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An application of the tight-binding approximation is presented for the description of electronic structure and
interatomic force in magnetic iron, both pure and containing hydrogen impurities. We assess the simple
canonical d-band description in comparison to a nonorthogonal model including s and d bands. The transfer-
ability of our models is tested against known properties including the segregation energies of hydrogen to
vacancies and to surfaces of iron. In many cases agreement is remarkably good, opening up the way to
quantum-mechanical atomistic simulation of the effects of hydrogen on mechanical properties.
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I. INTRODUCTION

In this paper we demonstrate tight-binding �TB� models
for iron with and without interstitial hydrogen impurities at
the concentrated and dilute limits. Although there is a large
number of existing classical potentials which are certainly of
great importance and usefulness, they all suffer from a par-
ticular drawback in that the underlying classical embedded
atom potentials �EAM�-type models for pure Fe, with one
apparent exception,1 fail to predict the known core structures
of screw dislocations.1,2 On the other hand tight-binding
models abstracted into bond-order potentials correctly pre-
dict core structures in agreement with first-principles
calculations.2 Ultimately one of the many goals is to study
how interstitials form atmospheres around dislocations and
impede or enhance flow through mechanisms such as hydro-
gen enhanced local plasticity3 and so it is essential that dis-
location core structures are correctly predicted. A further
slightly disturbing feature of the classical models is the truly
vast number of parameters involved which have to be fitted
to a very large training set of data. Here in common with the
approach to classical model fitting,1 we first construct models
for pure iron and then go on to make models for hydrides
without further adjusting the Fe-Fe interaction parameters.
But in contrast we try to keep the number of parameters and
fitting targets to a minimum and focus on the ability of the
models to predict those properties that are normally included
in the training sets in the construction of classical potentials.
We would argue that this is possible because the TB approxi-
mation comprises a correct quantum-mechanical description
of both magnetism and the metallic and covalent bond and so
the correct physics is built in from the start. That being the
case, we do not expect the theory to be over sensitive to the
choice of parameters and indeed in the procedure we de-
scribe below a large number of equally useful models is
thrown up.

The structure of this paper is as follows. In Sec. II we
revisit the tight-binding approximation and discuss its pa-
rameters and their environment dependence, or screening.
We describe two models for pure Fe in Sec. III which are
fitted to properties of bulk bcc �-Fe and used to predict

properties of fcc �-Fe and hcp �-Fe, as well as surface and
vacancy formation energies in �-Fe. In Sec. IV we augment
one of these models with Fe-H interactions which we fit to
the properties of four monohydride FeH phases, and test
against adiabatic potential surfaces. We then proceed to the
dilute limit of H in Fe in Sec. V without further adjustment
of parameters and use our model to predict segregation en-
ergies of H to interstitial sites, vacancies and surfaces of
�-Fe. By and large, we find remarkable agreement with pub-
lished experimental results and ab initio calculations. We dis-
cuss our models and conclude in Sec. VI.

II. TIGHT-BINDING APPROXIMATION
AND TRANSFERABILITY

A. Distance scaling and range of the hopping integrals

There is no need to rehearse the tight-binding approxima-
tion in any detail here. Recently Paxton and Finnis4 con-
structed tight-binding models for magnetic Fe and Fe-Cr al-
loys and details can be found there as well as in many other
publications.5–9 However we do wish to make some prelimi-
nary remarks. The scheme that we use is the self-consistent
Stoner model for itinerant ferromagnetism8 and goes beyond
the fixed moment and rigid-band approximations. The con-
nection between tight-binding theory and the first-principles
local spin-density approximation �LSDA� to density-
functional theory �DFT� is now well established.7,10,11 TB is
computationally several orders of magnitude faster than
LSDA because the Hamiltonian is constructed from a
look-up table of parameterized hopping integrals, h, and pos-
sibly overlap integrals, s. These are conventionally written in
Slater and Koster’s notation12 as ss�, sd�, dd�, dd�, dd�.
Central to a tight-binding model is the way in which these
integrals scale with bond length. In this work we will
use4,13–15

h�r� = h0e−qr �1�

and similarly for overlap integrals, when used,

PHYSICAL REVIEW B 82, 235125 �2010�

1098-0121/2010/82�23�/235125�15� ©2010 The American Physical Society235125-1

http://dx.doi.org/10.1103/PhysRevB.82.235125


s�r� = s0e−qr. �2�

The alternative is to use the power-law scaling, h�r−n, de-
manded by canonical band theory.16–19 There is no strong
argument to prefer one over the other; in fact by equating20

logarithmic derivatives of h�r� at, say first neighbors at a
distance r0, we have n=qr0 and in the bcc structure of Fe
q�1 a.u. corresponds to the canonical n=5 �see Table I�.

This brings us to a well known paradox of tight-binding
modeling, namely, that the decay of the hopping integrals is
known a priori from band theory, which may render them
longer ranged than is desirable. A well-known example is the
group IV semiconductors where by analogy with the free-
electron bands, to reproduce the volume dependence of the
bandwidth the hopping integrals must scale with n=2.21 This
scaling is bound to lead to very long-ranged hopping inte-
grals; on the other hand it is known that the first neighbor
approximation is the right one, and attempts to include fur-
ther neighbors fail.22 For many purposes it is adequate sim-
ply to cut off the interactions between first and second neigh-
bors, but this can lead to difficulties in work on complex
defects or in molecular dynamics. An elegant solution was
provided by Goodwin et al.23 �GSP� which cuts off a power
law exponentially beyond some chosen cut-off distance, rc.
There are two drawbacks to this. �i� An exponential decay
can still lead to discontinuities in molecular dynamics �as
one still needs to impose a cutoff in the neighbor lists�. �ii�
The GSP form maintains the value but not the slope of the

underlying power law at first neighbors. Therefore our pref-
erence is to retain the power or exponential scaling given by
the canonical band theory and to choose two distances, r1
and rc, between which to smoothly augment the interaction
to zero. This can be achieved by matching value, slope, and
curvature at r1 and at rc with a fifth degree polynomial which
replaces the hopping integral in that range.24 We show our
hopping integrals thus augmented at Fig. 8 in Sec. IV below,
where we discuss this matter further.

