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We present a full band-structure calculation of the electronic contribution to the second-order susceptibility
in the limit of a sum frequency that vanishes. We give a sum-over-states expression for the optical rectification
coefficient �rect�����rect�0;� ,−��, which includes intraband contributions. Intraband transitions additionally
lead to shift and injection currents, which we identify in the total response and separate from the optical
rectification. The approach applies to all crystal classes and over a wide range of applied optical frequencies.
We apply our results to a full band-structure calculation of the optical rectification, shift current, and injection
current susceptibilities for wurtzite CdS and CdSe.
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I. INTRODUCTION

The optical response of a material is often described by a
series of optical susceptibilities characterizing its linear and
nonlinear response to the electromagnetic field.1,2 At the
level of the second-order response, different physical pro-
cesses are associated with the frequency components of the
second-order susceptibility tensor �2�−�� ;�� ,���, where
��=��+�� is the sum frequency denoting the Fourier com-
ponent of the induced polarization. For example, second-
harmonic generation �SHG� is described by the component
�2�−2� ;� ,�� and the electro-optic effect by the component
�2�−� ;� ,0�. Optical rectification is often attributed to the
component �2�0;� ,−�� but it has been shown that for a
clean, cold semiconductor, in the independent particle limit,
this frequency component is divergent for �� above the
band-gap energy.3

This physical divergence appearing in the limit ��+��

→0 must be distinguished from apparent divergences that
can occur in some optical susceptibility calculations. Early
band-structure calculations of the nonlinear optical response
used the minimal coupling Hamiltonian, and seemed to ex-
hibit an unphysical divergence at zero frequency.4 For the
expression for second-harmonic generation it was shown that
this divergence could be eliminated with the use of appropri-
ate sum rules that connect interband and intraband matrix
elements.4,5 A calculation using the dipole Hamiltonian,
rather than the minimal coupling Hamiltonian, eliminates the
appearance of unphysical divergences for any frequency
components, without the necessity of identifying sum rules.
Such a calculation is based on an approach relying on
Blount’s discussion of the position operator in periodic
systems.6 The remaining physical divergences appearing in
the rectification limit can be identified with “shift
current”7–12 and “injection current”13–17 effects, and the finite
part of �2�0;� ,−�� can be interpreted as the optical rectifi-
cation tensor.3,18–23

For zinc-blende crystals we have previously shown how
the rectification and shift current contributions of the general
�2�−�� ;�� ,��� susceptibility can be identified for ���0.
In these crystals the injection current vanishes. In this paper
we generalize the approach to arbitrary crystal classes. We

extract the injection current, shift current, and optical recti-
fication susceptibilities from the general �2�−�� ;�� ,���
susceptibility tensor. We provide sample calculations of the
response for wurtzite CdSe and CdS using a full potential
linearized augmented plane wave �FLAPW� band-structure
scheme, together with the LDA plus a “scissors approxima-
tion,” to evaluate our expressions. Among those crystal
structures that exhibit all three effects of optical rectification,
shift, and injection current, the wurtzite structure is one of
the simplest. These three effects, however, do not comprise
the entire second order response for pulsed excitation, even
in the independent particle approximation. In the ultrafast
regime, there are also currents arising from the dispersion of
�2�−�� ;�� ,���. These currents are typically weaker than
the shift, injection, and rectification currents appearing in the
dc limit but they are still captured in our framework.

While there is a lack of extensive experimental data of
these effects in wurtzite crystals, recent experiments investi-
gating the terahertz �THz� emission from CdSe and CdS
samples optically excited above the band gap have been re-
ported by Laman et al.,13 in which the THz emission was
attributed to shift and injection current processes. From their
measurements, they were able to back out estimates for the
shift and injection susceptibility tensors. We will compare
our results to theirs where possible, and our optical rectifica-
tion susceptibility calculations to the low-frequency values
of other second order nonlinear optical susceptibilities for
CdSe.

This paper is outlined as follows. Section II extends our
earlier derivations, and demonstrates how the second-order
optical response tensor in the independent particle limit
breaks up into optical rectification, shift current, and injec-
tion current contributions. The notation refers heavily to Sipe
and Shkrebtii18 and Nastos and Sipe.19 In Sec. III we present
numerical calculations of these contributions for wurtzite
CdSe and compare, where possible, to experimental findings.
We conclude in Sec. IV.

II. THEORY

We follow the notation laid out in Nastos and Sipe,19 and
Sipe and Shkrebtii.18 In the independent particle approxima-
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tion, the second-order response tensor is given by

�2
abc�− ��;��,��� = �2inter

abc �− ��;��,���

+
�̄2

abc�− ��;��,���
�− i���

+
K̄2

abc�− ��;��,���
�− i���2 , �1�

where ��=��+��, which explicitly shows the divergences
as ��→0. Roman superscripts denote Cartesian coordinates.
The first two terms on the right-hand side of Eq. �1� have
different divergences in �� and correspond to electric cur-
rents and dipole polarizations injected into the crystal that
have different temporal behavior under pulsed excitation.

The three tensors K̄abc, �̄2
abc, and �2inter

abc were introduced in
Sipe and Shkrebtii,18 and shown to be nondivergent for all
�� and ��.

In Nastos and Sipe19 we discussed the response in the
limit of continuous wave excitation from linearly polarized
light. Here we generalize to arbitrary polarization, and write
the pulsed field as

E�t� = Eenv�t�e−i�0t + Eenv
� �t�ei�0t. �2�

The envelope function Eenv�t� can be complex in general to
allow for circular polarized light. Much of the following dis-
cussion will be about the response to circularly polarized
excitation.

The electric polarization is often written in terms of the
susceptibility tensor and electric field,24

Pa�t� =� d��

2	
� d��

2	
�2

abc�− ��;��,���Eb����Ec����e−i��t,

�3�

where

E��� =� dtE�t�ei�t �4�

is the Fourier transform of E�t�. But this clearly leads to a
divergent polarization, at least within the context of optically
generated currents, and so we focus on the current �J�
=dP /dt. Each of the three terms in the right-hand side of Eq.
�1� gives rise to an individual contribution to the total current
response

�J� = �Jinter� + �Jintra�I + �Jintra�II. �5�

Taking the appropriate time derivatives of the polarization
Eq. �3� in order to bring down factors of −i�� and get well-
behaved expressions, the first of these terms is explicitly
given by �Jinter�=d�P�inter /dt, where

�Pinter
a �t�� =� d��

2	
� d��

2	
�2inter

abc �− ��;��,���


Eb����Ec����e−i��t, �6�

the second by

�Jintra
a �t��I =� d��

2	
� d��

2	
�̄2

abc�− ��;��,���


Eb����Ec����e−i��t, �7�

and the third by

d

dt
�Jintra

a �t��II =� d��

2	
� d��

2	
K̄abc�− ��;��,���


Eb����Ec����e−i��t. �8�

In Nastos and Sipe19 we focused on GaAs and GaP, and
limited the treatment of �Jintra

a �t��I and d�Jintra
a �t��II /dt to zinc-

blende crystals. Here we generalize the development to arbi-
trary crystal classes.

