
Nanomechanical effects in an Andreev quantum dot

I. A. Sadovskyy,1,2 G. B. Lesovik,1 T. Jonckheere,3 and T. Martin3,4

1L.D. Landau Institute for Theoretical Physics, RAS, Akad. Semenova av., 1-A, 142432 Chernogolovka, Moscow Region, Russia
2Moscow Institute of Physics and Technology, Institutskii per., 5, 141700 Dolgoprudny, Russia

3Centre de Physique Théorique, Case 907 Luminy, 13288 Marseille Cedex 9, France
4Université de la Méditérannée, 13288 Marseille Cedex 9, France

�Received 14 May 2010; published 6 December 2010�

We consider a quantum dot with mechanical degrees of freedom which is coupled to superconducting
electrodes. A Josephson current is generated by applying a phase difference. In the absence of coupling to
vibrations, this setup was previously proposed as a detector of magnetic flux and we wish here to address the
effect of the phonon coupling to this detection scheme. We compute the charge on the quantum dot and
determine its dependence on the phase difference in the presence of phonon coupling and Coulomb interaction.
This allows to identify regions in parameter space with the highest charge to phase sensitivity, which are
relevant for flux detection. Further insight about the interplay of such couplings and subsequent entanglement
properties between electron and phonon degrees of freedom are gained by computing the von Neumann
entropy.
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I. INTRODUCTION

The Josephson effect is one of the most striking manifes-
tation of phase coherence in macroscopic objects. A nondis-
sipative current1 can flow through a junction between two
superconductors, provided that there is a phase difference
between them. Early Josephson junctions consisted of an ox-
ide layer or a normal metal sandwiched between the super-
conducting leads2 but progress in nanofabrication techniques
have allowed to imbed mesoscopic devices into the
junction.3–7 One of the most commonly studied of such de-
vices is the quantum dot. Quantum dots typically represent a
normal-metal island with resonant levels and possibly charg-
ing effects. In the context of Josephson transport, it has been
shown theoretically that the charge on such quantum dots
can be tuned either by applying a gate voltage to the dot or
by varying the phase difference between the
superconductors.8,9 This continuous tuning of parameters al-
lows the dot charge to deviate from an integer number. Of
importance in such a system is that the tuning parameters can
trigger a transition of the ground state from a singlet �zero or
double electron occupancy with opposite spins� to a doublet
�single-electron occupancy with spin up or spin down�.10,11

In Ref. 11, it has been proposed that the sensitivity of the
dependence of the charge with respect to the flux could in
principle be exploited to measure rather precisely the mag-
netic field in the loop, in the same spirit as a superconducting
quantum interference device. The measurement of the charge
itself could possibly be performed using a single-electron
transistor coupled electrostatically to the dot in the junction.

At the same time, in nowadays experiments, one has the
possibility either to taylor artificial quantum dots and to em-
bed them in a circuit, or alternatively to use existing nano-
objects for the same purpose. In particular, carbon nanotubes
contacted to metallic or superconducting leads5–7 have been
shown to behave like quantum dots, with the advantage that
they can be influenced by nearby metallic gates.6,7 There are
also attempts to place single molecules in the junction be-

tween two reservoirs.3,4 In such systems, the vibrational de-
grees of freedom may affect electron transport in two ways.
First, there are always vibrational degrees of freedom asso-
ciated with the material surrounding the molecular quantum
dot. Such phonons typically constitute a source of relaxation
and decoherence mechanism for quantum transport.12–23 Sec-
ond, the quantum dot itself may have internal vibrational
degrees of freedom, which are coupled to the charge of the
quantum dot.24–31 We focus on the latter mechanism in this
work. A number of previous works have addressed this issue
for nonequilibrium transport with normal-metal contacts,32–38

or for the supercurrent through a vibrating nano-objects.39–42

With this paper we want to address the issue of the phase
sensitivity of the charge in an Andreev quantum dot, taking
into account the presence of electron-phonon interaction. The
goal is to determine the impact of the phonon coupling on
the measurement scheme. Starting from a microscopic
Hamiltonian model, we will compute the equilibrium prop-
erties of the system for various parameters, in the regime
where the superconducting gap is much larger than all other
relevant energies in the system.

