
Size dependence of the bulk modulus of semiconductor nanocrystals
from first-principles calculations

R. Cherian,1,* C. Gerard,1,2 P. Mahadevan,1,† Nguyen Thanh Cuong,3 and Ryo Maezono4

1Department of Material Science, SN Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098, India
2Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

3Nanosystem Research Institute, National Institute of Advanced Industrial Science and Technology,
Umezono 1-1-1, Tsukuba 305-8568, Japan

4School of Information Science, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
�Received 20 April 2010; revised manuscript received 22 October 2010; published 27 December 2010�

The variation in the bulk modulus of semiconductor nanoparticles has been studied within first-principles
electronic-structure calculations using the local density approximation �LDA� for the exchange correlation.
Quantum Monte Carlo calculations carried out for a silicon nanocrystal Si87H76 provided reasonable agreement
with the LDA results. An enhancement was observed in the bulk modulus as the size of the nanoparticle was
decreased, with modest enhancements being predicted for the largest nanoparticles studied here, a size just
accessible in experiments. To access larger sizes, we fit our calculated bulk moduli to the same empirical law
for all materials, the asymptote of which is the bulk value of the modulus. This was found to be within 2–10 %
of the independently calculated value. The origin of the enhancement has been discussed in terms of Cohen’s
empirical law �M. L. Cohen, Phys. Rev. B 32, 7988 �1985�� as well as other possible scenarios.
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I. INTRODUCTION

The physics and chemistry of size reduction has been a
topic of intense research activity over the past two decades.1

From a technological point of view, the interest has been
spearheaded by the fact that the synthesized materials show
dramatic enhancements in their optical properties,2 enhanced
mechanical properties among a long list of properties differ-
ent from the bulk of the same material. Although the science
of size reduction has seen a flurry of activity recently, the use
of nanomaterials for enhanced strength of materials dates
back hundreds of years to the medieval times. A recent study
pointed out that the extreme strength of Damascus swords
originated from the carbon nanotubes present in them.3

The specific aspect of enhanced mechanical properties in
the nanoscale regime has thrown open several candidates.
Enhanced Young’s modulus of ZnO nanowires and
nanotubes4 have been found. Enhanced bulk moduli have
been observed in nanocrystals of AlN �Ref. 5� and CeO2.6

Semiconductor nanoparticles show structural phase transi-
tions under pressure. It is found that these transition pres-
sures also change between the bulk material and the nano-
crystal. In addition, the bulk modulus of the high-pressure
phase of the nanocrystal is found to be significantly different
from the analogous bulk high-pressure counterpart.7 Consid-
ering the case of CdSe, the pressure at which there is a con-
version from wurtzite to the rocksalt phase is 3–5 GPa for
nanocrystals while it is 2 GPa for the bulk of the material.8

Although one finds several materials with enhanced me-
chanical properties at the nanosized limit, the microscopic
origin of the enhanced properties have not been well estab-
lished. Various models have been constructed either using
direct atomistic simulation or continuum theory and various
explanations have been offered. The elastic response of
nanostructures has been explained by surface stresses and
surface elasticity.9 By atomistic simulation, Miller and

Shenoy10 determined a proportionality constant associated
with the surface elasticity for Si and Al which could explain
the size-dependent Young’s modulus. This model, however,
failed to explain the physical origin of the softening or stiff-
ening.

Extraction of the size dependence from experiments is
usually clouded by various factors. These include the pres-
ence of passivating ligands introduced during the synthesis
of colloidal nanoparticles, the pressure transmitting medium,
defects, etc. Hence a theoretical approach handling certain
limiting situations would be extremely useful in establishing
trends. The question we asked was whether we could take a
class of materials with similar bonding characteristics and
examine the behavior in their bulk modulus as a function of
size due to purely elastic effects. For this purpose we chose
as our candidate test systems several semiconductors, both
elemental as well as binary, and examined if we could use ab
initio calculations to determine the bulk moduli as a function
of size. To access sizes beyond those that can be handled
within a first-principles approach, the calculated moduli were
fit to an empirical relation. Not only did we find the same
functional form across all materials studied, we also found
that the bulk limit in each case which entered the model was
captured within 10% of its independently calculated value.
This gave us confidence in the predictability of our results.
However, including elastic effects resulted in enhancements
in the bulk moduli only in the very small size range—a re-
gime barely accessible during synthesis for the largest par-
ticles studied here. By the time we reach the sizes found in
experiments, there is no enhancement to talk about.