To isolate the nondispersive contributions, we expand the
electric field product Eb����Ec���� as

Eb����Ec���� = �Eb����Ec����	THz + �Eb����Ec����	SHG,

�9�

where we define

�Eb����Ec����	THz � Eenv
b ��� − �0�Eenv

c� �− �� − �0�

+ Eenv
b� �− �� − �0�Eenv

c ��� − �0�
�10�

and

�Eb����Ec����	SHG � Eenv
b ��� − �0�Eenv

c ��� − �0�

+ Eenv
b� �− �� − �0�Eenv

c� �− �� − �0� .

�11�

Here Eenv
b� �����Eenv

b ���	� refers to the complex conjugate of
the Fourier transform of the envelope function �as opposed to
the Fourier transform of the complex conjugate of the enve-
lope function�. Our focus is on the limit ���−�� so we
consider the slowly varying response, and keep only the term
�Eb����Ec����	THz.

We now substitute Eqs. �9� and �10� into the total re-
sponse given by Eqs. �6�–�8�. Using the intrinsic symmetry1

properties of �2
abc�−�� ;�� ,���, we find from Eq. �6�,

�Pinter
a �t�� = 2� d��

2	
� d��

2	
�2inter

abc �− ��;�0 + ��,− �0

+ ���Eenv
b ����Eenv

c� �− ���e−i��t, �12�

where �� and �� are new dummy variables introduced so
that the zero-frequency components of Eenv

b and Eenv
c corre-

spond to ��=��=0; the factor of 2 arises from the two

terms appearing in Eq. �10�. Since �̄2
abc and K̄abc also satisfy

intrinsic permutation symmetry,18 we have

�Jintra
a �t��I = 2� d��

2	
� d��

2	
�̄2

abc�− ��;�0 + ��,− �0

+ ���Eenv
b ����Eenv

c� �− ���e−i��t �13�

from Eq. �7�, and
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d

dt
�Jintra

a �t��II = 2� d��

2	
� d��

2	
K̄abc�− ��;�0 + ��,− �0

+ ���Eenv
b ����Eenv

c� �− ���e−i��t �14�

from Eq. �8�.
The expressions �12�–�14� often do not provide the most

transparent physical description of the response. As dis-
cussed in Nastos and Supe,19 one can cleanly introduce the
definition of shift and injection currents in addition to the
optical rectification. It is often more physically appealing to
describe the second-order response in terms of these effects
since a microscopic mechanism can be associated with each
one.18

From Eqs. �12�–�14� we identify the injection current as a
current rate that follows the pulse intensity. The susceptibil-
ity tensor describing the injection current, which we denote
by �inj

abc���, can be obtained from the limit

�inj
abc��0� � lim

��→0
�− i���2�2

abc�− ��;�0 + ��,− �0 + ��� .

�15�

The limit here refers to taking ��→0 and ��→0 in either
order.

The shift current is an induced current that follows
the pulse intensity. Subtracting the singular term
�inj

abc��0� / �−i��
2 � from �2

abc�−�� ;�� ,���, the tensor �shift
abc ���

describing shift current can be obtained from the limit

�shift
abc ��0� � lim

��→0
�− i���
�2

abc�− ��;�0 + ��,− �0 + ���

−
�inj

abc��0�
�− i���2� . �16�

The optical rectification is an induced polarization that
follows the pulse intensity, and its susceptibility tensor
�rect

abc�����rect
abc�0;� ,−�� can be obtained by subtracting the

singular contributions of shift and injection current from Eq.
�1� and then taking the limit ��→0, so that

�rect
abc��0� � lim

��→0

�2

abc�− ��;�0 + ��,− �0 + ��� −
�shift

abc ��0�
�− i���

−
�inj

abc��0�
�− i���2� . �17�

This prescription extracts the different effects that occur
in the independent particle limit, and classifies them accord-
ing to their microscopic origin and phenomenological de-
scription. We bundle the remaining terms of �2

abc into �2rem
abc ,

given formally by the difference

�2rem
abc �− ��;�0 + ��,− �0 + ���

� �2
abc�− ��;�0 + ��,− �0 + ��� − �rect

abc��0�

−
�shift

abc ��0�
�− i���

−
�inj

abc��0�
�− i���2 . �18�

This quantity �2rem
abc accounts for the dispersive effects in the

low-frequency response, and vanishes in the continuous
wave limit.

To identify the equations for each of the limiting terms of
Eqs. �15�–�18� we consider the total response at the level of
d�Ja� /dt, expand it in powers of �� and ��, and identify
terms with the appropriate power of �� for each physical
effect.

This approach has one further aim. While previously

given equations18 for K̄abc, �̄2
abc, and �2inter

abc can be used di-
rectly to evaluate the response, this can be computationally
expensive since it requires calculating and storing the sus-
ceptibility tensors for all pairs of frequencies �� and ��

spanned by the pulse. Below, we write the response tensors
in terms of effective single-frequency tensors, which greatly
simplifies the computations required to evaluate the total re-
sponse.