II. MODEL

Two typical setups are depicted in Fig. 1. On the right-
hand side is a generic setup where the central island is
coupled to the right and left leads and which has a �single�
vibrational degree of freedom. On the other hand, the setup
on the left side �see Fig. 1�a�� of the figure represents a
single-wall carbon nanotube �SWNT� which is suspended
between two superconducting leads. Additional gates placed
above the nanotube allow to define precisely the extent of the
quantum dot, and therefore allow to modulate its energy lev-
els. An overall gate voltage allows to apply an electric field
to the whole structure. In this second setup, several vibra-
tional modes are known to exist.41,42

We discuss primarily the case of a short junction �its
length L is much less than superconducting coherence length
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�� where the normal island can be described as a zero-
dimensional �0D� object. Due to the shortness of the junc-
tion, in practice this setup effectively describes real �0D�
molecular quantum dots. Such setups were realized
experimentally3,4 and described theoretically.36,37,39

The model of the Andreev quantum dot is described by a
total Hamiltonian which includes the dot and its internal de-
grees of freedom, the leads, and the tunnel coupling between
the latter two,

Ĥ = ĤD + ĤS + ĤT. �1�

The first term ĤD is the quantum dot, which contains for
simplicity a single level and a discrete phonon spectrum,

ĤD = �
i

��ib̂i
†b̂i + ��D − �

i

�i�b̂i + b̂i
†�� �

�=↑,↓
�n̂� −

1

2
	

+ Un̂↑n̂↓ �2�

with n̂�= d̂�
† d̂�; d̂�

† , d̂� are electron creation and annihilation
operators for the dot. The energy �D is the dot level, which
can be tuned by a gate voltage, and which is measured with
respect to the Fermi energy of the leads. Note that this simple
model can represent a more realistic multilevel dot, when
one level only contributes significantly to the electronic
transport because the spacing between the dot levels is large
compared to the superconducting gap and the coupling to

phonons. Each term ��ib̂i
†b̂i denotes the phonon energy of

the vibration mode i in the dot �b̂i
† and b̂i are phonon creation

and annihilation operators�, �i is the electron-phonon cou-
pling in this mode; index i runs over all mechanical modes
i=1,2 , . . . ,Nmodes. The electron-phonon coupling mechanism

is described by terms x̂iE, where x̂i=
� /2Mi�i�b̂i+ b̂i
†� are

displacements in an external electrical field E. The charge of
the dot is attracted by external gate voltage, which leads to a
change in its position. The deformation leads to the changing
of the ground-state energy and, therefore, of the charge of the
dot.

In the sum ���n̂�−1 /2� the constant 1/2 is subtracted to
“symmetrize” the matrix elements of the Hamiltonian. U de-
scribes the Coulomb interaction. The lead Hamiltonian de-
scribes two BCS superconductors �with a lead index �
=L,R �left, right��,

ĤS = �
�,k

	̂�,k
† ��k�̂z + 
�̂x�	̂�,k, 	̂�,k = � ��,k,↑

��,−k,↓
† � �3�

with an energy dispersion in superconducting leads �k
=�2k2 /2m−�F and an absolute value of the gap 
 in the bulk
of the superconductors. The electron hopping term between
dots and leads reads,

ĤT = �
�,k

�	̂�,k
† T̂�d̂ + H.c.�, d̂ = �d̂↑

d̂↓
†� , �4�

where T̂L,R= tL,R�̂ze
�i�̂z
/4 and t�’s are tunneling amplitudes

between superconductors and the dot. 
 is a superconducting
phase difference.

Calculations of observables for this system in thermal
equilibrium typically start from the calculation of the parti-
tion function Z�Tr�exp�−�H�
, where ��1 /kBT is the in-
verse temperature. The Josephson current is then propor-
tional to the logarithmic derivative with respect to the phase
difference 
, and the charge on the dot is the derivative of
the free energy with respect to the level position. In previous
works using functional integral approaches10 it was noted
that because the total Hamiltonian is quadratic in the lead
fermion operators, a partial trace over such degrees of free-
dom could be performed. This gives rise to an effective ac-
tion with a dot fermion self-energy which contains retarda-
tion effects, and which couples fermion operators of the
same nature, but with opposite spins. This coupling is a
manifestation of electron pairing phenomena at the level of
the dot due to the proximity with the superconducting leads.
In Ref. 39, the calculation of the partial trace over the leads
of the partition function was performed in a similar manner,
nevertheless using an operator approach. Furthermore, the
assumption that ��D�, U, �, ���
 �the so-called 
→�
limit� allowed there to neglect the retardation effect and to
therefore derive an effective Hamiltonian for the dot-phonon
system,

Ĥ = �
i

��ib̂i
†b̂i + ��D − �

i

�i�b̂i + b̂i
†�� �

�=↑,↓
�n̂� −

1

2
	

+ �̃�d̂↓d̂↑ + H.c.� + Un̂↑n̂↓, �5�

where �̃=� cos�
 /2�. The escape rate �=2���0��t�2 �or
resonance width of the dot�, assuming a constant density of
states ��0� near the Fermi energy of the metal in the normal
state. We assume a symmetric setup �tL�2= �tR�2= �t�2 for the
remainder of this study. The effective Hamiltonian Eq. �5� of
the large 
 limit constitutes the starting point of our calcu-
lation.