II. METHODOLOGY

The systems that we have considered are silicon �Si�, ger-
manium �Ge�, gallium arsenide �GaAs�, and cadmium se-
lenide �CdSe�. Si and Ge occur in the diamond structure
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while CdSe and GaAs could occur in the zinc-blende or the
wurtzite structure. To keep the results independent of this
structural aspect, we have considered only the zinc-blende
polymorph in the case of GaAs and CdSe. Nanocrystals were
constructed by taking a central atom, which could be a cation
or an anion. Atoms were added keeping bulklike coordina-
tion and symmetry �see Fig. 1�. The truncation condition
used to terminate the cluster was to consider all atoms within
a sphere of a desired radius. Further details may be found in
Refs. 11 and 12. The surface atoms of the nanocrystal would
have dangling bonds as a result of truncation. In order to
make the comparison meaningful with experiment where
passivants, usually organic molecules, are used to saturate
the dangling bonds, we use hydrogen or pseudohydrogen13

for this purpose as has been used earlier.
The electronic and structural properties were calculated

using a plane-wave pseudopotential implementation of
density-functional theory �DFT� within VASP.14 Projected
augmented wave15 potentials were used. The nanocrystal was
simulated as a periodic unit cell with a vacuum between
neighboring clusters at least 10 Å thick.16 For the plane-
wave basis considered in these calculations, an energy cutoff
of 312 eV was used in the case of Si, Ge, and GaAs. For bulk
CdSe we used a cut-off energy of 500 eV which turned out to
be computationally demanding. Consequently we used a cut-
off energy of 342.8 eV for the nanocrystals. Increasing the
cut-off energy by 200 eV or more did not change the total
energies by more than 0.1 meV. The calculations for the
electronic structure of the bulk crystals were carried out us-
ing a dense k-points grid of 8�8�8 in the Monkhorst-Pack
scheme17 of division. The computations were performed for
only � point for the nanocrystals. In the case of GaAs, the
semicore 3d states in the Ga atom were treated as part of the
core, following the conclusion obtained in a previous work.12

On the other hand, the need to include the d states on Ge as
a part of the basis were checked here. As the change in total
energy is about 0.7 meV, the discrepancy in the lattice con-
stant is equal to 0.37%, and in the bulk modulus is equal to
1.23%, we decided to treat the Ge d states as a part of the
core in the calculations reported in this manuscript. Com-

plete optimization of the internal coordinates was carried out
to minimize the energy of the structure. This was determined
to be the equilibrium structure at that size for which the bulk
modulus was computed. The volume of the nanocrystal is
needed for computing the bulk modulus. However, the vol-
ume of the nanocrystal has ambiguities associated with it and
there could be several definitions. We choose the volume as
being given by that of the convex hull18 formed by the out-
ermost atoms making the structure. In order to compute the
bulk modulus, we make expansions and contractions about
the equilibrium geometry. Total energies of the expanded/
contracted structure are computed for the structures in which
the outermost atoms are kept fixed while those in the interior
are optimized to minimize the total energy. The total energies
at different volumes were fit to the Murnaghan equation of
state.19 The bulk modulus was computed according to the
equation

B = V
�2E

�V2 , �1�

where E�v� is the total ground-state energy as a function of
volume V. It should be noted that an error of c% in the
volume, translates into an error of � c

1−c ��100% in the bulk
modulus.

It is well known that the generalized gradient approxima-
tion �GGA-DFT� exchange-correlation functional tends to

TABLE I. Elastic constants for Si87H76 evaluated by DFT and
QMC. The constants are obtained by Vinet equation of state.