We first consider the sum d�Ja�t�� /dt=d2�Pinter
a � /dt2

+d�Jintra
a �t��I /dt+d�Jintra

a �t��II /dt,

d

dt
�Ja�t�� = 2� d��

2	
� d��

2	
Eenv

b ����Eenv
c� �− ���e−i��t


��− i���2�2inter
abc �− ��;�0 + ��,− �0 + ���

+ Tabc�− ��;�0 + ��,− �0 + ���	 , �19�

where Tabc is defined from Eqs. �13� and �14� as

Tabc�− ��;�0 + ��,− �0 + ���

� �− i����̄2
abc�− ��;�0 + ��,− �0 + ���

+ K̄abc�− ��;�0 + ��,− �0 + ��� . �20�

The tensors �̄2
abc and K̄2

abc can be expressed in terms of
single-frequency tensors,19 so that

�̄2
abc�− ��;��,��� = − i�
abc���� + 
acb����	 �21�

and

K̄abc�− ��;��,��� = �abc���� − �abc���� , �22�

where 
abc��� and �abc��� are effective single-frequency
tensors, with real and imaginary parts that are related by the
Kramers-Kronig relations. We denote the real part with sub-
script I and the imaginary parts with subscript II, so that

abc���=
I

abc���+ i
II
abc��� and

�abc���=�I
abc���+ i�II

abc���. From the symmetry properties19

of the real and imaginary parts of 
abc��� and �abc���, Tabc

can be written in terms of real and imaginary parts: Tabc

=TI
abc+ iTII

abc, where the imaginary part TII
abc is strictly zero

below the band gap.
Now we Taylor expand Tabc in Eq. �19� in order to iden-

tify the different powers of �−i��� in Eqs. �15�–�17�. Ex-
panding 
abc��� and �abc��� about the carrier frequency �0,
the real part of Tabc is

TI
abc�− ��;�0 + ��,− �0���

� − ���
I
abc��0� + ��
I

abc���0� − 
I
acb��0�

+ ��
I
acb���0�	 + ���I

abc���0� +
1

2
�����
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− ����I
abc���0� , �23�

where we have dropped terms of order O��3 /�0
3� and higher.

In Eq. �23� and below we use primes to denote derivatives
with respect to �, e.g.,

�I
abc���0� � 
d�I���

d�
�

�=�0

, �24�

�I
abc���0� � 
d2�I���

d�2 �
�=�0

, �25�

etc. We can further simplify Eq. �23� by using

�abc���� = 
abc��� − 
acb��� , �26�

which we derive in the Appendix. Using this gives

TI
abc�− ��;�0 + ��,− �0 + ���

= �− i���21

2
�
I

abc���0� + 
I
acb���0�	 . �27�

The imaginary part iTII
abc can be written as

iTII
abc�− ��;�0 + ��,− �0 + ���

= + 2i�II
abc��0� − i���
II

abc��0� + 
II
acb��0�	

+ i��� − ����II
abc���0� +

i

2
���

2 − ��
2��
II

abc���0�

+ 
II
acb���0�	 −

i

2
�������II

abc���0� , �28�

where we have dropped terms of order ��3 /��.
We are now in a position to identify the injection current

susceptibility tensor. Using Eq. �28� in Eq. �19�, we see that
the first term in Eq. �28�, 2i�II

abc���, is independent of ��

and ��, and thus it gives a current-injection rate that is pro-
portional to the intensity. This term then is the injection cur-
rent susceptibility �inj

abc���, and we have

�inj
abc��� = 2i�II

abc��� . �29�

The injection current rate is the continuous wave limit of Eq.
�14�, given by

J̇inj
a = 2i�inj

abc��0�Im�Eenv
b �t�Eenv

c� �t�	 . �30�

The expression for �II
abc��� is18

�II
abc��� = −

ie3	

4�2 � d3k

8	3�
mn

�mn
a �rmn

c ,rmn
b 	fnm���mn − �� .

�31�

The quantity fnm= fn− fm where fn is the ground-state occu-
pation number for band n, rmn

a �k� is the interband position
matrix element, �mn�k�=�m�k�−�n�k�, where ��m�k� is the
band-structure energy of band m at k, and �mn

c �vmm
c �k�

−vnn
c �k�, where vmm

c �k�=d�m�k� /dkc is the group velocity.
We have dropped the explicit k label in Eq. �31�.

The shift current can be found from the second term of
Eq. �28�, −i���
II

abc��0�+
II
acb��0�	. The factor −i�� indi-

cates that the current from this term follows the pulse inten-
sity, as phenomenologically expected of the shift current.
From Eqs. �16�, �19�, and �21� we have

�shift
abc ��� = 
II

abc��� + 
II
acb��� . �32�

The shift current is then given by

Jshift
a = 2�shift

abc ��0�Re�Eenv
b �t�Eenv

c� �t�	 . �33�

The expression for the 
II
abc��� is


II
abc��� = −

ie3	

2�2 � d3k

8	3 fnm�
nm

rmn
b rnm;a

c ���mn − �� .

�34�

We now identify the optical rectification. We see that no term
in iTII

abc has a leading factor of ��
2 and so there is no contri-

bution from iTII
abc to a polarization that follows the optical

pulse, and thus no contribution to optical rectification. Since
�2inter

abc �−�� ;�� ,��� is nondivergent, the term �2inter
abc �0;�0 ,

−�0� does contribute to �rect
abc��0�. Corrections to

�2inter
abc �0;�0 ,−�0�, from expanding �2inter

abc �−�� ;�0+�� ,−�0
+��� about ��=0 and ��=0, give dispersive terms that
describe an induced polarization that depends on time de-
rivatives of the envelope function of the laser field.

However, �2inter
abc �0;�0 ,−�0� is not the only term contrib-

uting to the optical rectification. Because of the factor
�−i���2 in TI

abc�−�� ;�0+�� ,−�0+��� �Eq. �27�	, the elec-

tronic response associated with the factor 1
2 �
I

abc���0�
+
I

acb���0�	 is treated at the same level of �2inter
abc �0;�0 ;

−�0� and is part of the optical rectification tensor �rect
abc��0�.

Using Eqs. �17� and �27� gives our general result for the
optical rectification tensor

�rect
abc��� = �2inter

abc �0;�;− �� +
1

2
�
I

abc���� + 
I
acb����	 .

�35�

The optical rectification polarization is given by

Prect�t� = 2�rect
abc��0�Eenv

b �t�Eenv
c� �t� . �36�

The reality of Prect�t� is ensured by the relation �rect
abc��0�

=�rect
acb���0�.
To obtain the formula for �rect

abc���, the formula for
�2inter

abc ��� can be obtained from Sipe and Shkrebtii18 and Nas-
tos and Sipe.19 There is was shown that �2inter

abc ��� is given by

�2inter
abc ��� = Babc��� + Bacb���� , �37�

where the imaginary part of Babc���, denoted by BII
abc���, is

given by

BII
abc��� =

e3	

2�2� d3k

8	3 �
nmp

fnm��� − �mn�
rnm
b 
 rmp

a rpn
c

�pm

+
rmp

c rpn
a

�pn
� +

irnm
a rmn

b �mn
c

�mn
2 +

irnm
c rmn;b

a

�mn
� . �38�

The quantity rmn;b
a �k� is the generalized derivative of the in-

terband matrix element rmn
a �k�. The reader is referred to Sipe

and Shkrebtii18 and Natsos and Sipe.19 for more details on
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the generalized derivative and the evaluation of such quanti-
ties. The real part BI