The matrix elements of the Hamiltonian with respect to
the dot electron states ���el are now computed. These states

are: �0�el �zero occupation�, �↑ �el� d̂↑
†�0�el, �↓ �el� d̂↓

†�0�el

�single occupation�, �2�el� d̂↑
†d̂↓

†�0�el �double occupation�,
which means that from the electron point of view, the only

off-diagonal part of Ĥ originates from the coupling to the
leads and involve either zero or double occupancy states,

�

� �
� �

tRtL

SWNT

Additional gates

Superconductors

(a) (b)

Ω

∆eiϕ/2∆e−iϕ/2

E

tRtL

FIG. 1. �Color online� �a� SWNT suspended between two super-
conducting leads with phase difference 
. The charge of the SWNT
Q is displaced by an external electrical field E. Two additional gates
form the electron’s resonances between them. �b� Model setup rep-
resents a quantum dot with oscillator degree of freedom coupled to
superconductors through tunnel junctions.
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H�� = �
i

��ib̂i
†b̂i + ��D − �

i

�i�b̂i + b̂i
†��diag�− 1,0,0,1


+ �̃�
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0
� + U diag�0,0,0,1
 . �6�

The basis of phonon states is �n�ph,i��b̂i
†�n�n!�−1/2�0�ph,i. Us-

ing relations i,ph�m�b̂i
†b̂i�n�ph,i=n�mn and i,ph�m�b̂i+ b̂i

†�n�ph,i
=
n�m,n−1+
n+1�m,n+1, we can thus generate the phonon
matrix elements of Eq. �5�. For one single phonon mode the
matrix representing the full Hamiltonian reads,

H��,mn = �
�1 �1 0 0 ¯

�1 �2 �2 0

0 �1 �3 �3

0 0 �3 �4

] �

� . �7�

We use greek indices for matrix elements in electron sub-
space and latin ones for phonons. The 4�4 matrix blocks �n
and �n are defined by

���,n = �
− �D 0 0 �̃

0 0 0 0

0 0 0 0

�̃ 0 0 �D + U
� + n�� �8�

and ���,n=diag�−1,0 ,0 ,1

n�; they describe electron de-
grees of freedom with n phonons and electron-phonon cou-
pling, respectively. The generalization to an arbitrary number
of phonon modes can easily be obtained by multiplication of
Hilbert subspaces for each phonon modes.

The eigenstates of the effective Hamiltonian can be cal-
culated numerically by truncation of the matrix �truncation
of the number of phonon states�. In practice, we took about
20 phonon states for � /�=3 and about 70 states for � /�
=5; these numbers are nearly independent of the number of
modes Nmodes.

III. STATES WITHOUT PHONONS: �=0

The electron states case were described using electron
representation10 and electron-hole Bogoliubov
superposition.11 The effective Hamiltonian reduces to 4�4
matrix �0 �see Eq. �8�� with singly degenerated �singlets�
eigenstates

E0,2 = U/2 � 
��D + U/2�2 + �̃2 �9�

and doubly degenerated �doublet� eigenstate,

E1 � E↑,↓ = 0. �10�

In the absence of Coulomb interaction U=0 the eigenvalues
are ordered as E0�E1�E2 and the ground state is always
formed by the state with energy E0 �pure holelike state in

Bogoliubov representation�. For U�0 the ground state can
be formed by the singlet �0�el �the singlet region in two-
dimensional �2D� plane ��D, 
���or by the doublet �1�el �dou-
blet region�, but never by �2�el. For arbitrary finite U the
doublet region exists if

��D + U/2�2 + �̃2 � �U/2�2, �11�

where �̃=� cos�
 /2�.

IV. REGIONS OF THE SINGLET AND DOUBLET STATES

The existence of the doublet state as the ground state of
the system is important for this system and we dwell on this
more. For zero electron-phonon interaction �=0 the doublet
region is specified by Eq. �11� and its form is represented in
Fig. 2�a�. The highest value of U corresponds to the largest
doublet region; with decreasing of U this region becomes
smaller and smaller. At U=0 its disappears.