Method
B0

�GPa�
V0

�Å3� B0�
E0

�Ha�

LDA 105.91 1751.52 3.381

VMC 125.1�4� 1785.2�2� 2.097 −212.742

DMC 113�9� 1768�4� 2.176 −252.514

FIG. 1. �Color online� The structure of a typical nanocrystal
considered by us with cations and anions �large spheres� shown in
different colors. The surface layer is terminated by hydrogen de-
noted by small spheres.
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FIG. 2. �Color online� Energy-volume curves by DMC and
variational Monte Carlo �VMC� for Si87H76. The energies are
shifted for VMC by −383.339 hartree and DMC by
−386.424 hartree, respectively, to have the same energy origin at
equilibrium volume. Error bars for VMC are behind the symbol.
Data are fitted by Vinet equation of state.
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overestimate the equilibrium lattice constant by 1–3 %
over the experimental value, whereas local-density
approximation-DFT functional underestimates the same to a
similar extent. So there is the need to calibrate the DFT
exchange-correlation functionals by other reliable methods.
In this research, the ab initio quantum Monte Carlo �QMC�
�Ref. 20� method was used to calculate the bulk modulus of
Si87H76 nanocrystal. We used the Slater-Jastrow form of
many-body wave function,20 for which the Slater-orbital
functions are taken from Perdew-Burke-Ernzerhof �PBE�

GGA calculation with Gaussian basis sets21 for an isolated
cluster. Si and H atoms are described by the pseudopotentials
which are provided with properly tuned Gaussian basis sets,
�9s1s9p, which represents s-type basis contracted from nine
terms, an s-type uncontracted basis, and a p-type basis con-
tracted from nine terms� for H and �9s1s9p1p1d� for Si.22

The form of Jastrow functions we used is the standard choice
provided by CASINO QMC code,23 in which electron-electron
�ee� and electron-nucleus �eN� terms are expanded by power
polynomials up to eighth order while the order for eeN �the

TABLE II. A comparison of the calculated bulk moduli values using LDA and GGA functional with
experimental references for columns entitled 3: Refs. 29 and 30 for GaAs value. 4: Refs. 31–33. 5: Refs. 34.
The value of zinc-blende CdSe bulk modulus is estimated from the wurtzite structure in Ref. 35. Diff.
represents the % deviation of the calculated value from the average experimental value.

Ref.

1 2 3 4 5 Average

�LDA� �GGA� �Exp� �Exp� �Exp� �Exp�

Si Value �GPa� 97.0 89.3 98.8 98 97.9 98.2

Diff. �%� 1.22 9.06 1.82 1.02 0.92

Ge Value �GPa� 72.3 59.3 77.2 77.2 68.9 74.4

Diff. �%� 2.82 20.3 6.34 6.34 4.93

GaAs Value �GPa� 75.1 62.5 75.5 74.8/75 75.6 75.2

Diff. �%� 0.13 17.0 0.66 0.40/0.13 0.79

CdSe �w� Value �GPa� 59.0 45.9 53.3 53.3

Diff. �%� 10.7 13.9

TABLE III. Bulk modulus calculated for different size of semiconductor nanoclusters. The deviation with
respect to the bulk value is also given. The size of nanoclusters is given in term of the number of atoms and
the volume.