abc��� can then be found by using the
Kramers-Kronig relation. The remaining term in �rect

abc���,
which is 1

2 �
I
abc����+
I

acb����	, can be determined by first
calculating the imaginary part of 
abc���, and then evaluat-
ing 
I

abc��� with the second Kramers-Kronig relation �see

Ref. 19 for details�. The derivative 
I
abc���� can be deter-

mined with finite difference. Note that while both the real
and imaginary parts of Babc��� are contained in the expres-
sion for �rect

abc���, only the real part of 
abc��� appears.
Formally then, the remaining dispersive terms can be

written as

�2rem
abc �− ��;�0 + ��,− �0 + ���

� �2inter
abc �− ��;�0 + ��,− �0 + ���

+
Tabc�− ��;�0 + ��,− �0 + ���

�− i���2

− �rect
abc��0� −

�shift
abc ��0�

�− i���
−

�inj
abc��0�

�− i���2 . �39�

Dispersive terms arising from �2inter
abc give the usual types

of dispersion effects one would normally expect from ex-
panding �2inter

abc �−�� ;�0+�� ,−�0+��� about the carrier fre-
quency. However, the three remaining terms in Eq. �28�,
which we have not addressed yet, are susceptibility tensors
for currents that do not fit into the framework of dividing the
second-order response into rectification, shift, and injection
currents. We label these remaining three currents J1

a�t�, J2
a�t�,

and J3
a�t�, respectively. They arise from the dispersion in

�rem, given by Eq. �18�, exist only for excitation above the
band gap, and vanish in the continuous-wave limit. They
depend on derivatives of the electric field envelope function,
and cannot be written in terms of simple derivatives of only
the intensity envelope function. While the focus of this paper
is on the nondispersive effect of optical rectification, shift,
and injection current, for completeness we conclude this sec-
tion by giving the electric field dependence of these disper-
sive currents.

The term, i���−����II
abc���0�, in Eq. �28�, results in a

current rate d
dt �J1

a�t�� given by

d

dt
�J1

a�t�� = 2�II
abc���0�
Eenv

b �t�
d

dt
Eenv

c� �t� − Eenv
c� �t�

d

dt
Eenv

b �t�� .

�40�

Using the antisymmetry of �abc��� under exchange of b and
c, it is straightforward to show that if the electric field has a
fixed polarization, so that up to a time-independent phase the
amplitudes of orthogonal field components are the same,
then d�J1

a�t�� /dt vanishes. It does not vanish, however, if the
electric field polarization is changing with respect to time.

The next term in Eq. �28� is i
2 ���

2 −��
2��
II

abc���0�
+
II

acb���0�	. This gives a current rate d�J2
a�t�� /dt given by

d

dt
�J2

a�t�� = i�
II
abc���0� + 
II

acb���0�	



Eenv
b� �t�

d2

dt2Eenv
c �t� − Eenv

b �t�
d2

dt2Eenv
c� �t�� .

�41�

In most cases of interest this term also vanishes. It survives
when the electric field carries a time-dependent phase.

The last term in Eq. �28� is −i 1
2 �������II

abc���0�. Associ-
ated with it is a current rate d�J3

a�t�� /dt, given by

d

dt
�J3

a�t�� = i
1

2
�II

abc����
 d

dt
Eenv

b �t�
d

dt
Eenv

c� �t�

−
d

dt
Eenv

b� �t�
d

dt
Eenv

c �t�� . �42�

Unlike the two terms J1 and J2, this term does not necessarily
vanish when the electric field is circular polarized, although
it does vanish for linear polarizations. To see that it does not
vanish, consider a crystal oriented so that the tensor compo-
nent �II

xxz is accessed under normal incidence. If the field is
circularly polarized in the crystal, such that Eenv

z �t�= iEenv
x �t�

then we find

d

dt
�J3

x�t�� = 2�II
xxz����� d

dt
Eenv

x �t��2

. �43�

To summarize, the total current response to pulsed exci-
tation is given by �J� in Eq. �5�. One approach to calculating
the total response is to solve directly the three susceptibilities

�2inter, �̄2, and K̄ in Eqs. �12�–�14� from the expressions
given in Sipe and Shkrebtii18 or Nastos and Sipe.19 A more
physically transparent approach is to identify in the expres-
sions �12�–�14� the effects of optical rectification, shift cur-
rent and injection current. The optical rectification is given
by Eqs. �35� and �36�, the shift current is given by Eqs. �32�
and �33�, and the injection current by Eqs. �29� and �30�.
Within the approximations made in this work, the three ef-
fects of optical rectification, shift, and injection current are
the only electronic effects existing in the continuous wave
limit. What remains in Eqs. �12�–�14� are the dispersive con-
tributions the response.

In addition to the temporal dependence of the typical dis-
persive terms one would expect from an expansion of the
nonlinear susceptibility around the carrier frequency of the
pulse, we have identified terms with a more specific temporal
dependence, existing only for excitation at photon energies
above the band-gap energy and arising from the dispersion of

�̄2 and K̄. The currents from these terms are specified in J1,
J2, and J3 in Eqs. �40�–�42�, respectively.

III. WURTZITE CDS AND CDSE

A. Symmetries of the optical response components

We now turn to the numerical evaluation of the response.
The dispersive terms J1, J2, and J3 are only significant for
very short pulses, typically under 10 fs in duration.19 Non-
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linear optical experiments do not regularly approach that re-
gime, and to our knowledge even the rectification response
of GaAs has yet to be experimentally studied on such time
scales. For that reason we focus only on the susceptibility
calculations of shift current �shift

abc ���, injection current
�inj

abc��� and optical rectification �rect
abc���, for which a number

of experiments have been reported.
We choose to evaluate these tensors for wurtzite CdS and

CdSe since these are two of the simpler bulk semiconductors
for which �inj

abc��� does not vanish. In Ref. 19, we evaluated
�rect

abc��� and �shift
abc ��� for the zinc-blende crystals GaAs and

GaP. For these crystals �inj
abc��� vanishes, and the electronic

response to a continuous-wave laser consists of rectification
and shift current contributions.