If we start with some fixed finite U then the “area” of the
doublet region decreases with electron-phonon coupling �.
The evolution of the doublet region is plotted in Fig. 2�b� for
different values of the electron-phonon coupling constant.
The largest loop corresponds to the smallest �zero� �. Upon
switching �, the reduction in this region is barely noticeable,
it acts mostly on the level position range as it still approaches
the phase values 0 and 2�. There is a competition between
charge repulsion effects on the dot and the presence of the
electron phonon coupling, which can be understood to be
playing the role of an effective attractive, retarded, interac-
tion. This explains the reduction in the doublet region.

At horizontal line 
=� the decreasing of the doublet re-
gion in �D direction can be described by inequation ��D
+U /2��U /2−�2 /��. The nonzero electron-phonon cou-
pling acts as the negative Coulomb interaction �in the sense

1.0
(εD + U/2)/Γ (εD + U/2)/Γ

3π/2

0

π/2

π

2π

0.0 0.5−0.5−1.0

(b)

1.0

π/2

π

3π/2

2π

0
0.0−1.0 0.5−0.5

ϕ

(a)

λ/Ω = 0

λ/Ω = 2

U/Γ = 2

U/Γ = 2

λ/Ω = 4

λ = 0

U/Γ = 2/3

U/Γ = 4/3

FIG. 2. �Color online� Singlet-doublet jump in the �
 ,�D� plane;
the singlet regions lie outside the color loops, the doublet regions
lies inside the loops. �a� For zero electron-phonon interaction �=0
and different Coulomb interaction U /�=0 �empty region�, 2/3 �ma-
genta; smallest region�, 4/3 �blue�, 2 �red; largest region�. It is de-
scribed by Eq. �11�. �b� For different phonon-electron interaction
strength �=0 �red; largest region�, �=2 �cyan�, �=4 �green; small-
est region� and fixed Coulomb interaction U /�=2. The single-mode
oscillator has a frequency which is much smaller than the tunnel
resonance width �� /�=0.05. We see the interplay between Cou-
lomb interaction and electron-phonon coupling; the first one ex-
pands the doublet region in the 
 direction, the second one squeezes
it in the �D direction.
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of size of the doublet region�. It implies that for all �’s larger
than

�C = 
��U/2 �12�

the doublet region does not exist for any values of �D and 
.

V. CHARGE OF THE ANDREEV DOT

The charge Q of the nanotube/quantum dot �in a given
quantum mechanical state, e.g., some eigenstate of Eq. �5��
can be calculated by taking the derivative of its energy E �in
this particular state� with respect to the external gate poten-
tial Vg �or �D /e�,

Q = e � E/��D. �13�

If one is interested in the charge of the ground state, then
ground-state energy should be taken.

The same result can be obtained by averaging the charge
operator

Q̂ = e �
�=↑,↓

�n̂� −
1

2
	 �14�

and the corresponding matrix elements

Q�� = e diag�− 1,0,0,1
 �15�

over the needed state �Eq. �15� is written in the electron
subspace; it should be multiplied by the unity matrix in the
phonons subspace�. In what follows we concentrate on the
behavior of the charge as a function of flux 
 and dot level
position �D.

In the absence of phonons ��=0� the dot charge can be
found from Eqs. �9� and �10�. For the case when the singlet
constitutes the ground state

Q0,2 = � e
�D + U/2


��D + U/2�2 + �̃2
, �16�

�we should add the electron charge to this result if we re-
member about the subtraction ��1 /2=1 which appears in the
dot Hamiltonian �2��. For the case of the doublet we find

Q1 = 0. �17�

�or Q1=e if we restore the constant term which is subtracted
in the Hamiltonian �2��. Everywhere in this article we keep
Q1=0 for symmetry but the unit charge is well defined �no
quantum fluctuations� and has the correct physical interpre-
tation. Let us start with a normal dot with some well-defined
integer charge q=0,e ,2e. Then we connect the supercon-
ductors through tunnel barriers to superconductors �with
Cooper pairs�. If the charge is odd q=e then it does not
“feel” the superconductors and the charge remains integer. In
the case of even initial charge q=0,2e it couples with Coo-
per pairs in superconductors and creates the singlet state with
fractional and fluctuating charge �with rms value about e�.

For zero Coulomb interaction U=0 the doublet region is
absent and for �=0 the charge is given by Q2 fom Eq. �16�
everywhere, see Fig. 3�a�. Note, that the charge Q2 near the
values �
 ,�D�= �� ,0� has a narrow peak and it changes its

sign with �D. For U=�=0 this peak corresponds to an infi-
nite “charge-to-phase sensitivity,” see Sec. VI. For asymmet-
ric barriers there is no point with infinite slope and the
maxima of sensitivity are reached at two locations around

=�, see Ref. 11. Note that this peak is broadened by tem-
perature, finite superconducting gap 
, Coulomb interaction,
and electron-phonon interaction. The later is shown in Fig.
3�b�.