B. Pair potential, transferability, and nonorthogonality

The hopping integrals provide an attractive force, which
in the conventional tight-binding models is balanced by a
repulsive pair potential, which here may take the form

��r� = B1e−p1r − B2e−p2r �3�

in which, as suggested by Liu et al.,8 both B1 and B2 are
positive. This potential is expected to be repulsive at short
range but is not positive for all r �see Fig. 4, below�.

An additional nonpairwise repulsion is provided if it is
chosen to make the model basis nonorthogonal. This may
give a number of advantages.4 One is, that it is widely be-
lieved that nonorthogonality confers a greater transferability
to the model.25 By this is meant that a model constructed for
a particular crystal structure is less likely to fail when trans-
ferred into a situation of different crystal structure or in-
creased or reduced coordination. We will wish to focus criti-

TABLE I. Parameters of our tight-binding models for pure Fe. The �h� and �s� are the h0 and s0 of Eqs.
�1� and �2�. All quantities are given in atomic Rydberg units �1 bohr=0.529 Å, 1 Ry=13.61 eV�. Note
that in the orthogonal d model, the number of d electrons, Nd is a parameter �Ref. 8�. Both hopping integrals
and pair potentials are smoothly cut off between distances r1 and rc. These are shown in units of the bcc
lattice constant, a. Both pair potentials are cut off with r1=1.1 and rc=1.4, that is, between second and third
neighbors of the bcc lattice �see Fig. 4 below�. By expressing r1 and rc in units of a we imply that these scale
with the lattice constant, for example, in the calculation of the bulk modulus, so that in a perfect lattice first
and second neighbors always see the “proper” pair potential �Eq. �3�� and hopping integrals. This also applies
below �Fig. 6� to energy-volume curves in FeH, both for first and second bcc neighbors and first fcc
neighbors.

Model Orthogonal d Nonorthogonal sd

�s−�d 0.15

h0 or s0 q r1 rc h0 or s0 q r1 rc

hdd� −4.464 1 1.1 1.4 −2.438 0.9 1.1 1.4

hdd� 2.976 1 1.1 1.4 1.997 0.9 1.1 1.4

hdd� −0.744 0.9394 1.1 1.4 −0.907 0.9 1.1 1.4

hsd −0.141 0.3 1.1 2.0

hss −0.350 0.3 1.1 2.0

ssd 0.50 0.6 1.1 2.0

sss 0.45 0.5 1.1 2.0

Nd 6.80

I 0.050 0.055

B1 1248.0 536.0

p1 1.4510 1.4900

B2 1025.0 371.2

p2 1.4087 1.4131
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cally on this aspect of our models below. It is instructive at
this stage to recall that by its very construction the tight-
binding approximation discards all three center terms in the
Hamiltonian.9 On one hand the canonical band theory shows
that these, like nonorthogonality, are of second order in the
bandwidth.19,26,27 On the other hand Tang et al.28 and Haas et
al.29 took the important step of proposing environment-
dependent hopping integrals. In this empirical scheme the
hopping integral between two atoms is modified in the close
proximity of a third atom—in the extreme limit this third
atom may approach the two-center bond, generally speaking
weakening or “screening” it, and eventually come in between
the two atoms. Whereas the screening was first described by
an empirical formula, Pettifor succeeded in deriving the Tang
et al.28 expression from the Löwdin transformation of the
nonorthogonal Hamiltonian.30 In particular, he showed that
sd overlap matrix elements in pure transition metals provide
this screening of the two-center bond. Therefore rather than
adopting explicit environment dependence as is done in re-
cent bond-order potentials,31,32 we retain the two-center ap-
proximation and employ nonorthogonal models to account
for the screening.

C. Choice of parameters

A related and highly significant finding30 is that hopping
integrals extracted from an LSDA Hamiltonian calculated
using the tight-binding linear muffin-tin orbital-atomic
spheres approximation �LMTO-ASA� method27 are discon-
tinuous between first and second neighbors in bcc transition
metals. These discontinuities are described consequently by
the screening—a feature of the geometry of the bcc lattice—
leading to the analytic form of Tang et al.28 and Haas et al.29

The point we wish to raise here is that it became clear30 that
transferable hopping integrals may be extracted from an
LSDA Hamiltonian thus avoiding the usual need for
fitting.9,30 Of course there is no unique tight-binding model
for a given element since the LSDA Hamiltonian is basis-set
dependent. We do not adopt this approach here for two rea-
sons. First, the hopping integrals deduced from the LMTO-
ASA �Refs. 9 and 30� derive from a Hamiltonian whose on-
site matrix elements are strongly volume-dependent whereas
in the tight-binding approximation these terms are volume
independent and hence any volume dependence of the elec-
tronic structure must be taken up by the scaling law �1�.
Second, if the hopping integrals and their scaling are taken
from ab initio band structures without permitting further ad-
justment, then essential properties such as elastic constants,
lattice constants, and structural energy differences may have
to rely on the choice of pair potential placing a large burden
on that part of the model which is the most ad hoc.