The wurtzite semiconductors are direct gap, noncen-
trosymmetric binary compounds, as are the zinc-blende
semiconductors. However, the wurtzite crystal lattice be-
longs to the hexagonal crystal system; it is less symmetric
than zinc-blende and has a more complicated primitive cell,
consisting of four atoms instead of two. It belongs to the
dihexagonal pyramidal crystal class 6mm, and space group
P63mc �C6v4�. The orientation of the crystal is important in
understanding the response. We use the coordinate system
and basis convention as laid out in the text by Grosso and
Parravacini.25 The primitive lattice vectors are t1
=a�1 /2,�3 /2,0�, t2=a�−1 /2,�3 /2,0�, and t3=c�0,0 ,1�.
The direction of t3 is called the c axis and is typically the
growth axis. We use the empirical values a=8.126a0 and c
=13.24a0. The Cd atoms are set at �0,0,0� and �0,a /�3,c /2�,
and the S �or Se in CdSe� atoms are at �0,0 ,uc� and
�0,a /�3,uc+c /2�. For the internal parameter u, we use the
ideal value u=3 /8.

We first discuss the symmetries of the optical susceptibil-
ity tensors of wurtzite. The linear optical response tensor
�1

ab�−� ;�� is diagonal in the frame used to identify the ti
above, but the low symmetry leads to �1

xx=�1
yy ��1

zz. The
second order nonlinear tensor �2

abc�−�� ;�� ,��� tensor has
the nonzero components: �2

xzx=�2
yzy, �2

xxz=�2
yyz, �2

zxx=�2
zyy,

and �2
zzz. Each of these components can be complex. How-

ever, the susceptibility tensors for the individual effects of
optical rectification, shift current and injection current may
have more symmetry constraints. Consider optical rectifica-
tion: Using the reality of the polarization and intrinsic per-
mutation symmetry, one has the additional constraint

�rect
abc���� = �rect

acb��� , �44�

which naturally, our expression �35� satisfy; it follows from
this that �rect

zzz ��� and �rect
zxx ��� are purely real. The xxz and xzx

components are still complex but now they satisfy the addi-
tional relation �rect

xxz =�rect
xzx�.

These different tensor components can be accessed with
different crystal orientations, and different polarizations of
incident light. We consider one crystal orientation, in which
the different tensor components can be accessed by different
light polarizations. In this orientation, the light propagates
along the −ŷ direction, and the laser electric field is polarized
in the xz plane. This is a somewhat unconventional orienta-
tion, since for normal incidence it requires a crystal with the
c axis lying in the plane of the surface. Most optical experi-

ments on bulk wurtzite semiconductors, especially those in-
volving absorption studies, use the xy plane as the sample
surface, and have the light propagating along the c axis.

We consider four different excitation scenarios. In each
we identify the polarization of the light in the crystal. This
may differ slightly from the incident polarization but with
the knowledge of the linear susceptibility the incident polar-
ization could be adjusted to produce the desired polarization
inside the crystal; in practice the adjustments would be
small. We focus on the polarization state in the crystal to best
demonstrate the various symmetry properties of the re-
sponse.

In the first scenario, the light is linearly polarized along ẑ
so that Eenv�t�=Eenv�t�ẑ. In this and the other scenarios, we
assume the envelope functions Eenv�t� are purely real. For
this scenario, we expect an optical rectification polarization
induced along ẑ,

Prect
z �t� = 2�rect

zzz ��0�Eenv
2 �t� . �45�

For the second scenario, the light polarization is given by
Eenv�t�=Eenv�t�x̂, which also gives a rectification that is
along ẑ. This polarization is

Prect
z �t� = 2�rect

zxx ��0�Eenv
2 �t� . �46�

To access the component �rect
xxz , the light polarization must

have components along x̂ and ẑ. For the third scenario we
consider light linearly polarized along �x̂+ ẑ� /�2, so that
Eenv�t�=Eenv�t��x̂+ ẑ� /�2. This gives a rectification along x̂
of

Prect
x �t� = ��rect

xzx ��0� + �rect
xxz ��0�	Eenv

2 �t� . �47�

It also gives a rectification along ẑ, given by

Prect
z �t� = ��rect

zzz ��0� + �rect
zxx ��0�	Eenv

2 �t� . �48�

Note that, from Eq. �44�, the quantity in brackets in Eq. �47�
is simply 2 Re��rect

xxz ��0�	. To access the imaginary part of
�rect

xxz , circularly polarized light can be used. For the fourth
and final scenario, we consider Eenv�t�=Eenv�t��x̂+ iẑ� /�2,
which gives

Prect
x �t� = i��rect

xxz ��0� − �rect
xzx ��0�	Eenv

2 �t� . �49�

The quantity �rect
xxz ��0�−�rect

xzx ��0�=2i Im��rect
xxz ��0�	 contains

only terms that, at least within the independent particle
model, vanish below the band gap. That is, this rectification
polarization only exists for excitation at photon energies
above the band-gap energy, and because such excitation is
accompanied by absorption that leads to other processes gen-
erating strong currents, it would be difficult to distinguish the
effects of this rectification polarization from those of other
processes.

The different electric field polarizations in each scenario,
and the induced optical rectification electric dipole polariza-
tions, are summarized in Table I. We now turn to the shift
and injection current processes. The shift current tensor
�shift

abc ��� is purely real, and symmetric under exchange of b
and c. Thus, there are three unique nonzero components:
�shift

zzz , �shift
zxx =�shift

zyy , and �shift
xxz =�shift

xzx =�shift
yzy =�shift

yyz . These tensor
components can be accessed by using the same electric field
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polarizations as used above to investigate the rectification. In
Table I we summarize the shift current responses from these
different polarizations. In the fourth scenario, which involves
circularly polarized light, there is no shift current along x̂,
since �shift

xxz =�shift
xzx . In the continuous wave limit, it is common

to introduce the shift distance dshift
a , defined as the average

distance traversed by an electron as it is promoted from the
valence band to the conduction band,

dshift
a = Jshift

a /eṅ , �50�

where ṅ is the carrier injection rate. In the continuous-wave
regime, the carrier injection rate can be determined from
Fermi’s golden rule to be26,27

ṅ = �ab���Ea�− ��Ea��� , �51�

where the tensor �ab��� is proportional to the linear response
tensor �ab�−� ;��, and is given by27

�ab��� =
2	e2

�
� d3k

8	3�
mn

fnmrnm
a rmn

b ��� − �mn� . �52�

There is only one unique nonzero component of the injection
current susceptibility tensor,

�inj
xxz = − �inj

xzx = �inj
yyz = − �inj

yzy . �53�

This tensor component can be accessed with circularly po-
larized light in which the superposed linear polarizations are
along the c axis of the crystal and perpendicular to it. Using
the circular polarization �x̂+ iẑ� /2, the resulting current in-
jection rate is