Next, if one now considers nonzero Coulomb interaction
�Fig. 3�c��, then a “flat” doublet region exists: the infinitely
narrow peak disappears for any U�0 and in the singlet re-
gion the charge is still given by Eq. �17�.

In addition, at the boundary of the doublet and the singlet
region the charge exhibits jumps �for the finite superconduct-
ing gap 
 or temperature T�0 this jump is smeared�. There-
fore the sensitivity is once again singular because one
abruptly changes the nature of the ground state upon varying
�
 ,�D�.

Further we study the combination of the charging effects
in the dot and the electron-phonon coupling. It turns out that
the size of the doublet region decreases as the strength of the
electron-phonon interaction � �more precisely, the factor
� /��� increases. This is displayed in Figs. 2�b�, 3�c�, and
3�d�. Comparing the Figs. 3�c� and 3�d� it can be seen that
the overall topology of the plots is the same except for the
fact that the reduced doublet region persists at U�0. In the
Appendix we provide a more detailed explanation of the
properties of the function Q�
 ,�D�.
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C
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Q
/
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−1

1

0

1

0

Insensitive doublet region

Electron-phonon coupling
Sensitive peaks

reduces size of doublet region

Electron-phonon coupling

supresses peaks

(b)

(d)(c)

(a)

FIG. 3. �Color online� Charge as a function of 
 at different
values of �D �from top to bottom �D /�=−0.5, −0.3, −0.1, 0.1, 0.3,
0.5� for zero Coulomb interaction U=0 and different �’s. Phonon
frequency � is much smaller than tunnel resonance width �,
�� /�=0.05. �a� and �b� Zero Coulomb interaction U=0. �=0 and
the charge Q0 is given by Eq. �16� at �a�. � /��=2 at �b�. The
maximum values of the differential charge-to-flux sensitivity �Eq.
�18�� is near the point 
=� with parameter �D around zero. For the
symmetric barrier and U=0 the sensitivity S�
 ,�D� has the singu-
larity at �� ,0� which disappears with any finite asymmetry, Cou-
lomb interaction, or electron-phonon interaction. �c� and �d� The
same for finite but small Coulomb interaction U=�. The flat dou-
blet region appears. The width of this region decreases as � in-
creases: from �c� to the �d� plot.
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VI. CHARGE-TO-PHASE SENSITIVITY

One can measure the charge via a capacitively connected
charge detector, e.g., a single-electron transistor. It does not
feel the whole Andreev quantum dot charge Q in practice,
but it feels some renormalized charge �C�SQ. The geometri-
cal factor �C comes from the properties of the measurement
gate �capacitance Cm� and other capacitively connected para-
sitic things around �capacitance Co�: �C=Cm / �Cm+Co�. The
second factor �S comes from the dynamical feedback of the
charge detector. In this article we suppose for simplicity that
�C=�S=1 keeping in mind that the charge in some way is
suppressed during measurement procedure �we thus study
the charge sensitivity unperturbed by detector�.

Let us define the charge-to-phase sensitivity at a given
point as the derivative

S =
2e

�

�Q

��
/2�
. �18�

This quantity characterizes the charge response to the super-
conducting phases difference, and, hence, to the magnetic
flux. It can be useful for a flux a detector which is based on
measuring the charge in the Andreev quantum dot.11 Note
that Eq. �18� coincides with the current-to-gate voltage sen-
sitivity S=e� I /��D �=�2e2 /���2E /��D� �
 /2��.

Consider the structure of the sensitivity as a function of
the parameters �
 ,�D� and its maxima in these parameters
Smax. In this article we concentrate on the sensitivity of the
singlet region and we omit the sensitivity due to the jumps of
the charge at the singlet-doublet border.

For U=�=0 the sensitivity has a “meaningless” large
value at �
 ,�D�= �� ,0� which corresponds to the narrow
peak in the charge, see Fig. 3�a�. The interaction with the
vibrating mode cuts this value and the sensitivity decreases
with �, which is shown in Fig. 4�a� by the top line �the
maximum moves away from the point �� ,0� and its new
position is shown in Figs. 4�b� and 4�c��.

Given a finite U the sensitivity initially is totally sup-
pressed by the existence of the nonsensitive doublet region,
whereas the maximum sensitivity moves to the border of the
singlet and doublet regions. Increasing �, the sensitivity of
the singlet region goes down but the size of the doublet
region decreases. The competition between these two effects
gives us new maxima—lower lines in Fig. 4�a�. The effect of
the decreasing doublet region “wins” when the curve goes up
�small �’s, the maximal sensitivity at the singlet-doublet bor-
der�; when the size of the doublet region is small enough the
sensitivity has its maximum inside the singlet region and
does not depend on U—curves merge and go down.