III. MODELS OF PURE IRON

A. Orthogonal d and nonorthogonal sd models

Construction of a tight-binding model for transition met-
als is quite straight forward if it is not required to take the
parameters from first-principles band-structure calculations.4

Given that the scaling should be close to canonical, as should
the ratios,19

dd�:dd�:dd� � − 6:4:− 1

it is simple enough to guess a set of Hamiltonian and overlap
matrix elements and adjust these until the resulting energy
bands match reasonably closely those from the LSDA. In
fact, in all that follows we have used the LSDA with a gen-
eralized gradient correction �GGA� of Perdew et al.33 With
the exception of data taken from the literature all our LSDA-
GGA results are calculated using the full-potential LMTO
method.34 Energy bands calculated in this way are shown on
the right in Fig. 1. A simple canonical d-band model pro-
duces the bands shown to the left of Fig. 1. In addition to the
integrals already discussed, we require a Stoner parameter, I,
which represents an on-site Coulomb integral,4,6 to achieve a
splitting of the up and down spins.4,8 Furthermore since the
canonical model omits the s band which is occupied by
roughly one electron19 it is necessary to fix a number of d
electrons, Nd.8,15 This is both the most simple and most reli-
able model for transition metals.6,35–37 Nevertheless for the
present purposes we wish to extend this model. In the inter-
ests of transferability and to account for the bond screening
without explicit environment-dependent bond integrals, we
explore here the addition of an s orbital to the basis, includ-
ing sd� and ss� nonorthogonality. We will also give argu-
ments for this necessity when we come to the iron hydrides
below. The resulting bands, again obtained by simple com-
parison by eye with the LSDA-GGA bands are shown in Fig.
1. Densities of states associated with the LSDA-GGA and
tight-binding models are shown in Fig. 2.

Having obtained two sets of bond integrals, we proceed to
find parameters of the pair potential and we do this by ad-
justing the four parameters in Eq. �3� to the lattice constant
and the three elastic constants of bcc Fe. This cannot be done
exactly because of the restricted form of the pair potential.
The parameter sets are given in Table I and resulting prop-
erties are in good agreement with experiment or LSDA-GGA
calculations as can be seen in Table II. Calculations, written
in italics in Table II, have been done using the full-potential
LMTO method34 and elastic constants are all obtained at the
theoretical lattice constants. Our calculated lattice and elastic
constants are in general agreement with previous work.43

B. Predictions of the models

1. Magnetic moment and structural magnetic energy differences

It should be noted that the two models we have described
are rather intuitively obtained and so, apart from the pair
potential it cannot be said that these are “fitted” in the sense
of a classical potential. Hence the properties shown in Table
II are in essence predictions of the model, validating the
underlying correctness of the tight-binding theory. These pre-
dictions can be discussed in more detail by reference to Fig.
3 which shows the structural energy-volume relation in bcc
and hcp Fe broken down into bandstructure energy and mag-
netic energy contributions.4 Both models reproduce the es-
sential features which are, �i� the rapid collapse of the hcp
magnetic moment under pressure; �ii� the slow decline of the
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bcc moment; and �iii� the stabilization of bcc over hcp being
a result of the magnetism. The role of the pair potential war-
rants explanation here. Figure 4 shows Eq. �3� plotted using
the parameters of our two models from Table I. It might well
be supposed that the stability of the bcc phase compared to
the hcp is an artifact of the negative region of ��r� falling at
the second neighbors of the bcc structure, while the 12 hcp
nearest-neighbor distances fall in a positive region. This
would be a valid criticism of our and Liu et al.’s8 models but
is misleading. In fact we find that we can easily make models
that stabilize bcc employing a pair potential that is positive
everywhere. In addition the stabilization of the bcc structure
can be amplified by choosing larger Stoner I parameter. We
allow a larger moment in our orthogonal d model since it is
known that the magnetic moment in bcc Fe would be closer
to 2.6 	B in the absence of sd and pd hybridization.44,45

Therefore the LSDA-GGA bcc-hcp energy difference is bet-
ter rendered in that model �Table II� whereas we have chosen
a value of I in our nonorthogonal sd model that strikes a
compromise between a smaller bcc-hcp energy difference
having the benefit of a magnetic moment closer to the ob-
served value. The real benefit of the form �3� is that it en-
ables a sufficiently large value of the elastic constant C�
which otherwise appears too small. It is well known that C�
can become very soft in bcc metals and the values we obtain
in Table II are the best we can achieve after many trials with
the other parameters and scalings in the models. Indeed in
the model of Liu et al.,8 C� is significantly lower than ours.
The only solution we know of to fit the elastic constants
exactly is to employ a spline form for the pair potential as is
done in the fitting of bond-order potentials,24,31,32 and we are
rather reluctant to make such a departure from physical in-
tuition.

2. fcc �-Fe

Because our models were fitted to the bcc Fe lattice and
elastic constants, it is important to focus on the lower part of
Table II which deals with the fcc phase of Fe. This is �-Fe
which is the base for the austenitic steels and the crystal
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structure adopted by pure Fe above 1185 K.46 It is well
known47–50 that �-Fe exists in a high-spin ferromagnetic
�FM� and a low-spin �approximately nonmagnetic �NM��
modification and we show predictions for both phases in
Table II which we compare with LSDA-GGA calculations
and experimental observations. It is a mark of transferability
that both models give a good account of each of the two fcc
phases. Neither model fully captures the large and negative
C� or the softening of c44 of the LSDA-GGA in the high-spin
phase; although they are in better accord with experiment
than the LSDA-GGA, the proper comparison is with the 0 K
calculations. The elastic softening in �-Fe is consistent with
the measured temperature dependence of C� in the Invar
alloys,51 therefore it is encouraging that our models are able
to describe this important physical phenomenon at least, in
principle. It has already been shown that elastic and phonon

softening with increasing temperature in �-Fe is captured in
the tight-binding approximation.52,53