J̇inj
x �t� = 2�inj

xxz��0�Eenv
2 �t� . �54�

In the continuous-wave limit, we can use the swarm velocity
vswarm to characterize the injection current. The swarm veloc-
ity is defined as the average velocity of the injected elec-
trons, and its component along a is given by

vswarm
a = J̇inj

a /eṅ . �55�

B. CdS

We now evaluate the rectification, shift, and injection ten-
sors using the expressions given in Sec. II. Our calculation of
the band structure and matrix elements is done using density-
functional theory, within the local-density approximation
�LDA�. We use the WIEN2K full-potential LAPW package to

solve the Kohn-Sham equations and compute the matrix
elements.28 An all-electron approach is needed to account for
the semicore states in CdS and CdSe. In the FLAPW ap-
proach the unit cell is partitioned into nonoverlapping atomic
spheres centered at atomic sites, and an interstitial region.
Spin-orbit interactions are included with a second variational
step applied to the atomic sphere regions.29 It is well known
that the LDA underestimates the band gap. We find band-gap
values of 1.41 eV and of 2.45 eV, for CdS and CdSe, respec-
tively. For the calculation of the nonlinear response we use
the scissors correction, as detailed by Nastos et al.26 to adjust
the band gap to the experimental values of 2.45 eV and 1.75
eV for CdS and CdSe, respectively. We follow the same
computational details as in Nastos and Sipe,19 so we refer the
reader there for further details. For the Brillouin-zone inte-
grations required to compute the response functions we use
an adaptive integration scheme we have detailed elsewhere.27

In Figs. 1–3 we present the numerical result for the opti-
cal rectification susceptibility tensor �rect

abc��� as a function of
electric photon energy ����. In Fig. 1 we plot the real parts
of the components �rect

zzz ���, �rect
zxx ���, and �rect

xxz ��� for frequen-
cies below the band gap, where there is no absorption. The
component �rect

xxz ��� is only real below the band gap, unlike
�rect

zzz ��� and �rect
zxx ���, which are purely real at all frequencies.

The static limit values are �rect
zzz �0�=7.5 pm /V and �rect

zxx �0�
=�rect

xxz �0�=−12.5 pm /V. That �rect
zxx �0�=�rect

xxz �0� reflects the
full permutation symmetry at zero frequency �Kleinman
symmetry�.

TABLE I. Summary of optically induced responses from different incident polarizations.

Polarization Optical rectification Shift current Injection current

Eenv�t�ẑ Prect
z �t�=2�rect

zzz ��0�Eenv
2 �t� Jshift

z �t�=2�shift
zzz ��0�Eenv

2 �t�
Eenv�t�x̂ Prect

z �t�=2�rect
zxx ��0�Eenv

2 �t� Jshift
z �t�=2�shift

zxx ��0�Eenv
2 �t�

Eenv�t� x̂+ẑ
�2

Prect
x �t�= ��rect

xzx ��0�+�rect
xxz ��0�	Eenv

2 �t� Jshift
x �t�=2�shift

xxz ��0�Eenv
2 �t�

Prect
z �t�= ��rect

zzz ��0�+�rect
zxx ��0�	Eenv

2 �t� Jshift
z �t�= ��shift

zzz ��0�+�shift
zxx ��0�	Eenv

2 �t�
Eenv�t� x̂+iẑ

�2
Prect

x �t�= i��rect
xxz ��0�−�rect

xzx ��0�	Eenv
2 �t� Jshift

z �t�= ��shift
zzz ��0�+�shift

zxx ��0�	Eenv
2 �t� J̇inj

x �t�=2�inj
xxz��0�Eenv

2 �t�
Prect

z �t�= ��rect
zzz ��0�+�rect

zxx ��0�	Eenv
2 �t�
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FIG. 1. �Color online� The optical rectification susceptibility
tensor components �rect

zzz , �rect
zxx , and �rect

xxz for CdS at laser photon
energies below the band gap. The zzz and zxx components are
purely real. The component xxz is purely real below the band gap.

OPTICAL RECTIFICATION AND CURRENT INJECTION… PHYSICAL REVIEW B 82, 235204 �2010�

235204-7



In Figs. 2 and 3 we plot the real and imaginary parts of
the component �rect

xxz ���, and the components �rect
zzz ��� and

�rect
zxx ���, over a much wider energy range. These results dem-

onstrate that the response coefficient is much larger at photon
energies above the band gap, where there are resonances due
to absorption. Unfortunately, this strong absorption also
leads to a small active region, which makes any conventional
attempt to detect this coefficient above the band gap very
difficult.

While there are a number of measurements and calcula-
tions of second-harmonic generation in bulk wurtzite crys-
tals, we are unaware of any for the rectification response
tensor �rect

abc���. Such measurements would in any case in-
clude lattice contributions to �rect

abc��� as well, which we have
not calculated here. There is some merit in comparing our
results to values of different �2 nonlinear effects. We expect
these to be of the same order, since in the limit of zero
frequency �abc��� ;�� ,�����abc�0;� ,−�� for the elec-
tronic response. The absolute values for the second-harmonic
generation coefficients at low frequencies have been reported
to be between 72 and 84 pm/V,1 roughly a factor of 10 larger
than our values; but these were very early measurements. In

other theoretical work dealing with the second-order nonlin-
earity, Rashkeev and Lambrecht30 reported the static limit of
�2 to be 40 pm/V for cubic CdS, roughly a factor of four
different from our results. While their calculation uses a
similar approach to the LDA band structure as ours, the scis-
sors correction they implemented is different. It is unclear
how much of the difference could be due to that, or to other
details of the calculations.

Note that the real and imaginary parts of �rect
xxz ��� are not

related by the Kramers-Kronig relation. This is borne out in
Eq. �35�. In this equation, the term �2inter

abc ��� satisfies the
Kramers-Kronig relations but the real part 
I

abc��� appears
without its Kramers-Kronig pair 
II

abc���. The 
II
abc��� terms

appear in the shift current �cf. Eq. �32�	, to which we now
turn.

In Fig. 4 we plot the three shift tensor components
�shift

zzz ���, �shift
zxx ���, and �shift

xxz ��� as a function of photon en-
ergy. All three spectra are zero below the band gap, and they
all attain a maximum absolute value within the first 0.5 eV
above the band edge. The decrease at higher energies is be-
cause the participating states are from a larger area in the
Brillouin zone, and the effective dipole moments with each
final state are unaligned.