VII. ENTROPY

The entropy provides a measure of the effectiveness of the
electron-phonon coupling, and in particular to what extend
this coupling entangles the electron and phonon degrees of
freedom. The density matrix of the total system is given by
�̂= �	��	�, where �	� is the ground eigenstate of the Hamil-

tonian Ĥ, see Eq. �5�. The density matrices of the electron
and phonon subsystems are defined as �̂el=Trph��̂
 and �̂ph

=Trel��̂
, respectively �here Trph and Trel denote traces over
electron and phonon degrees of freedom�. Given a subsystem
density matrix, the von Neumann entropy is defined as

S = − Tr��̂ph log �̂ph
 � − Tr��̂el log �̂el
 . �19�

We consider for simplicity a single phonon mode. Let us
discuss first the absence of Coulomb interaction �U=0�; then
the system can never be in the doublet state, and the elec-
tronic basis can be restricted to ��0�el , �2�el�T and the ground
state can be written in full generality

�	� = a0�0�el � �p0�ph + a2�2�el � �p2�ph, �20�

where �0�el and �2�el are the electronic states, �p0�ph and �p2�ph
are normalized phonon states �which can be expressed as
linear combinations of the basis phonon states �n�ph�, and
�a0�2+ �a2�2=1. The reduced density matrix of the electron
subsystem is then

�̂el = � �a0�2 a0
�a2�p2�p0�

a0a2
��p0�p2� �a2�2

	 . �21�

Two extreme cases are simple and notable. First, for
�p0 � p2�=1, the density matrix corresponds to a pure state
with zero entropy; accordingly the wave function can be fac-
torized as �	�= �a0�0�el+a2�2�el� � �p0�ph. Second, when
�p0 � p2�=0, then the density matrix is diagonal, with S=
−�a0�2log�a0�2− �a2�2log�a2�2, which gives the maximum value
S=log 2 when �a0�2= �a2�2=1 /2. In the general case, the en-
tropy is S=−�+ log �+−�− log �−, with the eigenvalues ��

=1 /2� �1 /4− �a0�2�a2�2�1− ��p0 � p2��2��1/2. As entropy is
maximal �S=log 2� when �+=�−=1 /2, and decreases as the
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FIG. 4. �Color online� �a� The maximal value of charge-to-phase
sensitivity �see Eq. �18�� at �
 ,�D� plane as a function of electron-
phonon coupling strength � at different Coulomb energies U. �b�
and �c� The values of 
 and �D at which the maximum of the
sensitivity is attained. At all plots the U=0 �blue�, � /3 �green�,
2� /3 �red�, � �cyan�. The sensitivity can decreases or increases
with �. At U=0 the sensitivity goes from nonphysical infinity value
at �=0; this infinity by asymmetry of the dot, finite of 
, tempera-
ture, etc. �� /�=0.05.
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difference between �+ and �− increases, we see that to have a
large entropy one needs to have �p0 � p2� as small as possible,
and �a0�2=1− �a2�2 as close to 1/2 as possible.

The behavior of the entropy as a function of the param-
eters � �phonon coupling�, �D �position of the dot level� and

�̃=� cos�
 /2� is shown in Fig. 5�a�.
The main panel of the figure shows the increase in the

entropy as a function of �, for different values of 
, and

�D=0. The fastest increase is obtained for 
=� ��̃=0�. The
entanglement of electrons with the other degrees of freedom
develops easier, if the two electronic levels cross or close to
each other. The biggest entanglement/entropy at 
=� then
looks natural since the energies E− and E+ �see Eq. �9�� co-
incide at the point �� ,0�. The difference of E+−E− increases
with increasing “distance” from point �
 ,�D� to point �� ,0�,
and correspondingly away from the point �� ,0� entangle-
ment decreases. Also the increasing of the entropy with � can
be understood from simple analysis of the nature of the
electron-phonon coupling: the coupling to the electronic lev-
els �0�el and �2�el “displaces” the phonon field in opposite
directions, thus making the phonon states overlap ��p0 � p2��
smaller as � increases, which increases entropy. Decreasing


 �thus increasing �̃� gives a smaller entropy. This is due to

the coupling between the states �0�el and �2�el when �̃�0; the
states �p0� and �p2� are then combinations of the two dis-
placed states, which makes the overlap ��p0 � p2�� larger and
thus decreases entropy.