Nanocluster
Cluster size

�number of atoms�
Cluster volume

�Å3�
Bulk modulus

�GPa�
Change with respect to the bulk

�%�

Si 65 522.14 123.2 27.01

71 651.32 117.0 20.62

163 1751.52 105.8 9.07

247 2995.34 102.6 5.77

� � 97.0

Ge 65 577.81 106.9 47.86

71 724.36 99.2 37.21

163 1959.26 87.8 21.44

247 3349.30 83.9 16.04

� � 72.3

GaAs 65 577.72 100.1 33.29

71 727.48 96.3 28.23

163 1960.41 86.1 14.65

247 3372.74 82.9 10.39

� � 75.1

CdSe 65 718.21 65.3 13.57

71 922.54 63.6 10.61

163 2449.63 57.1 −0.69

247 4234.44 55.0 −4.35

� � 57.5
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three-body coalescence term in the Jastrow function� term is
�NeN ,Nee�= �2,2�. The parameters of Jastrow functions are
optimized by the self-consistent unreweighted variance mini-
mization using a variational Monte Carlo procedure.24,25 Fi-
nally, diffusion Monte Carlo �DMC� method is used to
project out the ground-state component of the optimized
Slater-Jastrow wave function. All QMC calculations were
done by CASINO V3.0 CODE.23 The bulk modulus of Si87H76
are evaluated by Vinet equation of state26,27 as follows:

E�V� = −
4B0V0

�B0� − 1�2�1 − f� V

V0
�� · exp� f� V

V0
�� + E0,

�2�

where,

f�x� =
3

2
�B0� − 1��1 − x1/3� . �3�

Here B0 and B0� are the bulk modulus evaluated for the equi-
librium volume �V0� structure, the first volume-derivative of
the bulk modulus evaluated at V0. We tried other forms of the
equation of state such as Birch-Murnaghan’s28 but for the
present QMC data with statistical error bars only Vinet equa-
tion of state gives successful fitting. It should be noted that
the local density approximation �LDA� value was the same
using either Vinet or Murnaghan equation of state.

III. RESULTS AND DISCUSSION

To investigate the most reliable method for the evaluation
of the bulk modulus of these materials we have first consid-
ered the case of a reasonably sized nanocrystal of Silicon.
For this purpose, we consider a Si87H76 nanocrystal and
evaluate its properties using QMC. The results of the energy
vs volume are given in Fig. 2. The equilibrium lattice con-
stant as well as the bulk modulus of Si87H76 nanocrystal
evaluated by the Vinet equation of state are given in Table I.
While the DFT calculations reported here treat the isolated
system as the � point of large periodic boxes, the DFT cal-

culations that we use as trial wave functions for the QMC
involve a purely isolated molecule treatment. The estimated
equilibrium volume from the QMC calculations seems to
agree with the LDA estimate. We obtain this result using
either LDA- or GGA-based DFT wave functions as our start-
ing point. Comparing the bulk moduli calculated within the
different methods presented here, we find that LDA underes-
timates the bulk modulus—a feature consistent with its fea-
ture of underestimating bond strengths. In addition, a com-
parison of the calculated bulk moduli of bulk material with
experiment29–34 is provided in Table II. The percentage de-
viations from experiment are provided in every case. It
should be noted that the reported experimental value is for
CdSe in the wurtzite structure.36,37 We have therefore made a
comparison for the bulk wurtzite structure in this case. In
every case the deviation between the calculated bulk modu-
lus using LDA exchange and experiment is better than that
between the GGA functional value and experiment. Bulk
modulus for Si crystal evaluated recently by DMC, B0
=103�7,38 103�10,39 and 97.1�3,40 has also demon-
strated good agreement between LDA and DMC and experi-
mental results. We have therefore used the LDA functional
for our computations for the nanocrystal.

The calculated bulk moduli of nanocrystals as a function
of nanocrystal size are given in Table III. An enhancement is
found as a function of decreasing size in every case with the
enhancement going to several tens of percent at some sizes.
The variation in the bulk moduli for bulk semiconductors in
the diamond or zinc-blende structure has been found to fol-
low a scaling law that depends just on the nearest-neighbor
distance by Cohen.41 We examined whether this could ex-
plain the enhancement that we find. Naively speaking, atoms
at the surface of the nanocrystal should have reduced coor-
dination. They would therefore tend to lower their energy by
forming shorter bond �increased nearest-neighbor interac-
tion�. So the question that we asked next was whether this
deviation from bulk bond lengths could explain the enhance-
ments we find. Examining the optimized geometry of the
nanocrystals, we find that there is a distribution of bond
lengths not only as a function of depth but also as a function

TABLE IV. Calculated bulk modulii �B0� in GPa for different sizes of nanocrystals. The average nearest-
neighbor distance �nn� in Å determined from our calculations as well as the material-dependent constant
entering the empirical law given by Cohen are also shown.