The shift currents in both wurtzite CdS and CdSe were
experimentally investigated by Laman et al.13 By measuring
the THz radiation emitted from the shift current, they were
able to extract the values �shift

zzz =8
10−6 A /V2 and �shift
zxx

=3
10−6 A /V2 for CdS, at an excitation energy of roughly
3 eV. Our peak value near the band edge is no more than 3

10−6 A /V2, which is within an order of magnitude of
these experimental findings. For the xxz component we find
worse agreement. The experiments of Laman et al. were un-
able to resolve a signal from this component, so they set an
upper bound of 10−7 A /V2. However, we find a sizeable
nonzero component, comparable to the zzz and zxx compo-
nent. Some of this discrepancy may be attributed to the sur-
face of the crystal used in the experiments. To measure the
xxz component in a THz emission experiment the crystal
sample should be oriented with the z axis in the plane of the
surface. This is a difficult crystal cut with which to work,
since its surface is plagued with steps and other imperfec-
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FIG. 2. �Color online� The real and imaginary parts of the opti-
cal rectification susceptibility component �rect

xxz for CdS. The imagi-
nary part is zero below the band gap.
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FIG. 3. �Color online� The CdS optical rectification susceptibil-
ity components zzz and zxx for photon energies below and above
the band gap.
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FIG. 4. �Color online� The shift current tensor �zzz, �zxx, and
�xxz for CdS. Each component is zero below the band gap.
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tions. A much smoother surface is obtained when the c axis
is parallel to the growth axis. For completeness we note that
for SHG the xxz component is of the same order of magni-
tude as the two components zzz and zxx.1

Turning now to the shift distance, we recall that in zinc-
blende crystals the shift distance can be characterized by
only one value, and a geometric factor accounting for the
direction of the linear polarization of the light field.19 In
wurtzite crystals there are a number of combinations of op-
tical polarizations and crystal orientations that give different
values. For brevity, we only discuss two scenarios in which a
shift current is excited along the c axis �ẑ�. In the first sce-
nario the electric field is linearly polarized along ẑ. We refer
to as the “parallel” case. In the second scenario, which we
refer to as the “perpendicular” case, the field is polarized
along x̂. The shift distances dshift

z are shown in Fig. 5. We see
that for the parallel case the band edge the shift distance is
almost 6 Å. This is roughly the unit cell c parameter, which
is more than twice the bond length. At higher energies the
shift distance changes sign and reaches almost 4 Å. This
suggests that for some energies the above band-gap excita-
tion leads to an electron transfer beyond the nearest neigh-
bor. In the perpendicular case, where the electric field is not
parallel to any bond, the shift distance is significantly
smaller.

This picture of the shift distance in CdS is quite different
than the model developed for GaAs. The intuition surround-
ing the shift distance for that material is that in the excitation
process, the electron density makes transitions from the more
electronegative ion to the less electronegative one. In a bi-
nary compound, there can be many multiple nearest neigh-
bors that are less electronegative, and it is the electric field
polarization that determines the direction, if any, of the net
shift. For excitation just above the band gap in GaAs, we
have found that the shift distance is approximately the bond
length.19 At higher energies the shift distance varies in a
range between the bond length to half the bond length. This
leads to an interpretation in which the transfer occurs only
between nearest neighbors for a wide range of energies.
From the calculations presented here, this picture breaks

down for the wurtzite materials. One approach to understand
the underlying microscopic dynamics driving the shift cur-
rent is to calculate the evolution of the microscopic current
and charge densities as a function of time under the influence
of the laser field but this is beyond the scope of the current
work.

Finally, we turn to the injection current tensor �inj
xxz. In Fig.

6 we plot the imaginary part of the component �inj
xxz. Like the

shift current tensor, the injection current tensor is zero below
the band gap. Above the band gap, the tensor is purely imagi-
nary and achieves its maximum value at a photon energy of
approximately 2.75 eV, just above the band gap. The large
variation as a function of photon energy is attributed to the
crystal-field and spin-orbit splittings in the valence bands.
This is clearer when considering the swarm velocity, which
is the average speed of the injected carriers. In Fig. 7 we plot
the swarm velocity for the scenario in which the light is
circularly polarized along �x̂+ iẑ� /2. The swarm velocity
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FIG. 5. �Color online� The shift distance d for CdS. The large
variations arise from the different transitions that are excited near
the band edge.
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text. The peak swarm velocity is almost 60 km/s, attained at exci-
tation energies of around 2.7 eV just above the transition energy
from the split-off band energy �2.57 eV�.
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spectrum has roughly the same profile as the injection cur-
rent, except that the onset at the band edge and the variation
around the peak value are a little more abrupt. The peak
swarm velocity appears at photon energies well above the
band edge but below the split-off energy. This is because the
electron group velocities become larger at higher energies in
the band structure near the � point, but once the energies
exceed the split-off band the large volume of states partici-
pating in the response make the crystal effectively more
symmetric in its response to the laser light; for high symme-
try crystals, such as zincblende GaAs, the injection current
vanishes. Laman et al. could not measure the phase of the
current injection tensor, but found it had a magnitude of ap-
proximately 4i
108 A /V2 s at a photon energy of 3.0 eV.
At this photon energy we calculate a value of about 1.6i

108 A /V2 s. However, there is much variation in the spec-
trum in the neighborhood of this photon energy, and given
the errors in the curvature of the LDA bands near the gap, it
is unrealistic to compare the response at a particular fre-
quency. Our peak magnitude near the band edge is about
3.8i
108 A /V2 s which is closer to peak value seen by La-
man et al.

The average injected velocity of the electrons, the swarm
velocity vswarm, is shown in Fig. 7. Like the injection current,
the spectrum has a sharp peak at photon energies above the
band edge, and drops off rapidly above the split-off energy.
We find a maximum swarm velocity magnitude of about 60
km/s at about 2.7 eV excitation. Laman et al. determined a
swarm velocity of 20 km/s at 3.0 eV. At the same photon
energy we find a magnitude of around 18 km/s, in very close
agreement.

C. CdSe

We turn to the results for CdSe. In Figs. 8 and 9 we plot
the rectification tensor components zzz, zxx, and xxz. The
spectra for CdSe show some striking differences from the
CdS results. In particular, the resonances from the band gap,

at 1.75 eV, cause large variations in the rectification below
the gap. Indeed, for the zxx component, our calculations in-
dicate that the variation is strong enough to lead to a sign
change.

