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A theory based on the two-band tight-binding approximation for � electrons is developed to describe the
second-order nonlinear optical �NLO� properties of arrays of uniformly sized and well-aligned boron-nitride
single-walled nanotubes �BN-SWNTs� with a zigzag achiral structure. It is assumed that the coherent light
beam at frequency �, incident upon the nanotube sample, is linearly polarized along the symmetry axis of the
nanotubes. The long-axis NLO susceptibility ��2���� of those nanotubes is calculated within the independent
nanotube approximation and in neglecting local-field effects. Using the perturbation-theory formalism in the
crystal-momentum representation, we derive an explicit analytic expression for the ��2���� and apply it to study
three distinct second-order NLO effects possible in the BN-SWNTs due to their noncentrosymmetric
structure—namely, second-harmonic generation �SHG�, linear electro-optical �LEO� effect, and nonlinear op-
tical rectification �NOR�. The theory is illustrated by numerical model calculations of the SHG, LEO, and NOR
susceptibility spectra for several representative BN-SWNT ensembles consisting of large-diameter nanotubes.
The calculated SHG spectra are found to be dominated by the highly peaked 2� resonance at half the band-gap
energy of the BN-SWNTs, where the absorption of light is negligible. Distinct features are also found in the
LEO and NOR susceptibility spectra, e.g., a sudden switching of the susceptibility from a positive peak value
to a negative peak one in the near vicinity of the fundamental absorption edge. A fairly large magnitude of
those susceptibilities, reaching the order of 10−7 esu under off-resonant conditions and up to 10−6 esu in the
resonant case, suggests that BN-SWNTs are a promising material for various electro-optical device
applications.
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I. INTRODUCTION

More than a decade after the original proposal1,2 and the
first successful synthesis,3,4 boron-nitride nanotubes �BN-
NTs� are still the subject of intensive theoretical and experi-
mental research due to their remarkable physical properties
�for a brief review of the subject, see Ref. 5�. From a basic
physics standpoint, perhaps the most significant feature of
BN-NTs is that these nanotubes, unlike their carbon
counterparts—carbon nanotubes,6 are wide-band-gap semi-
conductors regardless of their diameter, helicity, or the num-
ber of the walls of the tube.2 There are also many other
features, such as, e.g., high thermal stability,7 high resistivity
to oxidation,8 which make BN-NTs very attractive for prac-
tical applications in future nanoscale devices.

Recently, in a very interesting paper by Guo and Lin,9 a
systematic ab initio study of the second-order nonlinear op-
tical �NLO� properties of BN-NTs within density-functional
theory �DFT� has been carried out. From that study, it fol-
lows that BN-NTs have excellent perspectives to be used for
NLO device applications, exhibiting fairly large second-
order NLO coefficients ����

�2� �the Greek indices refer to the
Cartesian coordinates x, y, and z� relevant to second-
harmonic generation �SHG� and linear electron-optical
�LEO� effect �the so-called Pockels effect�. As far as we
know, experiments on the measurement of those coefficients
have not yet been conducted but are expected to be per-
formed in the near future. Yet on the theoretical side, there
also still remain some issues that have to be resolved in order

to gain a detailed understanding of the second-order NLO
properties of BN-NTs.

One of the most intriguing question that needs to be in-
vestigated is the following: what is the magnitude of the �zzz

�2�

component of the second-order optical susceptibility tensor,
which describes the NLO response of BN-NTs to the exter-
nal electromagnetic field polarized along their axis �z axis�?
The first-principles calculations, carried out by Guo and
Lin,9 answered this question, but not for all the nanotubes
examined, showing, in particular, the vanishing of that com-
ponent for the zigzag �l ,0� BN single-walled nanotubes �BN-
SWNTs� if l=5, 9, and 27. From a point-symmetry-group
analysis,10 it follows, however, that the component �zzz

�2�

should be nonzero for all the zigzag BN-SWNTs. Such a
discrepancy between the group-theoretical analysis and the
microscopic theory of Ref. 9 is puzzling, as was mentioned
by the authors of Ref. 9 themselves. The zero value of the
�zzz

�2� component, predicted in Ref. 9 for a number of the zig-
zag BN-SWNTs, looks very strange indeed, and it seems
important therefore to try to clarify this point and to resolve
the confusion.

Addressing this issue in the present paper, we adopt a
fundamentally different approach than that used in Ref. 9.
Namely, we concentrate here on the theoretical calculation of
the �zzz

�2� for the zigzag BN-SWNTs within the framework of a
simple model based on the two-band tight-binding �TB� ap-
proximation of their electronic structure.11 To calculate �zzz

�2�,
we use a general perturbation-theory formalism developed
by Genkin and Mednis12 for the calculation of the NLO re-
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sponse of bulk semiconductors in the independent-particle
approximation. The advantage of the approach employed
here is that it provides an explicit analytic expression for
�zzz

�2�, enabling numerical analysis of this quantity to be
readily implemented for any nanotube considered. From
such an analysis, carried out for those zigzag BN-SWNTs
which have previously been predicted to have the vanishing
component �zzz

�2�,9 it follows that there is nothing special with
the �zzz

�2� in those nanotubes: the �zzz
�2� values are naturally non-

zero, and the calculation shows what is the order of their
magnitude.

Apart from being able to clarify the confusing picture that
emerges from ab initio calculations by Guo and Lin,9 our
systematic analytical approach has the merit of elucidating
the essential physics involved in the problem under discus-
sion, providing much insight into the nature of the second-
order optical nonlinearity of the BN-SWNTs. In particular,
we find that the nonlinearity is associated with a combined
effect of intraband and interband motion of � electrons in
those nanotubes. That effect is shown to manifest itself in
two physically distinct contributions to ��2�, which originate
from two different parts of the electron-position operator r
and, hence, of the electric dipole moment D=−er of the �
electrons in the crystal-momentum representation �−e is the
electron charge�. The first part represents �up to a constant
prefactor� the k-space gradient operator �k �k is the electron
wave vector� and, being diagonal in band index s, describes
the effects relevant to purely intraband motion of the � elec-
trons in band s. In contrast to this, the second part, which is
expressed in terms of the transition matrix coupling a pair of
electronic states with wave vector of k, involves both intra-
band and interband effects. The intraband and interband con-
tributions to the position operator r are “entangled” in sec-
ond order in the external electric field intensity, leading to
the expression for ��2� which can be written as the sum of
two terms: the first term represents the contribution to ��2�

associated with the change in proper dipole moment of Bloch
electrons which occurs due to their interband motion,
whereas the second term describes the contribution to ��2�

originating from the k-space variation in characteristics of
the interband motion of the electrons in consequence of their
intraband motion under the action of the external field and
explicitly depending on the velocity of that variation through
the k-space gradient operator. Both the terms do not appear
at all in the formulation of the second-order NLO response
theory given in Ref. 13, which Guo and Lin have relied on in
their paper.9

In the present paper, we also show the numerically calcu-
lated spectra of the susceptibility �zzz

�2�, relevant to three
second-order NLO effects in zigzag BN-SWNTs, namely, to
the SHG process, the LEO effect and nonlinear optical rec-
tification. The collection of the results we present here for
several representative zigzag BN-SWNTs of fairly large di-
ameters complements that obtained by Guo and Lin9 from
first principles and should turn out to be very useful as guide-
lines for future experimental studies.

The layout of the paper is as follows. In Sec. II, we
present the principal ingredients of our theoretical analysis—
the model and basic formalism. Our numerical results for the
NLO susceptibility �zzz

�2� are reported and discussed in Sec.

III. Finally, the conclusions are given in Sec. IV. The Appen-
dix is devoted to a derivation of the general expression for
the second-order NLO susceptibility within the Genkin-
Mednis approach.

II. MODEL AND BASIC FORMALISM

The model system we consider represent an ensemble of
very closely packed and well-aligned identical BN-SWNTs
with a circular cross section of radius R, the surface density
of the nanotubes in the plane perpendicular to their long axis
being equal to 1 /�R2. The nanotubes are assumed to be in-
dependent from each other and to have a zigzag achiral struc-
ture, which is characterized by the dual index �l ,0� in the
standard notation.6 As is known, BN-SWNTs, synthesized by
means of different techniques,14,15 exhibit a chirality prefer-
ence in having just this structure. Note that, as far as we
know, the system described above is not yet available experi-
mentally but there is little doubt that, with the advance in
technology, the fabrication of highly ordered arrays of iden-
tical BN-SWNTs will become possible �a step toward this
goal has already been made by Wang et al.16�. As to the
electronic structure of such nanotubes, we treat it within a
simple TB �-band model, neglecting the finite-tube-
curvature effects. In favor of the model it should be noted
that even its simplified k ·p version has been successful
enough in the linear optical response problem,17 yielding the
results in good agreement with experimental ones and requir-
ing, at the same time, much less computation than more so-
phisticated many-body first-principles treatments. In view of
this, we believe that it is justified to attempt to apply the
present model to the description of the NLO response of the
system under consideration, at least as a step toward an in-
depth understanding and full treatment of the NLO proper-
ties of BN-SWNTs.

Because of depolarization effects in nanotubes,18 a stron-
ger NLO response is expected to occur for light polarized
along the nanotube axis �z axis�. For this reason, as well as
for that pointed our above in Sec. I, in what follows we
consider only the parallel polarization of an incident radia-
tion with frequency components �1 and �2. Since only one
component of the NLO susceptibility tensor ����

�2� �−��

=−�1−�2; �1, �2� is then relevant—namely, the long-axis
component �zzz

�2��−�� ;�1 ;�2�, further we drop the subscript z
from the notation.