Cluster size �number of atoms�
Cluster volume

�Å3�
nn

�Å3�
B0

�GPa�

Si �LDA� �A=1905.182� 65 522.14 2.3314 98.46

71 651.32 2.3293 98.78

163 1751.52 2.3312 98.49

247 2995.34 2.3349 97.95

� � 2.3414 97.0

Ge �LDA� �A=1651.924� 65 577.81 2.4130 75.69

71 724.36 2.4144 75.54

163 1959.26 2.4199 74.94

247 3349.30 2.4253 74.36

� � 2.4448 72.3
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of surface coordination. We therefore calculate an averaged
bond length as defined earlier.42 We use this value in the
scaling relation given by Cohen,41 where the bulk modulus is
given by B=A /d3.5. The material-dependent constant A is
determined by taking the bulk modulus value as well as
nearest-neighbor bond length obtained from the DFT calcu-
lations at the bulk limit. Using this value with the average
bond length that we find in our calculations, for two proto-
typical examples Si and Ge �Table IV�, we find an enhance-
ment of just a few percent. Apart from the bond-strain effect
discussed above, there is the additional enhancement of the
band gap in the size regime that we are examining the nano-
crystals. However, we find that although there are significant
enhancements in the band gap for the largest sizes consid-

ered here, we already enter the size regime where bulk
modulus enhancements are modest. Hence the two have dif-
ferent origins. Hence the bond-strain mechanism or the quan-
tum confinement effects that enhance the band gap from the
bulk value cannot explain the observed enhancements in the
bulk moduli of the nanocrystals. This suggests that there is
some other effect, beyond the bond-strain effect required to
explain the bulk moduli of the nanocrystals that we find in
our calculations. There are some clues of this when we look
at the partial density of states associated with the hydrogen/
pseudohydrogen atoms that we use to simulate the passivat-
ing layer. In Fig. 3 we have plotted the Cd s and d projected
partial density of states due to the surface Cd atoms. The H s
contribution is also provided. A passivant should merely
serve the purpose of being a site to which electrons are trans-
ferred to or from which electrons are transferred out. Here,
we find that it interacts very strongly with the atoms of the
semiconductor �Fig. 3�. Thus it is this strong interaction we
believe that is responsible for the enhanced moduli that we
find in our calculation. Further work will be carried out on
well-controlled passivants.

TABLE V. Results of the fit performed on ab initio computa-
tions of the Si, Ge, GaAs, and CdSe bulk modulus for different
nanocluster sizes using LDA as the exchange-correlation functional.
Bulk limit bulk modulus �B�

fit� and k are obtained after the fitting.
B� is the bulk modulus for the bulk material, computed by DFT
calculations. The last column presents the deviation between B�

fit

and B�.

Nanocluster
B�

fit

�GPa�
k

�Å3�
B�

�GPa� 	B�
fit−B�	 /B�

Si 99.0 112.95 97.0 0.0206

Ge 80.2 162.18 72.3 0.1093

GaAs 80.2 129.94 75.1 0.0679

CdSe 53.5 148.77 57.5 0.0696
Energy (eV)

-10 -8 -6 -4 -2 0 2 4 6
0

0.5

1

1.5

2

Cd-s
Cd-d

-10 -8 -6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

a) surface Cd

b) H s

D
en

si
ty

of
st

at
es

[s
ta

te
s/

(e
V

ce
ll)

]