3. Surface energies

The proper test of transferability is to carry the models
into situations of over or under coordination. Here, we do
this by addressing the surface energies of pure Fe. We have
set up the �110�, �001�, and �111� surfaces of bcc Fe and
relaxed the atom positions by energy minimization using the
Hellmann-Feynman forces.8,9,54 The resulting energies are
shown in Table III in order of decreasing coordination, the
most close packed surface being �110�. We achieve modest,
but satisfactory agreement with published LSDA-GGA
calculations55 at least for the two most close packed surfaces.
It is in fact notable that the LSDA-GGA predicts all the
surfaces to have nearly the same energy with �111� being a
little higher. This is not reflected in the tight-binding models,
indicating limits to their transferability. The orthogonal d
model gives the greater spread in energies, demonstrating to
some extent the greater transferability afforded by the inclu-
sion of an s orbital. It is gratifying that both models give a
qualitative account of surface energies without having been
fitted, at least in the case of the �110� and �001� the latter
being of most importance as it is the usual cleavage
face.46,56,57 It is also significant in the present context that the
effect of H on pure Fe and Fe-Si is to enable cleavage also
on the �110� planes.58

4. Vacancy formation energy

A further test of the transferability is to predict the forma-
tion energy of a vacancy. We do this by constructing 54- and
53-atom “supercells” of bcc Fe �3
3
3 cubic two-atom
unit cells�, one of which has an atom missing. The structure
is relaxed by energy minimization; its resulting total energy
is denoted E�Fe53�. The energy of the 54-atom supercell is
denoted E�Fe54�. Then the vacancy formation energy, ne-
glecting volume relaxation, is59

Ev
f = E�Fe53� −

53

54
E�Fe54� .

Our results are shown in Table IV which also gives values
for the “unrelaxed” vacancy. As for the surface energies, Ev

f

is underestimated by the nonorthogonal sd model and over-
estimated by the orthogonal d model. The likely error com-
pared to experiment in the latter however is more than twice
that of the nonorthogonal sd model, again demonstrating
some benefit in transferability of including the nonorthogo-
nal s orbitals.

IV. ADDING Fe-H INTERACTIONS

As emphasized before, we will keep the parameters of
pure Fe unchanged as we seek a model for H in Fe. We will
find such a model by comparison with properties of iron
monohydrides of stoichiometry FeH, that is, the concentrated
limit and then test our model’s transferability into the dilute
limit.

TABLE II. Calculated properties using parameters from Table I.
They are compared in the right-hand column to either experimental
values or values calculated using LSDA-GGA, the latter written in
italics. A proper comparison of the cohesive energy, Ecoh, with ex-
periment should take account of the spin-polarization energy of the
free atom which is absent in the tight-binding limit of infinite sepa-
ration; this energy is as much as �Ref. 38� 0.32 Ry so that the
calculated Ecoh should amount to 0.63 Ry. Hence the apparent better
agreement of the orthogonal d model is misleading. Both ferromag-
netic �FM� and nonmagnetic �NM� fcc Fe is included; we compare
the experimental data to the FM calculations: the lattice constant is
extrapolated to 0 K �Ref. 39�; the elastic constants are taken from
phonon-dispersion curves �Ref. 40� measured at 1428 K which is
above the Curie temperature �1043 K� although local moments are
expected to persist �Ref. 41�. LSDA-GGA NM values in parenthe-
ses refer to the low-spin phase.

d sd

bcc a �Å� 2.87 2.87 2.87, 2.84

bcc K �GPa� 175 184 170,a 173

bcc C� �GPa� 48 43 52,a 62

bcc c44 �GPa� 118 108 121,a 109

bcc Moment �	B� 2.7 2.2 2.2

bcc Ecoh �Ry� 0.36 0.51 0.31

hcp a �Å� 2.54 2.51 2.54

hcp K �GPa� 164 171 160

hcp Moment �	B� 2.4 1.8 2.4

hcp Emag �mRy� 7.7 4.6 7.7

�Ecoh hcp-bcc �mRy� 12 3 15

fcc �FM� a �Å� 3.68 3.60 3.55,b 3.64

fcc �FM� K �GPa� 223 187 133,c 191

fcc �FM� C� �GPa� 13 12 16,c −88

fcc �FM� c44 �GPa� 79 74 77,c 13

fcc �NM� a �Å� 3.45 3.51 3.46 (3.45)

fcc �NM� K �GPa� 358 232 294 (294)

fcc �NM� C� �GPa� 96 72 102 (102)

fcc �NM� c44 �GPa� 227 151 250 (249)

aFrom data extrapolated from 3 to 0 K by Adams et al.42

bReference 39.
cReference 40.
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In a series of three papers,50,67,68 Elsässer et al. have made
a comprehensive study of the compound FeH in the frame-
work of density-functional theory. One is interested in four
putative phases, namely fcc and bcc Fe each having one H
atom in either tetrahedral �TET� or octahedral �OCT� sites.
These are illustrated in Fig. 5; and Fig. 6 shows energy-
volume curves for these four phases calculated using LSDA-
GGA in the full potential LMTO method34 �see also Fig. 5 in
Ref. 50�.

Examination of the upper sketch in Fig. 5 shows that the
displacement of the tetrahedral interstitial atom in the bcc
structure toward the octahedral site brings the impurity atom
from above the second-neighbor bond, at right angles until it
finally rests at the bond center. This is precisely the situation
envisaged by Haas et al.29 in their proposal of the screening
function, and we therefore expect for a model to be transfer-
able, we will require it to be nonorthogonal. There is also a
strong argument for the retention of the Fe 4s orbital even
though, as we have seen, it does not lead to a significantly
better model for pure Fe than the orthogonal d.15 The argu-
ment for its inclusion follows from an examination of Fig. 7
which shows LSDA-GGA energy bands for bcc tetrahedral
FeH. The bands are colored according to the eigenvector
weights coming from LMTOs from H 1s �red� or Fe 3d
�blue�. The H 1s band is split off from the Fe 3d bands and
has similar width. The Fe 4s band which in pure Fe has its
bottom below the Fe 3d bands and which hybridizes with
them �see Fig. 1� is pushed up above the top of the Fe 3d
bands by repulsion of the H 1s band. This means that the
Fermi energy remains near where it is in pure Fe. Roughly