At first blush, the problem of the calculation of the sus-
ceptibility ��2��−�� ;�1 ;�2� may appear to be conceptually
rather simple because there exists a standard quantum-
mechanical formalism for such a calculation, elaborated in
the pioneering works by Bloembergen et al.19–21 and by
Butcher and McLean.22 In practice, however, the use of the
general expression for the second-order NLO susceptibility
tensor ����

�2� �−�� ;�1 ,�2�, obtained by those authors in terms
of matrix elements of the electron momentum operator and
electron-energy eigenvalues of a crystalline solid, is not a
simple task since it requires knowledge of the momentum
matrix elements among all the eigenstates of the crystal and
summations over all its energy bands. In the case of the
second-order nonlinear optics of semiconductors, which is of
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primary interest for us here, the above-mentioned general
expression for ����

�2� �−�� ;�1 ,�2� can be simplified through
the use of a three-band model, where only virtual electronic
processes involving one valence and two conduction bands
�vcc� processes� and virtual-hole processes involving one
conduction and two valence bands �vv�c processes� are as-
sumed to contribute to ����

�2� . Yet even within the framework
of such a simplified model, the calculation of the suscepti-
bility tensor ����

�2� �−�� ;�1 ,�2� on the basis of the formalism
of Refs. 19–22 is somewhat tricky because of the singular
behavior of ����

�2� �−�� ;�1 ,�2� when both �1 and �2 ap-
proach zero. The divergence of ����

�2� �−�� ;�1 ,�2� in the
zero-frequency limit has previously been discussed by
Aspnes23 and by Ghahramani et al.,13 who have shown that
the divergence is indeed only a fictitious one: once the ex-
pression for ����

�2� �−�� ;�1 ,�2� is decomposed into divergent
terms and a finite term, all the divergent terms vanish inas-
much as each of them involves a factor which has been
proved to be equal to zero regardless of crystal symmetry
class of the semiconductor providing the valence bands are
completely filled whereas the conduction bands are empty.
The corresponding proof, presented in Ref. 13 in the particu-
lar case of the SHG susceptibility tensor ����

�2� �−2� ;� ,�� is,
however, far from being trivial, requiring, in particular, the
derivation of a sum rule that allows one to isolate the intra-
band contributions to ����

�2� �−2� ;� ,��, which vanish for ma-
terials with filled valence bands.

To avoid such an inconvenience in the calculation of the
susceptibility ����

�2� �−�� ;�1 ,�2� in the general case of non-
degenerate frequency mixing, it seems much easier and prac-
tical to use another approach which separates the intraband
and interband motion of electrons from the very beginning
and provides a well-behaved, general expression for
����

�2� �−�� ;�1 ,�2� lacking the unphysical divergence at zero
frequency. Such an approach was developed many years ago
by Genkin and Mednis12 in their theory of nonlinear conduc-
tivity of bulk semiconductors, and it is this approach that we
shall rely on in the present paper. Note that a similar but
slightly different formalism has later been developed by Sipe
and Ghahramani,24 who were able to show, again in the par-
ticular case of the SHG susceptibility tensor
����

�2� �−2� ;� ,��, that the expression for ����
�2� �−2� ;� ,��,

which they have derived within the Genkin-Mednis-type per-
turbation scheme and which is free of any unphysical diver-
gences at zero frequency, is equivalent to the expression for
����

�2� �−2� ;� ,�� obtained earlier,13 by usual perturbation
theory, for semiconductors with filled valence bands and
empty conduction bands. As our intention in this paper is to
consider not only SHG but also some other second-order
NLO processes, we believe that the formulation of the NLO
response theory on the basis of the Genkin-Mednis
approach,12 where no zero-frequency-limit problems exist at
all, is more appropriate than the conventional one.13

The calculation method suggested in Ref. 12 is based on
the perturbation-theory formalism in the crystal-momentum
representation and is entirely within the framework of one-
electron theory, neglecting exciton effects and local-field cor-
rections. The validity of the theory for BN-SWNTs can cer-
tainly be disputed, but based on the recent ab initio DFT
analysis of the linear optical response of those nanotubes,

carried out without considering many-electron effects25,26 as
well as with taking them into account,27,28 one can speculate
on the adequacy of such a theory for studying the long-axis
NLO susceptibility ��2�, at least at a qualitative level. Indeed,
it has been pointed out25,26 that the local-field effects can be
substantial only for the polarization of electromagnetic fields
perpendicular to the tube axis. It has also been shown27,28

that the net result of accounting for many-particle correla-
tions is very minor indeed because of the almost complete
cancellation of the contributions originating from the exci-
tonic effects, on one hand, and from the quasiparticle self-
energy corrections, on the other hand.

Following the prescription of Ref. 12 for the derivation of
electronic contributions to the second-order NLO response of
a clean, i.e., undoped, semiconductor in the electric dipole
approximation, we find the two physically distinct ones,
which have to be taken into account in the description of the
NLO response of clean BN-SWNTs. As remarked earlier, the
latter are wide-band-gap semiconductors in which the high-
est valence band �v band� is completely filled whereas the
lowest conduction band �c band� is fully empty even at room
temperature. In this case, the susceptibility ��2� can be parti-
tioned as follows:

��2��− ��;�1,�2� = �I
�2��− ��;�1,�2� + �II

�2��− ��;�1,�2� .

�1�

Physically, both terms in the right-hand side of Eq. �1� are
associated with a combined effect of intraband and interband
motion of � electrons in the BN-SWNTs. However, those
terms originate from different parts of the electron-position
operator r, which in the crystal momentum representation is
given by29,30

r = i�k + i� , �2�

where the first part, i�k, being diagonal in both the band
index s and the electron wave vector k, describes the effects
relevant to purely intraband motion of the � electrons,
whereas the second part, the operator i�, involves both in-
traband and interband effects, being determined by its matrix
elements which are diagonal only in k

�ss��k� =� Usk
� �r��kUs�k�r�d3r . �3�

Here Usk�r� is the periodic modulation amplitude of the
Bloch eigenfunction 	sk�r�=Usk�r�exp�ikr�. In developing a
perturbation expansion within the framework of the Genkin-
Mednis perturbation-theory scheme,12 the two above-
mentioned parts of the r, “entangling” in the second order in
the external field intensity, lead to the two physically distinct
contributions to ��2�, further referred to as the “shift” contri-
bution ��I

�2�� and the “gradient” one ��II
�2��, which can be

represented in the form �for the details of the derivation pro-
cedure, see the Appendix�

�I
�2��− ��;�1,�2�

=
iNe3

2V
2�
k

�
P

�vc�k���cc�k� − �vv�k���cv�k�
��cv�k� + �1���cv�k� − �2�

, �4�
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�II
�2��− ��;�1,�2�

=
iNe3

4V
2�
k

�
P
� �vc�k�

�cv�k� + �1

�

�k
� �vc�k�

�cv�k� − �2
	

−
�vc�k�

�cv�k� − �1

�

�k
� �vc�k�

�cv�k� + �2
	
 , �5�

where V is a normalization volume of the system, N being
the number of the nanotubes it contains, k is the �-electron
wave vector with two components kx and kz, the former be-
ing quantized into the following discrete values:

kx =
m

R
=

2�m

la0
, m = 0, � 1, � 2, . . . , � �l − 1� , �6�

due to the periodic boundary condition in the circumference
direction of the zigzag �l ,0� BN-SWCNT under consider-
ation whereas the latter �here and hereafter designated simply
k� remains continuous for an infinitely long nanotube and
takes values within the one-dimensional Brillouin zone
−kBZ
k
kBZ with kBZ=� /a0

�3 �a0=2.504 Å is the lattice
constant of the hexagonal BN�. The other notations used is
Eqs. �4� and �5� are as follows: �P stands for the summation
over all the different permutations of the frequencies �1, �2,
and −��, resulting in six terms, 
�cv�k�=�ck−�vk is the en-
ergy distance between the two bands involved at fixed value
of k, and, finally, for brevity, we denote the z component of
the vector matrix element �ss��k� of Eq. �3� simply as
�ss��k�. The latter quantity �more precisely, −e�ss�k�� can
be treated as a proper dipole moment of the electron in the
Bloch state �sk
. As is well known,30 an individual �ss�k� is
not uniquely defined because the Bloch amplitude Usk can be
multiplied by an arbitrary phase factor exp�i�sk�. However,
the shift �cc�k�−�vv�k� is invariant under the gauge trans-
formation exp�i�sk� and is therefore a well-defined
quantity31,32 �in this connection, see also Ref. 33 and refer-
ences therein�.

Before we proceed further, note that the above formalism
differs considerably from that used in Ref. 9, where the NLO
response of BN-SWNTs was treated within a three-band
model. It would not, therefore, be correct to claim that the
two terms �I

�2� and �II
�2� in Eq. �1�, which constitute the basis

of our formulation of the NLO response theory, are lost or
overlooked in the formulation given in Ref. 9: they cannot,
indeed, appear there at all because they both are relevant
only to the considered two-band model, in which the v- and
c-band states themselves serve as intermediate states in the
virtual electron transitions responsible for the second-order
optical nonlinearities under discussion. In this context, we
suspect that it is the difference in the initial models, adopted
in the present paper on one hand and in Ref. 9 on the other
hand, that mainly leads to discrepancies between the results
reported here and those obtained in Ref. 9 �for details, see
Sec. III further below�. We cannot, however, definitely con-
tend that this is just the case, since the full development of
our approach, given in the Appendix, shows that two-band
contributions to ��2� of the same type as in Eqs. �4� and �5�
would appear necessarily, even if we adopted a three-band
model. While we believe that the two-band approximation of

the �-electronic structure of BN-SWNTs is sufficient to de-
scribe their second-order NLO response, there seem to be
reasonable not to exclude a priori any of those models in a
theoretical study of the response until experiment provides a
clear indication on this subject. On the other hand, referring
to the above-mentioned discrepancies, one cannot also ex-
clude that there is something amiss either with the approach
used in Ref. 9 or with its implementation so that further ab
initio calculations of the ��2� would be highly desirable.

