this implies �ī=−�i, the operator IS �see Fig. 2� that maps
between these states

ISfLi�x� 
 fRi�− x� � fLī�x� �10�

is a particle-hole symmetry.
This explains why the Dirac node in Fig. 1�b� �or any

topological insulator with inversion symmetry� is at �e=0.
The reason it remains ungapped in the magnetic field is that
parities of modes cannot change discontinuously. The two
modes fa and fb at the TRIM �see left of Fig. 3� form a
Kramers doublet under time reversal; thus they have the
same parity. They cannot split as the figure proposes; the two
modes fa and fb indicated by the dots are exchanged by
inversion and can thus be combined into states of opposite

parities:
fa�fb

�2
.

A long-wavelength equivalent of this argument can be
given for the Dirac equation � ·k
=�
: IS is a “CRT” sym-
metry �charge-conjugation times a 180° rotation times time
reversal10�, and acts via 
�x ,y , t�→
�−x ,−y ,−t�, since C, R,
and T act on the spinor with �z, �x, and �y, respectively. A
mass term cannot be added without breaking this symmetry.
�CPT symmetry on the other hand cannot be used to forbid a
mass term, since the massive Dirac equation, like all relativ-
istic equations, is CPT invariant.�

In general, there is a topological invariant �N����, de-
fined for each TRIM as N+���−N−���, where N+��� and
N−��� are the numbers of solutions to IS���x�ei��·r��
= ���x�ei��·r� among the zero entanglement-energy eigen-
states. If a pair of modes moves away from zero energy, they
had to start out with opposite parities, �as just shown�, so
�N���� does not change.

Inversion symmetry and the many-body spectrum. We
now use the entanglement spectrum to derive some prelimi-
nary results about the effects of adding interactions. For an

FIG. 2. The action of inversion symmetry on the entanglement
modes. IS maps the left-hand half f i

L of an Fi wave function to the
inversion image I�f i

R� of its other half.

(a) (b)

(c) (d)

FIG. 1. �Color online� Energy modes and entanglement modes in topological insulators. ��a� and �b�� A time-reversal symmetric
insulator’s physical and entanglement dispersions on a cut parallel to the �1,1,1� plane �calculated along the path connecting the TRIMs
M1 ,M2 ,M3 ,�, as shown on the hexagonal Brillouin zone�. ��c� and �d�� Inversion symmetric insulators with broken time-reversal symmetry.
Note the physical surface states �c� are gapped but the Dirac node remains in the entanglement spectrum �d�, at zero energy, because
inversion symmetry acts as a particle-hole symmetry. Thus this phase remains distinct from one without entanglement modes �shown in the
inset�.
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interacting system the many-body entanglement spectrum,
Eq. �1�, cannot be reduced to independent modes so we must
consider the many-body version of inversion symmetry. It
leads to an antiunitary symmetry �analogous to time-reversal
symmetry, though time reversal is not present�. Inversion
symmetry preserves Schmidt weights but maps the states for
the left half of the system to states for the right half. To
remain in a fixed half of the system, combine I with a sec-
ond “mate” transformation M, defined by M��R�= ��L�,
and also preserving the Schmidt weights. This transformation
has a consistent meaning only when extended antilinearly,
M��c���R�=��c�

� ��L� �if extended linearly to superposi-
tions of the Schmidt states, M depends on the choice of
phases in the Schmidt decomposition�. Therefore the combi-
nation MI is an antilinear symmetry of the Schmidt spec-
trum.

Now since inversion is an order-two transformation,
�MI�2 has to be a pure phase for any subspace consisting of
all Schmidt states of a given particle number; in particular,
one can show that

�MI�2 = �− 1��1 �11�

is the same for every Schmidt state in which the fermions are
split evenly between the two halves. � is a characteristic of
the insulator, and it is given in the noninteracting case by
1
2���

�N��
. When � is odd �MI�2=−1 so all states come in

degenerate pairs by Kramers degeneracy.
This behavior is a consequence of the Fermi statistics of

the particles. Let us check it for the topological insulator in
the Zeeman field, whose Dirac doublet Fa and Fb consists of
two states with the same IS parity �even, say�. We will cal-
culate �MI�2 for just the highest weight Schmidt states,
which are contained in

��0� =
1

2
�la

† + ra
†��lb

† + rb
†��SL��SR� , �12�

where �SR� and �SL� are the Fermi seas for the two sides.
Because the states are even under IS, Ila/bI†=+ra/b; I also
exchanges the seas.

The two terms in Eq. �12� with even splits are

��0� = s
1

2
���1

L���1
R� + ��2

L���2
R�� + ¯ ,

where s is an unimportant sign and

��1
L� = la

†�SL�, ��1
R� = rb

†�SR� ,

��2
L� = − lb

†�SL�, ��2
R� = ra

†�SR� .

The crucial − sign arises because of anticommutation of fer-
mion operators, and implies the matrix representing MI is
UI= � 0 −s

s 0 �, Therefore, �MI�2, which is represented by the
matrix UI

�UI, is −1 for a single node. Hence �=1.
Even when interactions are included, Eq. �11� defines an

“order parameter” � that cannot change except at a phase
transition. Interestingly, this order parameter can be deter-
mined using a finite-size sample of the right geometry. The
parity of the ground-state wave function is �−1�� for periodic
boundary conditions in the y and z directions and a finite size
in x if the y and z dimensions are even. �If they are odd, one
can isolate 1

2�N��
for a single TRIM by imposing periodic

or antiperiodic boundary conditions, suggesting that at least
some of the weak topological indices survive interactions.�

Furthermore, � is related to a response function: the mag-
netoelectric susceptibility is given by e2

2h� �see Ref. 11�.
Thus the entanglement spectrum can be used to analyze

topological phases and predict their properties �here, the ex-
istence of phases with inversion symmetry� and suggests
ways to generalize topological insulator properties to inter-
acting systems �see Ref. 12�.
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FIG. 3. Spectra that cannot evolve into one another on account
of inversion symmetry. Left, a spectrum with a Dirac node; both
modes at zero energy have the same parity under IS. Right, a spec-
trum without a Dirac node. The positive and negative energy modes
interchange so they can be combined into states of opposite parity.
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