speaking one might say that the single 4s electron per atom
in pure Fe is transferred to the hydrogen atom to complete its
1s shell, or rather to fill the H 1s band. At first glance it may
seem natural to neglect the Fe 4s bands in FeH. But a diffi-
culty will arise if we adapt a d-only model by adding just an
extra H 1s orbital. Hydrogen brings one electron with it and
to fill the split-off H 1s band an electron will be drawn down
from the Fe 3d bands consequently lowering the Fermi level.
If we were only interested in FeH then we could just adjust
Nd, the number of d electrons; but this will introduce an
inconsistency in going to the dilute limit: Nd will somehow
need to be continuously adjusted at Fe atoms successively
further away from an impurity H. It is very hard to see how
this problem could be overcome except possibly by alloting
two electrons to the hydrogen impurity; while it is solved
naturally by the Fe 4s falling back into place as an Fe atom
finds itself remote from the influence of impurity. We empha-
size that in the nonorthogonal sd model and its extension to

TABLE III. Calculated surface energies in joule per square
meter. Values in parentheses are for truncated bulk �unrelaxed� sur-
faces. LSDA-GGA calculations are taken from Spencer et al. �Ref.
55�.

Model Orthogonal d Nonorthogonal sd GGA

�110� 1.77 �1.77� 1.53 �1.56� 2.27 �2.27�
�001� 2.12 �2.15� 1.74 �1.79� 2.29 �2.32�
�111� 3.54 �3.85� 2.80 �3.34� 2.52 �2.62�
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FIG. 3. �Color online� Contributions to the
energy-volume relation in the orthogonal d �left�
and nonorthogonal sd �right� tight-binding mod-
els. The lower panel shows the volume depen-
dence of the magnetic moment. The dotted lines
refer to the hcp crystal structure and show the
rapid collapse of the moment under pressure. The
solid line is the bcc moment and may be com-
pared with the circles which are LSDA-GGA cal-
culations. The upper panel shows the band-
structure energy �blue� and the magnetic energy
�green� and their sum in red. Solid lines refer to
bcc and dotted lines to hcp. The pair potential
energy favors bcc in both models. A vertical line
indicates the equilibrium volume in bcc Fe.
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FIG. 4. �Color online� Pair potentials in the orthogonal d �dotted
line� and nonorthogonal sd �solid line� tight-binding models. Note
how these are negative at some of the critical bond lengths. While
this helps to stabilize bcc against hcp, the real benefit is in obtaining
a correct elastic constant C�. For reference below we also show here
the Fe-H pair potential in blue �see Table V�. Vertical lines are
placed at first- and second-neighbor distances in bcc Fe and at first-
neighbor distances in hcp Fe.
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impurities the number of electrons is not a parameter—as
long as all occupied bands are included in the Hamiltonian
we can happily take the number of electrons from the peri-
odic table.

Therefore we take over the pure Fe nonorthogonal sd
model and we add parameters to account for the additional
H s band. We need Fe-H sd� and ss� hopping and overlap
parameters but we do not require H-H interaction parameters
since even the closest approaching interstitial sites are distant
more than three times the length of the H2 molecular bond.
The sd� and ss� integrals establish the width of the H s band
while its position with respect to the d bands is set by the
on-site energy, �s of the H s orbital. We also require
Hubbard-U parameters7,70 for H and Fe but these are not
critical and 1.2 Ry and 1 Ry are good choices. Essentially
these lead to approximate charge neutrality as expected in
metals and their alloys.37 For simplicity we take the Stoner
parameter for H to be zero. Tetrahedral bcc FeH is ferrimag-
netic, both in LSDA and in our tight-binding model, the H
atom carrying a small moment, less than 1 	B �aligned op-
posite to that of the Fe atom cf. Fig. 8 in Ref. 50�.

To find the additional parameters we have resorted to fit-
ting these to the four equilibrium atomic volumes and three
cohesive energy differences marked with dashed lines in Fig.
6. We do this using Schwefel’s multimembered evolution
strategy.71,72 For the Fe-H pair potential we employ

��r� =
B

r
e−pr.

The resulting parameters are displayed in Table V and the
hopping integrals are shown graphically in Fig. 8 to illustrate
their relative magnitudes and ranges. In the same figure we
show the hopping integrals for Fe which are, of course, iden-
tical to those of our nonorthogonal sd model of Sec. III. With
reference to our remarks in Sec. II A we note that all our
hopping and overlap integrals have the simple exponential
form up to the distance r1 beyond which they are augmented
so as to go continuously and differentiably to zero at rc.
These distances are not strictly parameters of the model and
are not used in the fitting. They are chosen intuitively; for

example one expects just first neighbors in hcp and fcc, and
first plus second neighbors in the bcc structures to be inter-
acting through dd hopping whereas the s electrons in pure Fe
are essentially free-electronlike and hence “do not take
kindly to being treated within a TB framework.”19 They are
best represented by longer-ranged interactions. These points
are illustrated in Fig. 8 and the values of r1 and rc can be
found in Tables I and V. The use of fifth-degree polynomials
to augment the tails is necessary to achieve a smooth join; it
can lead to small kinks as seen in Fig. 8 but these are de-
signed to fall in between neighbor shells and so minimize
their effect. This is why the parameters r1 and rc are made to
scale with the lattice constant. The resulting energy bands are
plotted in Fig. 7 for comparison with the LSDA-GGA bands.

TABLE IV. Vacancy formation energy, Ev
f , in electron volt, of

pure Fe, calculated with the orthogonal d and nonorthogonal sd
tight-binding models and compared to published LSDA-GGA and
experimental results.