In order to find �ss��k�, we use an analytic model of the
�-electronic structure of the BN-SWNTs, developed in our
previous paper11 on the basis of the nearest-neighboring TB
approximation and the zone-folding one. The latter is known
to be a poor approximation for very thin nanotubes, such as,
for example, �5,0� and �9,0� ones, but it seems to be reason-
able enough for large-diameter nanotubes �with a diameter
more than, say, 1.2–1.3 nm� because in this case the finite-
tube-curvature effects, including �-� hybridization, becomes
negligibly small. Restricting our further consideration to just
such thick nanotubes, we can write down the explicit expres-
sion for the �-electron-energy dispersion in a BN-SWNT
�l ,0� as follows:11

�sk = �smk = � ��2 + t0
2�1 + 4�m

2 + 4�m cos�kd0/2�� �7�

with

�m = cos��m/l�, d0 = �3a0. �8�

Here and hereafter, the upper �lower� sign refers to the c�v�
band, the azimuthal quantum number m, which is determined
by Eq. �6�, labels the size-quantized energy subbands of the
v and c bands, t0 is the transfer integral between � orbitals of
nearest-neighboring B and N atoms, and � is the half differ-
ence of energies of � electrons localized on the sites occu-
pied by those two atoms.

Within the framework of the considered model, which
leaves out of account the finite-tube curvature effects, the
Bloch modulation amplitudes Uck�r� and Uvk�r� for the two
bands involved can be approximately expressed in terms of
the periodic parts UK

�1� and UK
�2� of the band-edge Bloch func-

tions at the K point of the two-dimensional hexagonal Bril-
louin zone of the BN sheet as follows:

Usk�r� = Csk
�1�UK

�1� + Csk
�2�UK

�2�, �9�

where the superscripts 1 and 2 refer to the two sublattices
occupied by B and N atoms, respectively, K
= �2� /a��1 /3,1 /�3� is the position vector of the K point, the
coefficients Csk

�1� and Csk
�2� are the two components of the

pseudospinor eigenstate that corresponds to the energy ei-
genvalue �smk of Eq. �7� and are given by

Csk
�1� = Csmk

�1�

= −
t0

�2�cmk��cmk � ��

� �exp�ikd0/3� + 2�m exp�− ikd0/3�� , �10�
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Csk
�2� = Csmk

�2� = ���cmk � �

2�cmk
. �11�

In order to invoke the TB approximation, we express the
periodic functions UK

�1��r� and UK
�2��r� entering Eq. �9� in

terms of atomic 2pz orbitals ��r−Rn� as follows:

UK
�1��r� =

1
�N

�
n=1

N

��r − Rn�exp�− iK�r − Rn�� , �12�

UK
�2��r� =

1
�N

�
n=1

N

��r − Rn − d�exp�− iK�r − Rn − d�� ,

�13�

where Rn stands for the position vector of the nth primitive
two-atomic unit cell of the unrolled BN-SWNT, d denotes
the vector connecting the two atoms within the unit cell, and
N is the total number of B and N sites, which is given by

N = 2
2�RA
�3a0

2/2
= 4l

A

d0
, �14�

A being the normalized length of the nanotube.
Before we proceed further, it is worth mentioning that the

zone-folding-derived �-electronic states of the zigzag BN-
SWNT, presented above in Eq. �9�, are double valley degen-
erate due to the presence of the states with exactly the same
energy as that of Eq. �7� but associated with the valley cen-
tered at the K� point �with the position vector K�
= �2� /a0��2 /3,0�� of the original two-dimensional Brillouin
zone of the BN sheet. This valley degeneracy, as well as a
double spin degeneracy of the states, will be taken into ac-
count further below in calculating the susceptibility ��2�.

Using Eqs. �9�–�13� and taking into account that within
the orthogonal TB scheme two localized atomic orbitals have
zero overlap unless they are centered at the same site, we
obtain the following expression for the interband matrix el-
ements of Eq. �3�:

�cv�k� = − �vc
� �k�

=
d0

2

t0
2

�cmk
��cmk

2 − �2
� � �

�cmk
�m sin� kd0

2
�

+
i

3
�1 − 2�m

2 + �m cos� kd0

2
�	
 �15�

whereas the diagonal elements of that equation are given by

�ss�k� = i
d0

6

t0
2

�cmk��cmk � ��
� �1 − 2�m

2 + �m cos� kd0

2
�	 .

�16�

For the present band-structure model, the sum over k in Eqs.
�4� and �5� can be reduced to an integration over k and a sum
over the subbands according to the prescription

�
k

→ �
m=−�l−1�

l−1

4
A

2�
�

−kBZ

kBZ

dk , �17�

where the prefactor 4 originates from the above-mentioned
spin and valley degeneracies. Then, after the introduction of
dimensionless variables

u =
k

kBZ
, Emu =

�cmk

�
, Zi =


�i

2�
�i = 1,2� �18�

and by inserting Eqs. �15� and �16� into Eq. �4�, we further
obtain the following expression for the “shift” contribution
to ��2�:

�I
�2��− ��;�1,�2� =

�

2l2

e3

�2� t0

�
�6

� �
m=−�l−1�

l−1 �
0

1

Emu
−5 �Emu

2 − 1�−2

� �1 − 2�m
2 + �m cos��u/2��

� ��m
2 sin2��u/2� + �Emu/3�2 � �1 − 2�m

2

+ �m cos��u/2��2� � P�Emu;Z1,Z2�du

�19�

with

P�Emu;Z1,Z2� = �
P

1

�Emu + Z1��Emu − Z2�
. �20�

A similar calculation for the “gradient” contribution to ��2�

�Eq. �5�� leads to

�II
�2��− ��;�1,�2� =

�

2l2

e3

�2� t0

�
�6

�
m=−�l−1�

l−1

�m�
0

1

Emu
−5 �Emu

2 − 1�−1

� ��1 − 2�m
2 + �m cos��u/2��

� ��m sin2��u/2� + �1/2���/t0�2

� Emu
2 cos��u/2�� + �1/2���/t0�2

� �mEmu
2 sin2��u/2��

� P�Emu;Z1,Z2�du . �21�

The explicit expressions, obtained above for the two inde-
pendent contributions to ��2�, represent the main analytical
result of the paper. In the general case, their sum, given by
Eq. �1�, determines the second-order NLO susceptibility
��2��−�� ;�1 ,�2� describing the so-called three-photon mix-
ing process whose net result is the generation of radiation at
the sum frequency ��=�1+�2 in the presence of two pump
laser beams at frequencies �1 and �2. In the particular case
in which only a laser beam of one frequency � is present, the
susceptibility ��2��−2� ;� ,�� is responsible for the SHG of
light, and will be denoted here as �SHG

�2� ���.
Another specific three-photon mixing process may occur

when one coherent light wave at frequency � is incident on
a BN-SWNT sample which is subjected to a dc electric field.
The latter can be considered as a coherent superposition of
photons of zero frequency. In the above-mentioned process,
one dc “photon” and single ac photon mixes up with the
result that an additional polarization and absorption appears
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at frequency �. Both these effects �LEO and electroabsorp-
tion� are described by the susceptibility ��2��−� ;0 ,��, the
former being determined by its real part whereas the latter by
its imaginary part. For the sake of notation convenience,
those parts will be denoted here as �LEO

�2� ��� and �EA
�2� ���,

respectively.
The susceptibility ��2��−� ;0 ,�� is relevant to one more

second-order NLO effect, namely, the nonlinear optical rec-
tification �NOR�, that is, the generation of a dc electric field
by an optical beam of frequency �. Indeed, in agreement
with the permutaion symmetry requirement,20,34,35 the corre-
sponding NOR susceptibility �NOR

�2� �0;� ,−��=�LEO
�2� ��� when

the frequency � lies in the transparent region of the material.
In this region, �LEO

�2� ��� is connected with the so-called Pock-
els coefficient rP��� by the relation �in the esu units we are
using in the paper�

�LEO
�2� ��� = −

1

8�
n4���rP��� , �22�

where n��� is the linear real index of refraction,

n��� = �1 + 4� Re ��1���� �23�

with ��1���� being the linear optical susceptibility.
In what follows, we confine ourselves to the particular

frequency combinations indicated above, which are of sig-
nificant interest from the point of view of possible device
applications. The general case of nondegenerate three-photon
mixing in BN-SWNTs, resulting in the sum �or difference�-
frequency generation, will be considered in detail
elsewhere.36

In order to obtain physically corrected results for the sus-
ceptibility ��2�, one should also regularize the singularities
inherent in Eqs. �4� and �5� under resonant conditions. It can
be done in the usual manner, namely, by adding an imaginary
part to the energy of exited states, which describes their de-
cay due to electron collisions. For computational purposes,
this is essentially equivalent to the replacement of Emu by
Emu+ i� in Eq. �20�, where � represents an inverse excited-
state lifetime expressed in units of 2� /
. Applying a partial
fraction expansion to single out the individual resonant de-
nominators in Eq. �20� and separating the real and imaginary
parts of P in that equation, we then find

Re P�Emu;Z,Z�

= − Emu
−1 ���Emu − Z�D�Emu − Z,�� − 4�Emu − 2Z�

�D�Emu − 2Z,��� + �Z → − Z�� , �24�

Im P�Emu;Z,Z�

= �Emu
−1 ��D�Emu − Z,�� − 4D�Emu − 2Z�,�� + �Z → − Z��

�25�

in the case of the SHG process whereas in the case of both
the LEO effect and the NOR one, we obtain

Re P�Emu;0,Z�

= ��2Emu
−1 �Emu − Z�D�Emu − Z,��� + ��Emu − Z�2 − �2�

� D2�Emu − Z,��� + �Z → − Z� , �26�

Im P�Emu;0,Z� = − 2���Emu
−1D�Emu − Z,�� + �Emu − Z�

�D2�Emu − Z,��� + �Z → − Z�� , �27�

where we have adopted the following shorthand notation:

D�Emu − Z,�� =
1

�Emu − Z�2 + �2 . �28�

In the context of the present calculation of ��2�, it is interest-
ing to evaluate the quantity

�M���� =
��2��− ��;�1,�2�

��1�������1���1���1���2�
�29�

and to assess the validity of the so-called Miller phenomeno-
logical rule37 in the case of the well-ordered tubular struc-
tures under discussion. According to Miller’s original
proposal,37 the quantity �M��� is expected to be a slowly
varying function of �, and, what is more, �M�0� should be a
certain universal constant for a wide range of noncentrasym-
metric inorganic materials. To test the latter conjecture, a
comparative analysis would be necessary of linear and
second-order NLO properties of a number of inorganic tubu-
lar forms of III-V compounds, available at present, such as,
e.g., BN,3–5 AlN,38 and GaN.39 Such an analysis is certainly
beyond the scope of the present paper. The only thing we can
do here is to examine the frequency variation in �M for the
BN-SWNTs under consideration. To this end, we further cal-
culate their linear optical susceptibility ��1���� within the
same TB � band-structure model we have used above.