We are unaware of any other calculations of the rectifica-
tion tensor for CdSe. For cubic CdSe, however, calculations
of the second-harmonic response coefficient in the static
limit have been reported. Rashkeev and Lambrecht30 find a
static limit of 50 pm/V. However, they did not find a reso-
nance effect as striking as ours. Dal Corso et al.31 found a
larger value of �2=118 pm /V for cubic CdSe. For wurtzite
CdSe, Roberts has reported experimental values for the low-
frequency second-harmonic response.32 He found �zzz

=72 pm /V, and �xxz=−36 pm /V at a wavelength of
10.6 �m. Although it is difficult to make an exact compari-
son, our results for the static limit ��2

zzz=102 pm /V and
�2

zxx=�2
xxz=−48 pm /V� are within a factor of 2 of these re-

sults. This is very good agreement, given the complications
of comparing the static limit of these two effects. Turning to
the shift current in CdSe, in Fig. 10 we present the shift
current tensor components.

We find that all three components are large and have peak
magnitudes in the range of 4
10−6–18
10−6 A /V2. While
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the zzz and zxx components are of the same order of magni-
tude as found by Laman et al. we again find a much larger
xxz component, which was undetected in their experiments.

In Fig. 11 we plot the shift distance for the parallel and
perpendicular cases of linearly polarized light, as described
in the CdS section. At the band edge, the shift distance in the
parallel orientation is roughly equal to the CdSe bond length
�0.27 nm�. This is similar to the situation in GaAs, where we
found that the shift distance was also very near the bond
length. The perpendicular orientation, however, has a shift
distance that is almost twice the bond length. Laman et al.
determined an experimental value of 0.1 nm for CdSe, al-
most a factor of 3 smaller than what we find. Finally, we turn
to the injection current. In Fig. 12 we plot the injection cur-
rent susceptibility.

The variation near the turn on at 1.75 eV is due to the
crystal-field splitting and spin-orbit coupling. At the onset,
the component is actually positive for about two tens of an

electron volt, and then turns negative when the photon en-
ergy crosses the crystal-field splitting energy. It then stays
negative up to an energy corresponding to the spin-orbit cou-
pling, at which point it turns positive at about 2.25 eV. At
this energy the split-off bands participate in the excitation
process, and this leads to a smaller injection current. Com-
paring to experiment, Laman et al. found an experimental
value of approximately 1.5
108 A /V2 s at a photon energy
of 1.80 eV. At 1.8 eV we find a value of under 0.5

108 A /V2 s. The swarm velocity vswarm, for CdSe is
shown in Fig. 13. The effect of the crystal-field splitting is
more pronounced here than for CdS. The swarm velocity is
positive near the band edge, and turns negative once the
crystal-field split states participate. As the energy increases
the split-off bands participate causing the sign to change
again. At 2.2 eV we find the maximum swarm velocity for
CdSe of about 50 km/s. At higher photon energies the crystal
effectively appears more symmetric to the laser light, and the
injection current begins to vanish. Laman et al. estimated a
swarm velocity of 9 km/s at 1.80 eV. Our theoretical calcu-
lations predict roughly 8 km/s at that photon energy, in good
agreement with their measurement.

IV. CONCLUSIONS

Under pulsed excitations, the near-dc second-order re-
sponse of semiconductors can be understood to be dominated
by three current responses: optical rectification, shift, and
injection current. We have generalized our earlier treatment
of this response to arbitrary crystal class. The approach
clearly identifies the shift and injection currents within the
second-order response, and also identifies a divergence-free
expression for the optical rectification tensor �2rect

abc ��� appli-
cable to clean, cold, semiconductors of any crystal class,
both below and above the band gap.

We have applied the formalism to calculate the optical
rectification, shift and injection current tensors in wurtzite
CdS and CdSe within an FLAPW approach. For the static
limit our results for CdSe are within a factor of 2 of results
taken from SHG measurements. Our comparison of our re-
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sults with a more recent experiment by Laman et al.,13 in-
vestigating the shift and injection currents in CdSe and CdS,
shows larger differences. While we find reasonable agree-
ment for effects associated with the zzz and zxx components
of the shift current tensor, we predict an equally strong xzx
component, while Laman et al. could not resolve this com-
ponent. These measurements are difficult and we hope that
these theoretical results will encourage more experimental
studies.

The calculations utilize the scissors correction to correct
for the underestimation of the band gap typical in band struc-
tures calculated from density functional theory within the
LDA. However, the scissors correction only provides a rigid
shift of the conduction bands upward to higher energies, and
cannot be expected to provide correct effective masses near
the band gap. The curvature of the bands there will thus be
incorrect, and calculations of optical quantities very near the
gap will be affected. We do not expect that the scissors cor-
rection would work as well for materials such as CdS and
CdSe as it would for GaAs and Si, where the shifts lead to
smaller relative corrections to the band gaps. Part of the dis-
agreement between theory and experiment may be due to this
as well, and we hope our results will encourage more sophis-
ticated theoretical studies.
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APPENDIX: DERIVATION OF Eq. (24)

Here we derive the identity �abc����=
abc���−
acb���.
From �the discussion around Eq. �18� of� Ref. 19 we have,

�abc���� = −
ie3

8�2� d3k

8	3�
mn

�mn
a fnm�rnm

c ,rmn
b 	F+��mn,��� ,

�A1�

where

F���mn,�� =
1

�mn − � − i�
�

1

�mn + � + i�
. �A2�

Now consider �abc����. To evaluate this, we use

�

��
F+��mn,�� = −

�

��mn
F−��mn,�� �A3�

and

�mn
a �

��mn
=

�

�ka , �A4�

and integrate by parts. Using

�

�ka �rnm
c ,rmn

b 	 = rnm;a
c rmn

b + rnm
c rmn;a

b − rnm;a
b rmn

c − rnm
b rmn;a

c ,

�A5�

we get

�abc���� = −
ie3

8�2� d3k

8	3�
mn

fnm�rnm;a
c rmn

b + rnm
c rmn;a

b − rnm;a
b rmn

c

− rnm
b rmn;a

c �F−��mn,�� . �A6�

Now using

rnm
c �− k�rmn;a

b �− k� = − rmn
c �k�rnm;a

b �k� , �A7�

and noting that we can take −k→k under the integral, we get

�abc���� = −
ie3

4�2� d3k

8	3�
mn

fnm�rmn
b rnm;a

c

− rmn
c rnm;a

b �F−��mn,�� . �A8�

But 
abc��� is given by


abc��� = −
ie3

4�2� d3k

8	3�
mn

fnmrmn
b rnm;a

c F−��mn − �� ,

�A9�

which gives us Eq. �26�. We have verified that this numeri-
cally holds over the photon energy range 0–4 eV.
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