Model d sd LSDA-GGA Expt.

Relaxed 2.39 1.33 1.95,a 2.18,b 2.09c
1.61–1.75,d 1.59,e

2.0�0.2 f

Unrelaxed 2.42 1.36 2.24,a 2.60b

aReference 60.
bReference 61.
cReference 62.
dMuon-spin rotation �Refs. 63 and 64�.
eQuenching-in and electrical resistivity �Refs. 64 and 65�.
fPositron annihilation �Ref. 66� but Seeger �Ref. 64� asserts that
Ev

f �1.85 eV.

T

O

O T

FIG. 5. �Color online� To illustrate the tetrahedral �T� and octa-
hedral �O� interstices in the bcc �upper figure� and fcc �lower figure�
crystals. Note that in the bcc lattice the octahedral site is at the
center of a distorted octahedron, unlike the fcc where it is regular.
The distance to the two apical atoms, shown here as a horizontal
bond, is shorter by a factor 1 /	2 than the distances to the equatorial
atoms, two of which are shown here in the upper face. This leads in
general to the well-known tetragonal distortion of the bcc lattice
near octahedral interstitial atoms, for example, in martensite. For
details see Refs. 46 and 69. Neither is the tetrahedral interstitial site
in the bcc lattice regular—indeed both octahedral and tetrahedral
bcc interstices have tetragonal symmetry. The fcc crystal structure
with all the octahedral sites occupied becomes that of cubic rocksalt
adopted by many transition metal carbides and nitrides. In fcc, the
tetrahedral site is regular; when half these sites are occupied the
resulting crystal structure is that of zinc blende.
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The resulting energy volume curves are shown in Fig. 6. The
TB model does not reproduce the magnetic moments of the
LSDA-GGA in Fig. 6 quantitatively since this is a sensitive
function of the density of states at the Fermi level in the
nonmagnetic crystal and our energy bands are only in quali-
tative agreement with the LSDA-GGA.

Table VI summarizes the equilibrium properties of the
four hydride phases shown in Fig. 6. The question of site
selectivity, especially in bcc Fe is important and we will
revisit it in the dilute limit, below, in Sec. V B 1.

V. PREDICTIONS OF THE Fe-H MODEL

A. Iron hydride

Our first test of the tight-binding model is to compare the
resulting adiabatic potential surface section with the results

of calculations by Elsässer et al.68,73 which were made in the
local-density approximation �LDA� to DFT. In these calcula-
tions the H sublattice is displaced with respect to the Fe
sublattice in both bcc and fcc FeH in a chosen set of direc-
tions so as to explore the curvatures and barriers of the po-
tential energy landscape. For the case of the bcc structure,
Fig. 9 shows some of the displacement paths. The potential
sections from previous LDA �Ref. 68� and our present tight-
binding model are shown in Fig. 10. Whereas the relative
energies of the tetrahedral and octahedral sites have been
established by the fitting, the remainder of the these curves
amount to predictions of the tight-binding model. They turn
out to be in remarkable, quantitative agreement with the
LDA calculations in the bcc and fcc case, the latter being
shown in Fig. 11. These curves exploit to the full the notion
discussed in Sec. II B, above, of environment-dependent
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FIG. 6. �Color online� Cohesive energy and
magnetic moment as a function of volume per Fe
atom in the four FeH phases calculated within the
LSDA-GGA �left�. Dotted lines denote nonmag-
netic phases. The cohesive energy is with respect
to solid �-Fe and molecular H2 also calculated
using the same energy functional and hence is an
approximation to the heat of formation. Note that
on this basis none of the phases is expected to
exist. On the right we show the same quantities
calculated in the nonorthogonal sd tight-binding
model. We expect that the almost exact degen-
eracy of bcc TET and fcc TET is accidental.
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FIG. 7. �Color online� Energy bands for bcc
tetrahedral FeH, calculated at the lattice constant
of pure bcc Fe. The upper panels show majority-
spin and the lower minority-spin states. The col-
oring is such that H s character is red and Fe d
character is blue. Fe s bands are green. The Fermi
energy is indicated by a horizontal line. Note that
the Fe 4s band has been pushed above the d
bands. Bands on the left are from our tight-
binding model and on the right are bands calcu-
lated in the LSDA-GGA.

A. T. PAXTON AND C. ELSÄSSER PHYSICAL REVIEW B 82, 235125 �2010�

235125-8



screening of hopping integrals as the hydrogen approaches
Fe-Fe first- and second-neighbor bonds and indeed pen-
etrates the bond to lie directly in between the two atoms. It is
exactly in this situation that one expects the Fe-Fe bond in-
tegrals to be strongly modified by screening, and clearly our
model captures this well in a nonorthogonal two-center de-
scription. In particular note, in reference to Fig. 10 that the
minimum energy �saddle� point along the �101�o path lies to
the left of the point “S” in both LDA and in our TB model.
This implies that the �101�t minimum energy diffusion path
in reality is bowed slightly toward the center of Fig. 9. The
strongest test of the environment dependence however is in
the fcc hydrides of Fig. 11. The energy barrier at the maxi-
mum of the 
110�o path, coinciding with the maximum of the

001�t path is perfectly rendered by the TB model without
having been fitted and this corresponds to the extreme in-
stance of screening in which the H atom becomes positioned
at the center of the first-neighbor Fe-Fe bond �see Fig. 1,
Ref. 75�.

B. H in Fe—the dilute limit

We concentrate on three predicted properties of iron in
this section. First is the dissolution energy76 or zero-
temperature heat of solution of hydrogen in Fe. Included in
this study is the matter of the site selectivity. Second is the
binding energy1 or 0 K segregation energy of H to the �001�
surface of Fe. Third, and of great importance to the question
of hydrogen embrittlement, is the binding of H atoms to a
vacancy in Fe.