We start with the Genkin-Mednis dispersion formula for
��1����,12 which can be written in the form

��1���� =
Ne2

V

�
k

��cv�k��2� 1

�cv�k� − � − i�

+
1

�cv�k� + � + i�
	 , �30�

where � is the phenomenological broadening parameter
regularizing the resonant divergencies, which is assumed to
be independent of k. Note that the above expression for
��1���� has already been exploited to study the linear optical
properties of the zigzag BN-SWNTs.17 However, that study
was based on the Král-Mele-Tománek k ·p band-structure
model of such nanotubes,31 rather than on the TB model we
use here. Substituting Eq. �15� into Eq. �30� and using Eqs.
�17� and �18�, we obtain, after separating Eq. �30� into real
and imaginary parts,

��1���� = Re ��1���� + i Im ��1���� , �31�
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�Re ��1����
Im ��1���� 


=
6�

l2 � e2/d0

�
�� t0

�
�4

�
m=−�l−1�

l−1

� �
0

1

duEmu
−4 �Emu

2 − 1�−1 � ��m
2 sin2��u/2� + �Emu/3�2

� �1 − 2�m
2 + �m cos��u/2��2� � �Re Q�Emu,Z�

Im Q�Emu,Z�
 ,

�32�

where

Re Q�Emu,Z� = ��Emu − Z�D�Emu − Z�,�� + �Z → − Z� ,

�33�

Im Q�Emu,Z� = − ��D�Emu − Z,�� + D�Emu + Z,��� .

�34�

Equations �19�, �21�, and �32�, which constitute our final
expressions for the first- and the second-order optical re-
sponse of the BN-SWNTs, respectively, can no longer be
simplified because neither the integration over u nor the sum-
mation over m in those equations may be performed analyti-
cally. However, the rather cumbersome-looking results of the
above-mentioned equations lend themselves readily to nu-
merical analysis, which will be carried out in Sec. III for
several representative zigzag BN-SWNTs.

III. NUMERICAL RESULTS AND DISCUSSION

As a paradigm for the second-order NLO properties to be
expected for uniform ensembles of the zigzag BN-SWNTs,
we present here the numerical results following from Eqs.
�19� and �21� for four such ensembles consisting, respec-
tively, of the nanotubes �17,0�, �21,0�, �25,0�, and �27,0�.
Note that for the first three above-mentioned structures the
first-principles calculations by Guo and Lin9 yielded nonzero
�zzz

�2� values whereas the vanishing of that component has
been reported in the same paper for the BN-SWNT �27,0�.
Also, the zero value of �zzz

�2� has been predicted in Ref. 9 for
the BN-SWNTs �5,0� and �9,0�, which will be not considered
in the present paper because our theory, as mentioned above,
is limited in its applicability to the BN-SWNTs of fairly large
diameters.

In the calculations discussed below we have used the fol-
lowing values for the parameters entering our model: t0
=2.4 eV, �=2.2 eV, and �=0.01. Note that the above val-
ues are exactly the same as those used in our previous
paper,17 where they were chosen to get the best fit to the
experimental optical absorption spectrum measured by Lau-
ret et al.40 on assembly of large-diameter BN-SWNTs. It
should be stressed, however, that the specific predictions we
make below regarding the spectral behavior of ��2� are not
very sensitive to those values of the model parameters.

A. Second-harmonic generation

We start our numerical study by considering the suscepti-
bility �SHG

�2� responsible for the SHG of light. In Sec. II, we
have shown that there are two independent contributions to
��2�, specified by Eqs. �19� and �21�, respectively. It is there-
fore of interest to investigate their relative weight in the
second-order NLO processed under discussion. To this end,
in Fig. 1, we display the spectral dependences of the real
�Fig. 1�a�� and imaginary �Fig. 1�b�� parts of both the con-
tributions �I

�2��−2� ;� ,�� and �II
�2��−2� ;� ,�� to the SHG

susceptibility �SHG
�2� ���, calculated for the uniform ensemble

of the BN-SWNTs �17,0�. As is see from Fig. 1, both the
contributions should be considered as being equally signifi-
cant in calculating the total �SHG

�2� ���. Moreover, since the
curves of the real as well as the imaginary part of �I

�2�

�−2� ;� ,�� and �II
�2��−2� ;� ,�� in Fig. 1 look like nearly

mirror images of each other relative to a zero line of �I,II
�2�, it

is the subtle balance of the contributions that determines the
resulting magnitude of the �SHG

�2� ���.
In Fig. 2, we display the real and imaginary parts of the

total susceptibility �SHG
�2� ���, derived by summing up the two

curves in Fig. 1�a� and those in Fig. 1�b�, respectively. The
results for the absolute value of the SHG susceptibility
��SHG

�2� ���� are plotted in the same figure.
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(a)

(b)BN-SWNT (17,0)
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0.0 0.1 0.2 0.3 0.4
-0.1

0.0

0.1

0.2

0.3

0.4

FIG. 1. The real and imaginary parts �panels �a� and �b�, respec-
tively� of two contributions �I

�2���� and �II
�2���� to the total SHG

susceptibility �SHG
�2� ��� calculated for a uniform ensemble of the

zigzag BN-SWNTs �17,0�. Solid lines represent the results obtained
for the “shift” contribution �I

�2���� using Eqs. �19�, �24�, and �25�.
Dotted lines show the results obtained for the “gradient” contribu-
tion �II

�2���� using Eq. �21�, �24�, and �25�. Both the contributions
are plotted as functions of the normalized photon energy 
� /2�. In
panel �a�, the inset shows the variation in both the Re �I

�2���� and
Re �II

�2���� below half the band-gap energy of the nanotubes. Notice
the opposite signs of those contributions and the fact that the abso-
lute value of �II

�2��0� is larger than that of �I
�2��0�, which implies a

positive value of the total �SHG
�2� �0� �cf. Table II in Ref. 9�.
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The calculated spectrum of the ��SHG
�2� ����, shown in Fig. 2,

exhibits pronounced resonant peak structures originating
from both single- and double-frequency resonant terms of
Eqs. �24� and �25�. Examining the contributions of those
terms to the SHG spectrum, we find that the spectral features
observed in the photon energy range 
� /2��1 �in Fig. 2,
they are labeled with symbols A1,A2, . . . ,A8 in order of in-
creasing photon energy� are entirely due to the 2� resonant
terms of Eqs. �24� and �25�. In contrast, only relatively small
contributions of those terms to the ��SHG

�2� � spectrum are found
at higher photon energies so that it is the single-frequency
��� resonant term of Eqs. �24� and �25� that dominate the
spectral behavior of the ��SHG

�2� ���� in the range 
� /2��1 �in
Fig. 2, the corresponding features in the ��SHG

�2� � spectrum are
labeled with symbols from B1 to B8 in going from lower to
higher energies�.

The above conclusions are supported by a direct compari-
son of the ��SHG

�2� � spectrum with the linear optical absorption
one calculated for the BN-SWNT �17,0� using Eq. �32�. The
values of both the real and imaginary parts of the linear
optical susceptibility ��1���� are shown in Fig. 3 versus the
dimensionless photon energy 
� /2�. As is clearly seen from
that figure, the spectrum of Im ��1����, which corresponds to
the optical absorption one, is featureless below the threshold
value 
� /2�=1. In the region above the threshold, however,
the spectrum exhibits the pronounced characteristic features
labeled B1,B2 , . . . ,B8 in Fig. 3. Using the �-electronic band-
structure diagram of the BN-SWNT �17,0�, shown in Fig. 4,
we can attribute these features to direct optical transitions
between successive pairs of the valence- and
conduction-�-electron-energy subbands with the same azi-
muthal quantum number m, which are mirror symmetrically
situated with respect to the Fermi level EF=0. Being propor-
tional to the joint density of �electronic� states �JDOS�, the
probability of such transitions �hereafter referred to as vm
→cm transitions� is extremely large just near the energy-
subband edges at k=0, where van Hove’s singularities of the
JDOS are located. However, not all the dipole-allowed reso-
nant interband transitions produce well-resolved individual
peaks in the Im ��1���� spectrum shown in Fig. 3. The reason

for this is that some of the nearest-neighboring energy sub-
bands in the �-electronic spectrum of the BN-SWNTs are
almost degenerate near the k=0 point. If the energy spacing
between them �say, between the subbands with indices m and
m+1� is smaller than the broadening energy parameter 
�,
then the peaks corresponding to vm→cm and vm+1→cm+1
transitions will tend to merge, forming, as a result, a single
peak of a larger width. Turning now to the BN-SWNT �17,0�
under consideration, we find that this is the case for v11
→c11 and v12→c12 transitions, which produce the first peak
in the Im ��1���� spectrum, labeled B1 in Fig. 3. The same is
the case for the second peak �B2� in that spectrum, which
may be ascribed to both v10→c10 and v13→c13 transitions.
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FIG. 2. The SHG susceptibility �SHG
�2� ��� for a uniform ensemble

of the BN-SWNTs �17,0�. The real part, imaginary part, and abso-
lute magnitude of the �SHG

�2� ��� are plotted versus the dimensionless
photon energy 
� /2�. The capital alphabetic letters Ai and Bi �i
=1,2 , . . . ,8� on the top of the peaks correspond to our labeling
convention for the spectral features originating from the 2� and �
resonant terms of Eqs. �24� and �25� �for details, see the text�.
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FIG. 3. Spectra of the real and imaginary parts �solid line and
dotted one, respectively� of the linear optical susceptibility ��1����
calculated for a uniform ensemble of the BN-SWNTs �17,0� using
Eq. �32�. Symbols from B1 to B8 on the top of the peaks in the
spectrum of the imaginary part of ��1���� correspond to our labeling
convention for direct one-photon resonant transitions between the
valence- and conduction-energy subbands with the same index m
�for details, see the text�.
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FIG. 4. �-electronic band-structure diagram of the BN-SWNT
�17,0�, as obtained within the TB framework �Eq. �7��. Arrows in-
dicate the one-dimensional energy subbands �smk of the c band,
specified by the azimuthal quantum number m ranging from 0 to 16
for the present nanotube �Ref. 41�.
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The other spectral features �from B3 to B8� observed in Fig.
3 arise �in sequential order� from the following interband
transitions: v14→c14, v9→c9, v15→c15, v16→c16, v8→c8,
and v7→c7. These transitions are well separated in their en-
ergy due to fairly large �as compared to 
�� energy spacing
�around k=0� between the corresponding nearest-
neighboring subbands in the v and c bands �Fig. 4�.