The inset of the figure shows how the entropy varies when
�D is changed, for different values of 
: it has a peaked
behavior, with a width which decreases sharply as 
 gets

closer to � �that is, �̃ to 0�; for 
=�, the width of the peak
is precisely zero: since the electronic levels �0�el and �2�el are
not coupled for 
=�, any nonzero value of �D means that
the ground state is obtained with a single electronic state
only ��0�el or �2�el�, and thus entanglement with the phonon
field, and entropy, is zero.

Let us now consider the effect of Coulomb interaction
�U�0�. As has been shown in previous sections, it creates a
doublet region. There, the entropy is simply zero. When a
doublet region exists, the maximal entanglement between
electron and mechanical subsystems is achieved at the border
of the singlet/doublet regions. Therefore the maximum en-
tropy �in variables �
 ,�D�� is obtained for �D=0 and 
 at the
edge of the singlet region. The entropy as a function of � for
nonzero U is plotted in Fig. 5�b�. The red curve �U=0� is the
same as the red curve in Fig. 5�a�; for U�0 �cyan and brown
curves�, the entropy maximum goes down because of the
existence of the doublet region but again approaches the as-
ymptote S=log 2 when the doublet region disappears at large
�’s, see Eq. �12�.

VIII. CURRENT THROUGH THE ANDREEV
QUANTUM DOT

The current I= �2e /���E /��
 /2� is defined by the opera-
tor

Î = −
2e

�
� sin




2
�d̂↓d̂↑ + H.c.� . �22�

The correspondent matrix elements �in electronic Hilbert
subspace�

I�� = −
2e

�
� sin




2�
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0
� . �23�

Similarly to Sec. VI about the sensitivity, we study the criti-
cal current IC�max
�I�
�
 dependence on the coupling
strength with the vibrational mode �. The later behaves in
the same way as the sensitivity except for special points at
�� ,0�, see Fig. 6.

Starting with �=0 one finds the value of 
 which gives
the maximal value of the current. It can be located at the
border of the singlet-doublet region �infinitely close from the
side of the singlet region� and the critical current takes the
value

ϕ = π

0.0

0.2

0.4

0.6

0.0

E
n
tr

op
y,

S

U = Γ

U = 2Γ

(a)

(b)0.6

0.4

0.2

−0.02 0.020.0

0.2

0.4

0.6

0.0

S = log 2

ϕ = π

ϕ = 0 ϕ = π/2

ϕ = 3π/4
ϕ = π/2

1.0 1.50.50.0
λ/�Ω

510 2 3 4
λ/�Ω

M
ax

im
u
m

en
tr

op
y,

S
m

a
x

2.0

U = 0

εD/Γ

FIG. 5. �Color online� �a� Subsystem entropy �Eq. �19�� at �D

=0 and different 
 as a function of �, with �� /�=0.05 and U=0.
The entropy increases from zero as the parameter � /�� increases,
and saturates at value S=log 2. Top inset: dependence of the en-
tropy on dot level �D at superconducting phase difference 
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dependence�, � /2 and � �strong peak around �D=0� for phonon-
electron interaction strength � /��=3. �b� Maximum entropy in the
�
 ,�D� space as a function of � /�� for U=0 �red�, U=� �cyan�,
and U=2� �brown�. The maximum entropy is reached for �D=0,
and values of 
 which depend on U.
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IC
�D� =

2e

�

2

U
�U2

4
− ��D +

U

2
	2�1/2

���2 −
U2

4
+ ��D +

U

2
	2�1/2

. �24�

Typically, if the critical current is defined by IC
�D�, its value

increases with �, e.g., see the red line and top inset in Fig. 6.
If the critical current’s 
 is located deep in singlet region its
value

IC
�M� =

2e

�
��2 + 2��D +

U

2
	2

− 2��D

+
U

2
�
�2 + ��D +

U

2
	2�1/2

�25�

decreases with � �e.g., blue line in Fig. 6�.
The existence of the doublet region transfers the system to

the regime of Coulomb blockade; the electron-phonon cou-
pling can transfer the system back to the open channel re-
gime but simultaneously it partially suppresses the current.

IX. CONCLUSION

We considered a quantum dot with mechanical degrees of
freedom which is coupled to superconducting electrodes in a
Josephson-junction geometry. As such a device can be used,
in principle, to measure with great sensitivity the magnetic
flux,9 our main goal was to address the effect of the phonon
coupling to this detection scheme. The superconducting gap
was assumed to be larger than all relevant degrees of free-
dom such as the Coulomb energy and the electron phonon
coupling. In this so called “infinite gap limit,” retardation
effects associated with the coupling to the superconducting
electrodes can be neglected, and observables can be com-
puted using a truncated Hilbert space for the phonons.