1. Dissolution energy

Following Ramasubramaniam et al.1 we construct a 54-
atom supercell as we did in Sec. III B 4 and whose total
energy we denoted E�Fe54�. We then place a hydrogen atom
at either a tetrahedral or an octahedral site and minimize the
total energy by relaxation. The resulting total energies are
denoted E�Fe54H�. We do not allow the volume to relax.
Then the dissolution energy is76

Edis = E�Fe54H� − E�Fe54� −
1

2
EH2

. �4�

Our model does not contain H-H interactions, but faux de
mieux we may take EH2

=−4.75 eV from experiment or from
quantum chemistry.20,76 For each of the three calculations we
employ a mesh of 12
12
12 k points and use first-order
generalized Gaussian integration of the Brillouin zone with a
width of 2.5 mRy.77 Results are shown in Table VII. These

TABLE V. H on-site, and Fe-H interaction parameters of our
tight-binding model. All quantities are given in atomic Rydberg
units. For all these integrals we use r1=0.8 and rc=2 in units of the
pure Fe bcc lattice constant, a=2.87 Å; for the pair potential we
use r1=0.8 and rc=0.95 in the same units.

�s−�d −0.085

UFe 1.0

UH 1.2

q

hss −0.35 0.776

hsd −0.14 0.454

sss 0.27 0.286

ssd 0.22 0.473

B 299.6

p 2.6922
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FIG. 8. �Color online� Hopping and overlap integrals as func-
tions of bond length, r, in the sd nonorthogonal model. Except in
the case of dd� the dotted lines are the overlap integrals corre-
sponding to the hopping integrals of the same color. Vertical dotted
lines indicate the Fe-H bond length in bcc tetrahedral FeH at equi-
librium volume, and the Fe-Fe bond lengths of the first six neigh-
bors in pure bcc Fe.
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FIG. 9. �Color online� Illustrates the translations of the bcc in-
tersitials in constructing our adiabatic potential surfaces, after the
three-dimensional drawing of Fig. 1 in Krimmel et al. �Ref. 73�.
The figure represents an �010� face of the bcc lattice with Fe atoms
as black circles at each corner. The octahedral sites are shown as
squares, the central, filled one being the one occupied in octahedral
FeH. Of the four tetrahedral sites, shown as triangles, one is occu-
pied in tetrahedral FeH and this is shown filled in here. The point,
S, is midway between two tetrahedral sites—the expected diffusion
path of H in Fe �Ref. 74� which is highlighted in red here and in
Fig. 10. Those displacements which are in the �010� plane are
indicated.
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are in remarkably good quantitative agreement with both ob-
servations and LSDA-GGA calculations. In particular, we
predict the tetrahedral site to be preferred over the octahe-
dral, as is well established.74 We may point out here that this
is not a trivial result: carbon in contrast, while preferring the
tetrahedral site in the fictitious bcc-based carbide, transfers to
the octahedral site in the dilute limit.78 In the effective me-
dium theory, upon which the EAM are based, H prefers the
octahedral site.79

2. H segregation to the (001) surface of Fe

Three binding sites of H to the �001� surface of Fe have
been identified.1 These are illustrated in Fig. 12. We have
constructed supercells of 2
2
5 cubic two-atom unit cells
with three layers of vacuum inserted along the long axis. The
slab contains 40 Fe atoms and the total energy of the fully
relaxed supercell is denoted Esurf�Fe40�. We place one H atom
at one of the three adsorption sites in Fig. 12 and relax the
structure by energy minimization. Allowing all atoms to re-
lax we denote the total energy Esurf�Fe40H�. The associated
“adsorption energy” is1

Eads = Esurf�Fe40H� − Esurf�Fe40� −
1

2
EH2

and by combining the previous two equations the “binding
energy” is1

Ebind = Edis
t − Eads �5�

in which the reference energy, or chemical potential, of gas-
eous H2 has canceled. Edis

t is the dissolution energy �Eq. �4��
at a tetrahedral site �Table VII�. We have calculated the three
quantities using a 12
12
1 k-point mesh and the same
Brillouin-zone integration as above. In Table VIII we show
our calculated binding energies, the displacement � in Fig.
12 and the height, h, from the �001� surface constructed as
the difference in z coordinates of the H atom and the average
from the four topmost Fe atoms.

The predictions of our model are only in reasonable
agreement with the LSDA-GGA.1 The heights above the sur-
face are well rendered; the displacement, �, is significantly
larger, but is consistent with the preference for tetrahedral

TABLE VI. Equilibrium volumes per Fe atom and cohesive energies of the four FeH phases following
evolution optimization, compared to the target values. Cohesive energies are relative to the fcc octahedral
�rocksalt� phase. The final column shows the radius of the interstitial site based on a lattice of hard spheres
at the equilibrium volume of pure Fe and taken from Leslie �Ref. 46�. All quantities are given in atomic
Rydberg units.