Comparing our graphs for ��SHG
�2� ���� and Im ��1����, given

in Figs. 2 and 3, respectively, shows that the energy positions
of the peaks, marked with the same labels Bi�i=1,2 , . . . ,8�
in both the spectra are identical. This corroborates the con-
clusion, we have drawn above that the ��SHG

�2� ���� spectrum
can naturally be divided into two parts, namely, the low-
energy part �
� /2��1�, which is clearly dominated by sev-
eral highly peaked 2� resonances, and the higher-energy part
�
� /2��1� consisting of a few distinct � resonance peaks
with much smaller amplitudes. The latter feature is not sur-
prising since each 2� resonance is weighted by a factor of
four as compared to the corresponding � resonance �see Eqs.
�24� and �25��.

It is also worthwhile to note that the SHG intensity
��SHG

�2� ���� reaches its absolute maximum �peak A1� of about
1.2�10−6 esu when the photon energy 
� is near one half
the fundamental band-gap energy �g is the �-electron spec-
trum of the nanotube at k=0, the �g being well approximated
by 2�. Indeed, according to Eq. �7�, �g can be written as

�g = 2��1 + � t0

�
�2

�1 + 2�mg
�2, �35�

where the integer mg is the azimuthal quantum number refer-
ring to the highest valence and lowest conduction subbands
in the band structure of the BN-SWNT �l ,0�,

mg =�
2l

3
if l = 3M

�2l

3
+ 1	 if l = 3M + 1

�2l

3
	 if l = 3M + 2

� �36�

with integer M. Here the square brackets stand for the inte-
gral part of the number they contain. For the values of the
model parameters, which we have used in our calculations,
and for the possible values of mg, which correspond to large-
diameter �l ,0� BN-SWNTs �with a diameter more than 1.2–
1.3 nm�, the second term under the square root sign in Eq.
�35� is negligibly small as compared to unit so that 2� will
be a good approximation to �g for all such nanotubes.42

The above-mentioned peak value of the SHG intensity in
the near-half-band-gap region �
���g /2� is almost one or-
der of magnitude larger than that predicted theoretically for
bulk BN crystals.43 We attribute this enhancement to the
quasi-one-dimensional �1D� nature of the �-electronic states
in BN-SWNTs, which makes conditions for three peculiari-
ties of their electronic structure to occur at one and the same
point of the nanotube 1D Brillouin zone, namely, at the �
point �k=0�. Those peculiarities are the maximum absolute
value of the dipole interband transition matrix element, the

minimum value of the width of the fundamental band gap,
and the theoretical infinite JDOS associated with van Hove’s
singularities. Note that essentially the same underlying phys-
ics is responsible for the very large third-order optical non-
linearity of semiconducting single-walled carbon
nanotubes,44 which has recently been observed
experimentally.45

In order to demonstrate the effect of the main geometrical
parameter of the nanotubes—namely, their diameter, on the
amplitude ��SHG

�2� ���� of the SHG signal, we have calculated
the absolute values of the SHG susceptibility for the three
other uniform ensembles of the zigzag BN-SWNTs, which
have been chosen for our investigation. The results of the
calculation are shown in Figs. 5�a�–5�c� for the ensembles
consisting, respectively, of the BN-SWNTs with indices
�21,0�, �25,0�, and �27,0�.

Several general conclusions can be drawn from the spec-
tra presented in Fig. 5. First, for the thicker nanotubes, there
are more resonant peaks in the SHG spectra—the fact which
directly reflects the larger number of the size-quantized en-
ergy subbands in the �-band structure of those nanotubes.
Second, an overall reduction in the SHG intensity with in-
creasing l �i.e., with an increase in the radius R of the nano-
tubes in an ensemble� is clearly seen at all photon energies,
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FIG. 5. SHG spectra for three uniform BN-SWNT ensembles
consisting, respectively, of the nanotubes with chirality indices �a�
�21,0�, �b� �25,0�, and �c� �27,0�. The latter ones are indicated in the
upper part of the panels. The calculated ��SHG

�2� ���� values are plotted
versus the normalized photon energy 
� /2�.
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including the off-resonance region 
� /2��1 /2 as well as
the resonance one 
� /2��1 /2. The above trend in
��SHG

�2� ���� to be smaller in magnitude for thicker nanotubes is
consistent with the recent similar observation made by Guo
and Lin9 on the basis of their ab initio DFT calculations.
Third, each of the SHG spectra is seen to be dominated by
the most prominent 2� resonant peak located at the pump
photon energy of about one half the band-gap energy �g.
Since the BN-SWNTs are almost transparent in the near-half-
band-gap region �cf. Fig. 3�, the SHG signal, which is given
by the square of ��SHG

�2� ����, can be greatly enhanced without
any optical losses if 
� is fine tuned to �. This suggests that
the well-order arrays of the BN-SWNTs considered are of
significant interest from the point of view of practical SHG
applications.

As has already been mentioned, the SHG susceptibility of
the BN-SWNTs under discussion has recently been calcu-
lated by Guo and Lin9 using a first-principles method. How-
ever, no results for SHG spectra of those nanotubes have
been presented in Ref. 9, and only static �SHG

�2� �0� values of
the SHG susceptibility have been reported therein �see Table
II in that reference�. This prevents any conclusive compari-
son of our theoretical calculation of the SHG susceptibility
�SHG

�2� ��� with the ab initio study of the �SHG
�2� performed in

Ref. 9. Still, a comparison of the corresponding zero-
frequency results for the SHG susceptibility is quite possible,
and it shows important differences between them �see Table
I�. First, the �SHG

�2� �0� values for the BN-SWNTs �17,0�,
�21,0�, and �25,0� are about one order of magnitude smaller
than the corresponding values reported in Ref. 9. Second, the
BN-SWNTs display positive �SHG

�2� �0� values, which corre-
spond to the second-order optical nonlinearity that includes
the positive �II

�2��0� contribution dominating the negative
�I

�2��0� one, as demonstrated in Fig. 1�a�. In contrast, the
first-principles calculations carried out by Guo and Lin9 pre-
dict negative values of the long-axis component �zzz

�2� of the
zero-frequency SHG susceptibility tensor. The last but not
the least contradiction between our zero-frequency results for
the SHG susceptibility and those presented in Ref. 9 concern
the BN-SWNT �27,0�. For that nanotube, as follows from
Fig. 5�c�, �SHG

�2� �0� has a finite value �as one should expect�,
which is in sharp contrast with the vanishing �SHG

�2� �0� value
obtained in Ref. 9.

The above-mentioned large disparity between our calcu-
lated results for �SHG

�2� �0� and those of Guo and Lin9 clearly

indicated the necessity of a systematic experimental investi-
gation of the SHG susceptibility of the BN-SWNTs both at
low frequency and over a wide frequency range. It this con-
nection, one comment is in order. As remarked earlier, most
experimental BN-SWNT samples available at present con-
tain a mixture of the nanotubes differing by their diameters
and possibly chiralities. Therefore, in real experimental con-
ditions, only an average SHG signal from a great number of
the nanotubes can be measured. As a result of averaging,
many individual resonances �especially those with small am-
plitudes� seen in the SHG spectra in Figs. 2 and 5 may turn
out to be smeared out so that only the most prominent 2�
and � resonant structures occurring in those spectra can be
expected to be observed for ensembles containing many dif-
ferent BN-SWNTs.

B. Pockels effect and nonlinear optical rectification

We now present the results of our numerical calculations
of the susceptibility ��2��−� ;0 ,�� responsible for the LEO
effect, electroabsorption �EA� and NOR. All the effects are
important for possible optoelectronic applications of BN-
NTs, e.g., optical switching.

As the expression for ��2� �Eq. �1�� contains two terms �I
�2�

and �II
�2�, we start our survey of the results with Fig. 6, where

the spectra of the two distinct contributions to
��2��−� ;0 ,�� are shown for both the LEO effect �Fig. 6�a��

TABLE I. Calculated static SHG susceptibility �SHG
�2� �0� and

LEO coefficient rP�0� �both in units of 10−6 esu� for four uniform
BN-SWNT ensembles consisting, respectively, of the zigzag nano-
tubes with chirality indices �17,0�, �21,0�, �25,0�, and �27,0�. Re-
sults from ab initio calculations by Guo and Lin �Ref. 9� are also
shown for comparison in the same units.