FIG. 3. �Color online� �a� The Cd s �solid line� and d �dashed
line� projected partial density of states for a surface Cd atom and �b�
the H s �solid line� projected partial density of states for the
pseudohydrogen attached to the surface Cd atom in the case of the
largest size CdSe nanocrystal considered in our study. The Fermi
energy is set to zero.
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fit for the phenomenological rule where the bulk modulus varies as
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The size regime in which we see the enhancement is
much smaller than most of the sizes realized during growth
of nanoparticles in experiment. In order to make our com-
parison meaningful to experiment, we examined if the results
for various systems could be fit to an empirical law. This
would enable us to examine the sizes beyond the limitations
of our computational scheme. A fit of all the available data
allows us to extract a dependence describable by the phe-
nomenological rule B0=B�

fit exp�k /V�, where B0 is the bulk
modulus of the material, B�

fit is the corresponding value for
the bulk and k a material parameter. The best fit curve along
with the data used for the fitting is presented in Fig. 4. The
parameter k also has a physical significance, it gives an es-
timate of the volume of a particular nanocrystal below which
the enhancement of bulk modulus is greater than 170%. We
have not included the bulk modulus of the extended solid in
our fitting but we compare it to the asymptote of our fit
function. Table V gives the fit details. The deviation between
the asymptote of function proposed here and the bulk value
is the largest for Ge and its about 10%. All curves allow an
asymptote very close to the bulk value. This gives us greater
confidence in our volume computation of the nanocrystals by
convex hull method and thus a much better confidence in the
phenomenological relation that we have derived here.

The nanocrystal size studied here is evidently a little
small compared with those more often experimentally ob-
served. On the other hand, defining a phenomenological law
enables us to predict the behavior of bigger sizes, more dif-
ficult to calculate due to the numerical cost. Thus, Table VI
shows the size dependence expected for a 10 nm3 nanocrys-
tal. The deviation from the bulk value is very small, possibly
within the error bars of our calculations. Although our earlier
analysis suggested the LDA form of the exchange correlation
gave a good description of the elastic properties of these
materials, we also examined the GGA form. This was done
to see if the trend observed here in the variation in the bulk
modulus is not a result of the exchange-correlation func-
tional used. Here too we were able to fit the bulk modulus
variation �Fig. 5� for the binary nanocrystals using the same
phenomenological rule as described earlier. The fitted details
are given in Table VII. Here again the enhancements for
10 nm3 particles is small.

Several experimental results are available in the literature
on particle size of 10 nm implying a volume of around

525 nm3. The enhancement of bulk modulus was observed
for AlN,5 CeO2,6 and �-Fe2O3.43 The size effect on AlN is
found equal to 63% while �-Fe2O3 and CeO2 bulk modulus
enhancement are, respectively, reported equal to 52% and
50%. We therefore conclude that the mechanism behind this
size effect is not the same as that found here. The phenom-
enon studied here may be considered to be restricted to very
small nanostructures with a perfect structure.

IV. CONCLUSIONS

We have studied the size dependence of the bulk modulus
nanoclusters of Si, Ge, CdSe, and GaAs. An enhancement is
seen in the small size regime and we attribute this to the
strong interaction with the passivant. A phenomenological
law is derived which in most cases has the correct magnitude
in the asymptotic limit. We use the phenomenological law to
extrapolate the results to larger clusters of 10 nm3 volume. A
modest enhancement of 1–3 % is found at these sizes, which
could be placed as lying within the error bars of our compu-
tational scheme.
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TABLE VI. Prediction of the size dependence for a 10 nm3

nanocrystal using the phenomenological law. The value of the bulk
modulus for the 10 nm3 nanocrystal �BV� is compared with the
fitted bulk modulus for the bulk B�.

Nanocluster
BV

�GPa�
B�

fit

�GPa� 	BV−B�
fit	 /B�

Si 100.1 99.0 0.011

Ge 81.5 80.2 0.016

GaAs 81.2 80.2 0.012

CdSe 54.3 53.5 0.015

TABLE VII. Results of the fit performed on ab initio computa-
tions of GaAs and CdSe bulk modulus for different nanocluster
sizes using GGA as the exchange-correlation functional. Bulk limit
bulk modulus �B�

fit� and k are obtained after the fitting. B� is the
bulk modulus for the bulk material, computed by DFT calculations.
The last column presents the deviation between B�

fit and B�.

Nanocluster
B�

fit

�GPa�
B�

�GPa� k 	B�
fit−B�	 /B�

GaAs 67.1 62.5 177.98 0.074

CdSe 44.8 45.1 290.50 0.067
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