We computed the charge on the quantum dot and deter-
mined its dependence on the phase difference in the presence

of phonon coupling and Coulomb interaction. This allowed
to identify regions in parameter space with the highest
charge to phase sensitivity, which are relevant for flux detec-
tion. We found that nanomechanical properties significantly
affect the behavior of the electron system: charge, transport,
etc. In the absence of Coulomb interaction, the coupling to
the vibrational mode reduces the charge sensitivity. On the
other hand, when Coulomb interaction is present, it reduces
�eventually completely for large coupling� the electrically in-
sensitive doublet region due to Coulomb interaction, and in
this way it increases the charge sensitivity.

Information about the entanglement properties between
electron and phonon degrees of freedom was obtained by
computing the von Neumann entropy. For a fixed phase dif-
ference, and in the absence of Coulomb energy, the entropy
increases with increasing phonon coupling, and eventually
saturates. When plotted as a function of level position, the
entropy displays a peak when the level position corresponds
to the superconductor chemical potential. This peak narrows
at the phase difference approaches �. When the Coulomb
energy is switched on, the entropy is zero in the whole dou-
blet region.

Finally, the study of the critical current showed that for
weak and moderate Coulomb energy, the current is typically
reduced as the electron-phonon coupling is increased. For a
larger Coulomb coupling which exceeds the dot line width,
the critical current is much reduced at small electron-phonon
coupling but it acquires a maximum for larger coupling
strength and eventually merges with the curves correspond-
ing to weak Coulomb interaction.
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APPENDIX: DETAILED EXPLANATION OF THE
CHARGE BEHAVIOR

For zero Coulomb interaction U=0 the doublet region is
absent and for �=0 the charge is given by Eq. �16� every-
where. For U=�=0 the derivative �Q /�
 has a jump at the
location �
 ,�D�= �� ,0� in the 2D plane �
 ,�D�, see Fig.
7�a�; near this point the charge-to-phase sensitivity tends to
infinity. Note that for asymmetric barriers this point with an
infinite slope does not exist and maxima of sensitivity are
reached at four locations around �� ,0�, see Ref. 11. When
the electron-phonon interaction is switched on this special
point disappears and the maximal sensitivity is therefore sup-
pressed by the electron-phonon interaction. This is displayed
with increasing electron-phonon coupling in Figs. 7�b� and
7�c�.

Next, if one now considers nonzero Coulomb interaction
�Fig. 7�d��, then a flat doublet region exists: the special point
with infinite sensitivity disappears for any U�0 and the sen-
sitivity in the neighborhood of this point is totally suppressed
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FIG. 6. �Color online� Critical current through Andreev quantum
dot IC as a function of electron-phonon coupling �. Two effects
compete: electron-phonon coupling dumps the current �see blue and
green lines, which correspondent to U=0 and U=�� and electron-
phonon coupling decreases doublet region, where I�
�=0 �increas-
ing of the red line and inset, at bigger Coulomb coupling U=2��.
For large � /�� parameter the current totally suppresses. At this
plot �D=0.1�.
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by the existence of the doublet region. In the singlet region
the charge is given by Eq. �17�.

In addition, we observe that at the boundary between the
doublet and the singlet region, the charge exibits jumps and
therefore the sensitivity is once again singular �for finite tem-
peratures T�0 this jump is smeared� because one abruptly
changes the nature of ground state upon varying �
 ,�D�.

We next study the combination of electron interaction on
the dot with the electron-phonon coupling. By increasing

�from zero� the strength of the electron-phonon interaction �,
the size of the doublet region decreases. This is displayed in
Figs. 7�e� and 7�f� where the same electron phonon coupling
parameters are chosen as in Fig. 7�b� and 7�c�.The evolution
of the doublet region is plotted in Fig. 2 for more values of
the electron-phonon coupling constant. The largest loop cor-
responds to the smallest �zero� �. Upon switching �, the
reduction in this region is barely noticable, it acts mostly on
the level position range as it still approaches the phase values
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0 and 2�. Beyond �=0.4, the reduction is effective in both
the �
 ,�D� direction.

There is a competition between charge repulsion effects
on the dot and the presence of the electron phonon coupling,
which can be understood to be playing the role of an effec-

tive attractive, retarded, interaction. This explains the reduc-
tion in the doublet region. When comparing Figs. 7�c� and
7�f� we note that the overall topology of the plots is the same
except for the fact that a reduced doublet region persists at
U�0.
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