BN-SWNT �SHG
�2� �0� �SHG

�2� �0� a rP�0� rP�0� a

�17,0� 0.152 −1.197 −0.169 0.106

�21,0� 0.123 −1.149 −0.137 0.102

�25,0� 0.104 −1.095 −0.115 0.099

�27,0� 0.096 0.0 −0.107 0.0

aReference 9.
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FIG. 6. The real and imaginary parts �panels �a� and �b�, respec-
tively� of two contributions �I

�2���� and �II
�2���� to the susceptibility

��2��−� ;0 ,�� calculated for a uniform ensemble of the zigzag BN-
SWNTs �17,0�. Solid lines represent the results obtained for the
“shift” contribution �I

�2���� using Eqs. �19�, �26�, and �27�. Dotted
lines show the results obtained for the “gradient” contribution
�II

�2���� using Eq. �21�, �26�, and �27�. Both the contributions are
plotted as functions of the normalized photon energy 
� /2�. In
panel �a�, the inset shows the variation in both the Re �I

�2���� and
Re �II

�2���� below half the band-gap energy of the nanotubes.
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and the EA one �Fig. 6�b�� in the case of a uniform ensemble
of the BN-SWNTs �17,0�. Again, similarly to the SHG case
�Fig. 1�, those two contributions to ��2� are comparable in
magnitude over the whole frequency range considered, as is
clearly illustrated by the graphs in Fig. 6, and, hence, they
both have to be taken into account in developing a proper
theoretical treatment of the second-order NLO properties of
BN-SWNTs. Moreover, that figure gives a clear indication as
to which of the two is predominant in the zero-frequency
limit ��→0� �see the inset in Fig. 6�a��. Evidently, the posi-
tive �II

�2��0� contribution prevails in the total LEO suscepti-
bility �LEO

�2� �0�, thus providing a positive sign for the latter
and, hence, a negative sign for the corresponding zero-
frequency Pockels coefficient rP�0� �see Eq. �22��. This is in
accord with our above finding of �SHG

�2� �0� having a positive
sign, since the total SHG and LEO susceptibilities, being but
two special cases of the general second-order nonlinearity,
are equal at �=0. We can again note that the signs of the
�LEO

�2� �0� and rP�0� are opposite to those predicted by Guo and
Lin9 �see Table I�.

In Fig. 6, for all the BN-SWNT ensembles considered, we
show the calculated spectra of the LEO susceptibility
�LEO

�2� ���=Re ��2��−� ;0 ,��. In view of the relation between
the LEO and NOR susceptibilities, mentioned in Sec. II, the
same figure presents our results for the NOR effect as well.
The latter is conventionally detected as an electric bias signal
appearing at the electrode terminals of a sample under the
action of a light beam incident on the sample.46–48 In the case
of a sample consisting of monosized and aligned BN-SWNTs
of length A, which we are interested in here, the optical
rectification voltage V0 is given by

V0 =
4�

n0
2 P�2��0�A , �37�

where P�2��0� is the static electronic polarization of the
sample, induced by the incident light beam of intensity I�,
propagating in the direction perpendicular to the symmetry
axis of the nanotubes,

P�2��0� =
8�

cn0
�NOR

�2� �0;�,− ��I� �38�

with c being the speed of light in free space. Thus, using the
above equations and the data from Fig. 7, we can estimate
the magnitude of the bias for the uniform BN-SWNT en-
sembles under consideration �see further below�.

Referring to Fig. 7, it also tells us how a dc electric field
E0 directed parallel to the BN-SWNT symmetry axis
changes the optical refractive index of the well-ordered ar-
rays of such nanotubes. Since the �-electronic band structure
of the nanotubes is unaffected by the applied longitudinal
electric field, the above-mentioned refractive index charge
�n���, occurring in the first order in E0, can be expressed as
follows:

�n��� =
2�

n0
�LEO

�2� ���E0. �39�

The change in the refractive index results in the phase shift
�� of the light wave passing through the sample, which is
given by
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FIG. 7. Spectra of the real part of the susceptibility ��2��−� ;0 ,�� calculated for four uniform BN-SWNT ensembles consisting,
respectively, of the nanotubes with chirality indices �a� �17,0�, �b� �21,0�, �c� �25,0�, and �d� �27,0�. The latter ones are indicated in the upper
part of the panels. The calculated values of the Re ��2��−� ;0 ,�� are plotted versus the normalized photon energy 
� /2�.
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�� =
�

c
lop�n��� , �40�

where lop is the optical path length. Such a shift caused by
the LEO effect should be easily detected experimentally by
employing the two-beam interference method,49 where the
first light beam is incident on the BN-SWNT sample,
whereas the second one has passed through the sample. Al-
lowing measurements of very small refractive index changes,
that method, even though it requires a coherent light source,
affords the opportunity to determine the Pockels coefficient
using only one light beam propagating in the electro-optical
material. This is also of practical interest from the viewpoint
of possible applications of BN-SWNTs themselves in phase-
shifted devices. An order-of-magnitude estimation of �n���
and �� will be given further below for the BN-SWNT en-
sembles under consideration.

Returning to Fig. 7, it is worthwhile to note an important
common feature inherent in all the spectra shown in that
figure. Namely, in the near vicinity of the fundamental ab-
sorption edge, the LEO �or NOR� susceptibility changes
drastically from a positive peak value to a negative peak one,
passing through zero exactly at 
� /2�=1. As can be seen in
Fig. 7, such a sudden switching of the susceptibility from
maximum positive values to maximum negative ones and
vice versa occurs repeatedly as we move away from the ab-
sorption edge to higher photon energies. This implies that
one can adjust the radiation frequency � so that its slight
variation will “switch on” or “switch off” the optical rectifi-
cation voltage V0 at the terminals of the BN-SWNT sample.

In the same manner, one can produce drastic changes in the
optical refractive index n��� of the sample subjected to a dc
electric field E0 �see Eq. �39��. We believe that both the
above-mentioned effects are potentially very important for
the future development of BN-SWNT-based NLO devices,
even though their practical implementation does not seem to
be a simple task. The point is that the increase in the nonlin-
earity, which occurs as 
� approaches 2� �Fig. 7�, is accom-
panied by an equivalent increase in optical losses. This can
clearly be observed in Fig. 3, where the magnitude of the
linear absorption �LA� signal SLA���=−Im ��1���� of the en-
semble of the BN-SWNTs �17,0� has been plotted as a func-
tion of 
� /2�. Figure 8 illustrates the situation occurring in
the presence of a dc electric field E0 applied to those nano-
tubes along their symmetry axis. In this case, to take full
account of absorption, one has to consider two contribution
to the total absorption �TA� signal STA���

STA��� = SLA��� + SEA��� , �41�

where SEA��� is the magnitude of the EA signal,

SEA��� = − �EA
�2� ���E0 = − Im ��2��− �;0,��E0. �42�

Using the above equations, we have calculated both the EA
and TA spectra of the ensemble of the BN-SWNTs �17,0� for
two different values of the electric field strength: E0
=10 V /cm and E0=1 kV /cm.50 The results of the calcula-
tions are displayed in Fig. 8.

Comparing Figs. 3 and 8 indicates that the absorption
spectrum changes very little, even if a rather strong electric
field of 1 kV/cm is applied to the nanotubes. This implies
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FIG. 8. The electroabsorption spectra SEA��� �panels �a� and �c�� and the total absorption spectra STA��� �panels �b� and �d�� calculated
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that it will at least be extremely hard, if not impossible, to
decouple large refractive index changes, produced by a
variation in the radiation frequency, from the undesirable ab-
sorption losses for photons with energy greater than the
band-gap energy. However, as is seen from Figs. 7 and 8, the
ratio �LEO

�2� /STA can be improved drastically in the spectral
region lying well below the fundamental absorption edge.
The plots in Fig. 7 show that the magnitude of �LEO

�2� is on the
order of 10−7 esu in the nonresonant situation. According to
Refs. 9 and 17, the linear refractive index n0 is about 2 for
the BN-SWNTs under consideration. Using the above values
of �LEO

�2� and n0 in Eq. �39�, and assuming an applied dc
electric field E0 of 1 kV/cm, we get �n�0.01. In the
1.30–1.55 �m optical telecommunication wavelength
range, such a change in n��� is sufficient to introduce a � /4
phase shift �see Eq. �40�� in a less-than-10 �m-length di-
electric waveguide structure, where a uniform array of well-
aligned BN-SWNTs, fabricated in the form of a thin film, can
be used as the core of the structure. This suggests that those
nanotubes are a prospective material for the designs of novel
nano-optoelectronic devices in the area of integrated optics
and optical communication systems.

In this context, it is also of interest to estimate the mag-
nitude of the NOR effect in the BN-SWNTs. Combining Eqs.
�37� and �38� and using the calculated off-resonance �NOR

�2� of
10−7 esu, we deduce an optical rectification voltage V0 of
about 5 �V in the case of an array of the BN-SWNTs,
1 �m in length, irradiated by laser pulses with a power den-
sity of �100 kW /cm2. Based on this estimate, we can con-
clude that BN-SWNTs may be an appropriate material for
future uses in high-intensity-optical-pulse detectors, success-
fully competing with compositionally asymmetric GaAs/
AlGaAs multiple quantum-well structures in which the mag-
nitude of V0 achieves the value of 250 nV under the
continuous illumination by a CO2 10.6 �m laser with a
power density of 60 W /cm2.51

Finally, we briefly comment on our theoretical results for
the Miller coefficient �M �Eq. �29��. As we are concerned
with two different second-order NLO susceptibilities �SHG

�2�

and �LEO
�2� , the corresponding Miller coefficients �M

SHG��� and
�M

LEO��� need to be considered separately. It should be no-
ticed that Miller’s �M����, as given by Eq. �29�, has physical
meaning only in the range where all 
�’s are well below the
band-gap energy �g. Since absorption is not significant in
that region, we can write the �M

SHG��� as

�M
SHG��� =

Re �SHG
�2� ���

Re ��1��2���Re ��1�����2 �43�

whereas the �M
LEO��� can be expressed as

�M
LEO��� =

�LEO
�2� ���

��1��0��Re ��1�����2 . �44�

In Fig. 9, both the functions, �M
SHG��� and �M

LEO���, are
plotted versus 
� /2� at photon energies below half the
band-gap energy of the BN-SWNTs under study. As one can
see from that figure, for each of the BN-SWNT ensemble
considered, �M

SHG�0� coincides with �M
LEO�0� due to the

equivalence of the SHG and LEO susceptibilities at zero fre-

quency, a result we have commented on earlier in this paper.
However, neither the �M

SHG�0� nor the �M
LEO�0� is an universal

constant: their magnitudes are different for the ensembles
consisting of the nanotubes with different chirality indices.
Besides, Fig. 9 predicts both the �M

SHG��� and �M
LEO��� to be

a slightly decreasing function of � over the photon energy
range plotted in that figure. This implies that Miller’s empiri-
cal rule37 is not fulfilled even for one and the same class of
the nanotubes, namely, the zigzag BN-SWNTs �l ,0�. As re-
marked earlier, it would be most desirable to have this rule
tested for a wider range of nanotube materials with a similar
noncentrosymmetric structure, which are available at
present.38,39

IV. CONCLUSIONS

To summarize, in this paper we have presented a theory
that describes the second-order NLO response of arrays of
uniformly sized and well-aligned zigzag BN-SWNTs of
fairly large diameters. Unlike the previous theoretical study
of the problem,9 based on a first-principles DFT method, we
have used here quite a different approach, originally pro-
posed by Genkin and Mednis12 for the calculation of the
NLO response of bulk semiconductors in the independent-
particle approximation. The advantage of the approach is that
it properly takes into account the combined effect of intra-
band and interband motion of � electrons in the BN-SWNTs,
thereby enabling a clear physical picture of the optical non-
linearity to be drawn.

Relying on this approach and using a simple TB model
for the �-electronic band structure of the BN-SWNTs, devel-
oped in our previous paper,11 we have derived an explicit
analytic expression for the second-order NLO susceptibility
��2���� of the uniform BN-SWNT arrays, which includes
two contributions associated with the above-mentioned com-
bined effect: the “shift” contribution �Eq. �19�� and the “gra-
dient” one �Eq. �21��, both are comparable in magnitude over
the whole photon-energy range considered. We have revealed
that it is the “gradient” contribution that prevails in the sus-
ceptibility ��2���� at zero frequency, yielding positive ��2��0�
values for the considered nanotubes. Our finding of ��2��0�
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FIG. 9. Frequency dispersion of Miller’s coefficients �M
SHG���

�solid lines� and �M
LEO��� �dotted lines� calculated for four uniform

BN-SWNT ensembles consisting, respectively, of the nanotubes
with chirality indices �17,0�, �21,0�, �25,0�, and �27,0�. The latter
ones are indicated in the left part of the panel where the lines make
their start.
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being positive is in sharp contrast with negative ��2��0� val-
ues predicted for the same nanotubes in Ref. 9, which seem
highly counterintuitive, at least at the present level of under-
standing. We have also shown that there is nothing sensa-
tional with those zigzag BN-SWNTs �l ,0� for which a pre-
vious ab initio study9 yielded a zero value of the ��2��0�:
indeed, they all display nonzero ��2��0� values while in this
paper we have presented those values only for the nanotubes
of sufficiently large diameters.

An important outcome of our theory is the prediction of
distinct resonant features, which should be observable in the
SHG, LEO, and NOR susceptibility spectra of the considered
BN-SWNT ensembles. For example, in all the calculated
SHG spectra, we have found multiple 2� and � resonant
structures, the most intense peak being always just at half the
band-gap energy of the nanotubes, where optical losses are
negligible. Another interesting result to notice is that the
LEO �or NOR� susceptibility changes drastically from a
positive peak value to a negative peak one, passing through
zero exactly at the fundamental absorption edge. Such a
switching effect is likely to be very important for the future
development of BN-SWNT-based electro-optical devices.

In conclusion, we would like to stress that our primary
motivation in this paper has been to provide a coherent pic-
ture of second-order optical nonlinearities in the BN-SWNTs
at the simplest level of approximation. We believe that the
model used here is sufficient to grasp the relevant basic
physics so that the results obtained should serve as useful
guides for future more refined theoretical studies. However, a
more fundamental need is for some experimental data in or-
der to test our findings. We hope that such studies will reveal
most clearly the potential utility of BN-SWNTs as a new
material for NLO applications.
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APPENDIX: DERIVATION OF THE �(2) EXPRESSION
WITHIN THE GENKIN-MEDNIS PERTURBATION

SCHEME

Since the formulation of the second-order NLO response
theory, which we have relied on in the present paper, could
be used as an alternative also for other applications, we
present here the detailed derivation of Eqs. �4� and �5� of the
text, closely following a procedure proposed by Genkin and
Mednis.12

We start with the standard Hamiltonian H for an electron
of mass m0, moving in a periodic lattice potential V�r� and
interacting with the electric field E�t� of the incident electro-
magnetic wave. In the electric dipole approximation, the
Hamiltonian is given by

H =
1

2m0
�p +

e

c
A�t�	2

+ V�r� , �A1�

where the vector potential A�t� of the external field E�t�
= �−1 /c���A /�t� is only dependent on time t and independent

of r. A state of the electron then evolves in time according to
Schrödinger’s equation

i

�

�t
��r,t� = H��r,t� , �A2�

where the wave function ��r , t� can be expressed linearly in
terms of a complete orthonormal set of the Bloch wave
functions

	s��r� = Us��r�exp�i�r� �A3�

with shifted wave vector

� = k +
e


c
A�t� , �A4�

that is,

��r,t� = �
s,k

ask�t�	s��r� . �A5�

Using Eqs. �A2�–�A5�, we find, in the usual way, the equa-
tion for the expansion coefficients ask�t�,

i

�

�t
ask�t� = �

s�

��s��ss� + ie�ss���� · E�t��as�k�t� ,

�A6�

where �ss� is the Kronecker symbol, �s� is the energy eigen-
value corresponding to the Bloch eigenfunction 	s��r�, and
�ss���� is given by Eq. �3� of the text with k replaced by �.
The second term in the square brackets on the right-hand
side of Eq. �A6� has a clear physical meaning. At s�=s, that
term describes the variation in the energy of the electron as it
moves within its original band s under the action of the ap-
plied field E�t�. At s��s, the same term describes the inter-
band motion of the electron as driven by the field.

To proceed further, it is convenient to write down Eq.
�A6� in symbolic operator notation

i

�

�t
�ak�t�
 = Ĥ��,t��ak�t�
 , �A7�

Ĥ��,t� = Ĥ0��� + Ĥ1��,t� , �A8�

treating the coefficients ask�t� as the components of a vector

�ak�t�
 in the “band-index space” where operators Ĥ0��� and

Ĥ1�� , t� are defined as the operators whose matrix elements
are given, respectively, by the first and the second terms in
the square brackets in Eq. �A6�. As is seen from that equa-

tion, the operator Ĥ0��� is already represented by the diag-

onal matrix �s��ss�. To diagonalize the operator Ĥ�� , t� as a

whole, we shall carry out a unitary transformation Ô�� , t�
from the original ask�t�’s to the new coefficients csk�t�,

ask�t� = �
s�

Oss���,t�cs�k�t� �A9�

so that the evolution of the latter in time should be governed

by an effective Hamiltonian Ĥeff�� , t�, which is diagonal in
s, i.e.,
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Hss�
eff ��,t� = 0 for s � s�, �A10�

and hence

i

�

�t
csk�t� = Hss

eff��,t�csk�t� . �A11�

Using Eqs. �A4�, �A7�, and �A9�, it is not hard to write down

the Hamiltonian Ĥeff�� , t� in terms of the unitary operator

Ô�� , t�

Ĥeff��,t� = Ô†��,t��Ĥ0��� + Ĥ1��,t��Ô��,t�

+ ieÔ†��,t���Ô��,t�E�t� − i
Ô†��,t�
�

�t
Ô��,t� .

�A12�

The hard part of the problem at hand is solving Eq. �A10�
with a view to finding the nondiagonal matrix elements
Oss��� , t�; the diagonal ones are determined by the additional
condition Oss�� , t�=Oss

† �� , t�. Once explicit expressions for
those matrix elements are obtained, the electric dipole polar-
ization P�t�—the macroscopic source of NLO response of
the electronic system—can be found by calculating the ex-
pectation value of the dipole moment operator D=−er
=−ie��k+�� �see Eq. �2� in the text� in the Ĥeff�� , t� repre-
sentation. Assuming that the electrons do not interact with
each other �except for obeying Pauli’s exclusion principle�,
one can then write

P�t� = −
ie

V �
s,k

�
s�,s�

fskOss�
† ��,t���s�s��k + �s�s�����Os�s��,t� ,

�A13�

where fsk is the Fermi-Dirac distribution function over the
band states.

As has already been mentioned, the heart of the problem
at hand is finding the solution of Eq. �A10� for the matrix of
the unitary transformation. It does not seem possible to solve
this equation exactly because of its complexity. However,
one may try to find an approximate solution in the following
formal way. First of all, notice that the �, which involves the
external field through the vector potential A�t�, enters Eq.
�A10� as a parameter. It is clear that the solution of Eq. �A10�
does not depend on what the parameter � is. This enables
one to put �=k in Eq. �A10� and, on solving that equation
and determining the matrix Oss��k , t�, to obtain Oss��� , t� by
substituting � for k in the expression for Oss��k , t�. The basic
idea, thereby, is that for �=k, we can look for a solution of
Eq. �A10� iteratively in the form of the perturbation series
expansion in powers of the electric field amplitude E

Ô�k,t� = Î + �
j

Ôj�k,t� , �A14�

where Î is the unit operator and Ôj�k , t� is of order
j�=1,2 , . . .� in the field intensity. We may then expect that the
polarization P�t� can also be expanded in powers of the field

P�t� = P0 + �
j

P j�t� , �A15�

where the second �P1� and the third �P2� terms in this series
correspond to the linear and second-order nonlinear optical
responses of the system, respectively. If the external electric
field E�t� is a superposition of two monochromatic waves at
frequencies �1 and �2, the ��=x ,y ,z� component of the vec-
tor P2 �more precisely, its Fourier transform in time� can be
expressed in terms of the second-order NLO susceptibility
tensor ����

�2� �−�� ;�1 ,�2� as follows:

P2����� = ����
�2� �− ��;�1,�2�E���1�E���2� . �A16�

Here and hereafter repeated Greek indices and frequencies
are assumed to be summed over.

As follows from the above equations, in order to derive an
explicit form of ����

�2� �−�� ;�1 ,�2�, one needs to determine
the elements of the matrix Oss��k , t� up to second order in E.
To within the same order, the effective Hamiltonian in Eq.
�A12� is given by �for �=k now�

Ĥeff�k,t� = Ĥ0
eff�k,t� + Ĥ1

eff�k,t� + Ĥ2
eff�k,t� , �A17�

where

Ĥ0
eff�k,t� = Ĥ0�k� , �A18�

Ĥ1
eff�k,t� = �Ĥ0�k�,Ô1�k,t�� + Ĥ1�k,t� − i


�

�t
Ô1�k,t� ,

�A19�

Ĥ2
eff�k,t� = �Ĥ0�k�,Ô2�k,t�� + Ĥ1�k,t�Ô1�k,t�

+ ie�kÔ1�k,t�E�t� − Ô1�k,t�Ĥ1d�k,t�

− i

�

�t
Ô2�k,t� . �A20�

Here the square brackets stand for the commutator of the two
operators they contain, and the subscript d for the operator

Ĥ1�k , t� means that only the diagonal part of the operator
should be taken. In deriving Eqs. �A19� and �A20�, the fol-
lowing relations for the diagonal and nondiagonal elements
of the matrices O1ss� and O2ss� have been used:

O1ss�k,t� = O1ss
† �k,t� = 0, �A21�

O1ss��k,t� = − O1ss�
† �k,t� , �A22�

O2ss�k,t� = O2ss
† �k,t� =

1

2 �
s��s

O1ss��k,t�O1s�s�k,t� ,

�A23�
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O2ss��k,t� = − O2ss�
† �k,t� − �

s�

O1ss�
† �k,t�O1s�s��k,t� .

�A24�

Note that Eqs. �A22� and �A24� for the nondiagonal elements
O1ss� and O2ss�, respectively, are obtained by substituting the

expansion for the unitary operator Ô�k , t� �Eq. �A14�� in the
identity

Ô†�k,t�Ô�k,t� = Î , �A25�

and by collecting the terms of one and the same order in E.
The relations for the diagonal elements O1ss and O2ss �Eqs.
�A21� and �A23�, respectively� are obtained similarly pro-
vided that those elements can be chosen to be real.

Substituting Eqs. �A18�–�A20� one by one in Eq. �A10�
and then solving successively the resulting equations for the
elements of the matrices O1ss��k , t� and O2ss��k , t�, one finds
that

O1ss��k,t� = �−
ie




�ss�
� �k�

�ss��k� − �
E����exp�− i�t� for s � s�,

0 for s = s�,
�

�A26�

O2ss��k,t� = −
e2


2��ss��k� − ���� �

�k�
� �ss�

� �k�

�ss��k� − �1
	

−
�ss�

� �k��s�s�
� �k�

�ss��k� − �1
+ �

s��s�

�ss�
� �k��s�s�

� �k�

�s�s��k� − �1



� E���1�E���2�exp�− i��t� for s � s�,

�A27�

O2ss�k,t�

= −
e2

2
2 �
s��s

�ss�
� �k��s�s

� �k�

��ss��k� − �1���s�s�k� − �2�

�E���1�E���2�exp�− i��t� , �A28�

where 
�ss��k� is the interband transition energy,


�ss��k� = �sk − �s�k, �A29�

and the superscript ���� for the matrix element �ss�
�����k�

indicates the ���� Cartesian component of the vector
�ss��k�.

Now, having in hand the desired solutions to Eq. �A10�
for �=k, we can easily get those in the general case ��k,
simply replacing k by � in Eqs. �A26�–�A28�. After such a

replacement, however, the expansions for Ô and P in Eqs.
�A14� and �A15�, respectively, are clearly no longer the ex-
pansions in powers of the electric field E. Indeed, each right-
hand-side term of Eq. �A15�, beginning with the first one,

contains E to all orders, due to the dependence of both the Ô
and the �, entering Eq. �A13�, on �. To make sure of this, it
is enough to write down the explicit expressions for P0, P1,

and P2 in terms of Ôj�� , t� and ����. It follows from Eq.
�A13� that

P0 = −
ie

V �
s,k

fsk�ss��� , �A30�

P1 = −
ie

V �
s,k

�
s�

fsk�O1ss�
† ��,t��s�s��� + �s�s���O1s�s��,t�� ,

�A31�

P2 = −
ie

V �
s,k

�
s�,s�

fsk��O2ss�
† ��,t��s�s���

+ �ss����O2s�s��,t���s�s + O1ss�
† ��,t��s�s����O1s�s��,t�

+
1

2
�O1ss�

† ��,t��kO1s�s��,t�

− O1s�s
† ��,t��kO1ss�

† ��,t���s�s�
 . �A32�

Using the above equations, it is easy to show that Eq. �A15�
for ��k is actually an expansion of P in powers of the
parameter 
� /� in the sense that

P1

P0
�

P2

P1
� ¯

Pi

Pi−1
�


�

�
, �A33�

where � is some average energy typical of the interband
transitions. This result may be understood by noting that
each of the multiplies, standing after fsk in Eqs.
�A30�–�A32�, represents a function F��� of the variable �
=k+ �e /
c�A, which is regular in the neighborhood of the
point �=k and can therefore be represented there by its Tay-
lor series. Assuming that the characteristic scale in which the
function F�k� varies substantially is determined by the lat-
tice constant a0, we may estimate the derivatives entering
Taylor’s expansion for the function F��� by setting

F��� = k� �
F�k�

k
� a0F�k� ,

F��� = k� �
F�k�

k2 � a0
2F�k� , �A34�

and so on, where the prime denotes differentiation with re-
spect to �. In such a heuristic way, we arrive at the following
expansion for F��� in terms of F�k� and E:

F��� � F�k��
n=0

�
�E

n

n!
, �A35�

where

�E =
eEa0


�
, �A36�

and F�k� is the abbreviated uniform notation for the multi-
pliers standing after fsk in Eqs. �A30�–�A32� where �
replaced by k. It is clear, therefore, that Eq. �A35� is gener-
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ally not an expansion in powers of the electric field: the
multipliers in Eqs. �A31� and �A32�, by themselves, depend
on E even when �=k �see Eqs. �A26�–�A28��. Turning back
to the last equations in conjunction with Eq. �A14�, it is seen
that the expansion in Eq. �A14� is actually developing in
powers of the parameter

�E =
eEa0

�
=


�

�
�E, �A37�

if we assume that �ss�
� �k� is on the order of a0. Based on this

observation, and using Eq. �A35� in Eqs. �A30�–�A32�, we
arrive at the result stated in Eq. �A33�.

From the above discussion, we can conclude that it will
be justified to write P2 as defined in Eq. �A32�, but with �
replaced by k, if we are concerned with the range of the
external field strength E in which the parameters �E and �E
are both small as compared to 1 �it is clearly not necessary
for the parameter 
� /� to be small either�. This is consistent
with the conventional phenomenological definition of P2 in
terms of the ��2�-susceptibility tensor components, which is
given by Eq. �A16� in our notation. The same conclusion
holds true for P1 defined in Eq. �A31� as well.

In principle, Eq. �A32� enables us to calculate the second-
order dipole-moment density P2 induced by the incident ra-
diation fields with arbitrary polarizations. However, in what
follows, we confine ourselves to the experimental situation,
which we are interested in the text, where all the fundamen-
tal fields are polarized in the same direction which is chosen
to be the z direction. In this case, it is enough to consider the
component �zzz

�2��−�� ;�1 ,�2� of the susceptibility tensor de-
fined in Eq. �A16�, which we denote simply ��2�

�−�� ;�1 ,�2� in the text. Taking into account that the tensor
is invariant under all �2+1�! permutations of the frequencies
�1, �2, −�� �Ref. 22� and using Eqs. �A21�–�A24� together
with Eqs. �A26�–�A28�, we finally obtain

��2��− ��;�1,�2� = �I
�2��− ��;�1,�2� + �II

�2��− ��;�1,�2�

+ �III
�2��− ��;�1,�2� , �A38�

where

�I
�2��− ��;�1,�2�

=
ie3

2V
2�
s,k

�
s��s

�
P

fsk

�
�ss��k���ss�k� − �s�s��k���s�s�k�

��ss��k� − �1���s�s�k� − �2�
, �A39�

�II
�2��− ��;�1,�2� =

ie3

4V
2�
s,k

�
s��s

�
P

fsk

�� �s�s�k�

�s�s�k� − �1

�

�k
� �ss��k�

�ss��k� − �2
	

−
�ss��k�

�ss��k� − �1

�

�k
� �s�s�k�

�s�s�k� − �2
	
 ,

�A40�

�III
�2��− ��;�1,�2� =

ie3

6V
2�
s,k

�
s��s

�
s��s,s�

�
P

fsk

�� �ss��k��s�s��k��s�s�k�

��s�s��k� − �1���s�s�k� − �2�

+
�ss��k��s�s��k��s�s�k�

��ss��k� − �1���s�s��k� − �2�
 .

�A41�

Here, as before in the text, �P denotes the sum over all
permutations of frequencies �1, �2, −��, and �ss�

z �k� and
� /�kz are abbreviated as �ss��k� and � /�k, respectively.

For a system with an arbitrary number of bands, the above
expression for ��2��−�� ;�1 ,�2� is very complicated, involv-
ing various two-band contributions �the first and the second
terms in Eq. �A38�� as well as three-band ones �the last term
in Eq. �A38��. In the present paper we are interested in the
NLO properties of undoped BN-SWNTs with an effectively
two-band �-electronic structure. For such a system, the term
�III

�2� vanishes identically and, treating the �I
�2� and the �II

�2�

terms at absolute zero temperature, we get the results stated
in Eqs. �4� and �5� in the text.
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