TB Target

RadiusEcoh 
 Ecoh 


fcc OCT 0.0 86.90 0.0 88.59 0.98

fcc TET 0.017 98.64 0.016 97.58 0.53

bcc TET 0.018 96.16 0.015 97.23 0.68

bcc OCT 0.035 101.75 0.038 101.28 0.36

0.2 0.1 0 0.10

0.2

0.4

0.6

0.8

δ / a0

E
(e

V
)

[001]o

[101]o[010]o

[101]t

O

S S

T

0.2 0.1 0 0.10

0.2

0.4

0.6

0.8

δ / a0

[001]o

[101]o[010]o

[101]t

[101]t

__

[100]t

[111]t

O
S S

T

FIG. 10. �Color online� Adiabatic potential surface sections of bcc FeH: left LDA �Ref. 68�, right TB. These curves show the energy as
a function of the displacement of the H sublattice relative to the Fe sublattice. The curves which start at the point “O” refer to displacements
from the octahedral site phase; a H atom initially at position � 1

20 1
2 � translates in the directions indicated. Along the �001� direction it

eventually falls into a vacant tetrahedral site �see Fig. 9�. This curve hence represents the transition to the tetrahedral-site phase. Translation
along �101� takes the H atom to a position midway between two, vacant, tetrahedral sites—this point is marked S. For a H atom initially
occupying a tetrahedral site, translation along �101� moves it to an adjacent, unoccupied, tetrahedral site, the half-way point being the same
point S. The translation labels are vectors referred to Fig. 9. For each case, LDA and TB, the calculations are at fixed atomic volume, namely,
the equilibrium volume of the bcc tetrahedral phase of FeH, see Table VI; a0 is the corresponding equilibrium lattice constant.
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site occupancy. As we point out in the caption to Fig. 12, �
=0.25a0=0.71 Å puts the H atom into a surface tetrahedral
site and our model does exactly that; in contrast the LSDA-
GGA quite surprisingly results in a much smaller �. In the
same vein, the height of the H atom above the bridge �B�
site, 0.85 Å, is close to 0.25a0, and we find another local
minimum at 0.34 Å below the bridge site. Thus the strongest
binding in the TB model is to surface tetrahedral sites and
the surface octahedral site is indeed not a local energy mini-
mum. In this way the binding energies are in poor agreement
with the LSDA-GGA and may reflect the limitations in trans-
ferability �Sec. II B� in that the model retains its bulklike
features at the surface. Ebind is in fact the 0 K segregation
energy, usually defined as the energy needed to remove the
impurity from the surface and place it into the interior of the
crystal. The LSDA-GGA shows the smallest adsorption en-
ergy �largest Ebind� to be at the hollow �H� site; whereas we
find it at the quasithreefold �QT� site and at this coverage this
is not consistent with experiment which shows a transition at
100 K from hollow to QT site selectivity between about 0.3
ML and 1 ML,80 while our calculations and the LSDA-GGA
�Ref. 1� are at 0.25 ML.

Both the QT and bridge sites are at local minima in the
potential energy in our model. This is consistent with the
LSDA-GGA.1 However the hollow site is a local saddle
point having an almost flat energy surface with respect to
small displacements parallel to the surface; if we displace the
H atom a sufficient amount then the structure relaxes into the
QT site occupancy. This is inconsistent with the LSDA-GGA
in which surprisingly, in view of there being another local
minimum at QT just 0.19 Å distant, the hollow site is at a
local minimum.1

To some extent our choice of chemical potential for H2,
EH2

, is arbitrary; however the observed bond energy leads to
a very good rendering of the 0 K heat of solution �dissolution

energy� of H in Fe, Table VII. On the other hand it leads to
a positive, but small, adsorption energy, Eads, which means
that in our model H2 will not dissociate on the �001� surface
of Fe. In order to model the surface adsorption properly we
could make an ad hoc adjustment of EH2

. This would be at
the expense of less accurate Edis. For example, if we used the
Skinner and Pettifor tight-binding model of hydrogen,20 then
we would have EH2

=−4.30 eV rather than −4.75 eV. In that
case our dissolution energy in the tetrahedral site becomes
0.05 eV �rather than 0.27 eV, cf. Table VII� but the adsorp-
tion energies are then negative as they should be. Of course
the segregation energies �Table VIII� remain unchanged by
this redefinition of the hydrogen chemical potential.

3. H segregation to a vacancy in Fe

It is believed that the trapping of H to vacancies in Fe is
of central importance in the effects of H on mechanical
behavior.74,81,82 It is also known that dissolved hydrogen re-
sults in a dramatic increase in the vacancy concentration in
several metals including Fe,83,84 caused through segregation
induced lowering of the vacancy formation enthalpy.85 We
can show that our model is able to demonstrate these facts by
comparison with LSDA-GGA calculations of the 0 K segre-
gation energy, Ebind

v �n�, of up to seven H atoms to a single
vacancy in Fe.1,62 The principal result, which we also predict
in our TB model is that up to five H atoms may bind to a
vacancy with a positive segregation energy but the sixth has
a small negative Ebind

v �n�. Here we follow Tateyama and
Ohno62 and Ramasubramaniam et al.1 and define Ebind

v �n� as
the 0 K segregation energy of a H atom from a bulk tetrahe-
dral site to a vacancy to which �n−1� H atoms are already
segregated. Hence we set up a 53-atom supercell as in Sec.
III B 4; then in reference to Fig. 5 in Ramasubramaniam et
al.,1 if the vacant site is at � 1

2
1
2

1
2 � in the bcc supercell we add
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FIG. 11. Adiabatic potential surface sections of fcc FeH: left LDA �Ref. 68�, right TB. At the point O we have the rocksalt phase, from
which translation of the H sublattice along a 
111� direction transforms the structure to the zincblende phase in which tetrahedral sites are
occupied. The energy maximum between O and T is located close to where the H atom squeezes between an equilateral triangle of Fe atoms
in the �111� plane. At the maximum along 
110�o, and along 
001�t, the H is positioned midway between two nearest-neighbor Fe atoms �see
Fig. 1 of Ref. 75�. Note that both these two energy barriers are predicted by the TB model with quantitative accuracy. The calculations are
at the calculated equilibrium volume of the fcc octahedral �rocksalt� phase of FeH, see Table VI; a0 is the corresponding equilibrium lattice
constant.
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H atoms successively in �1� � 1
2

1
20�, �2� � 1

2
1
21�, �3� � 1

21 1
2 �, �4�

� 1
20 1

2 �, �5� �1 1
2

1
2 �, and �6� �0 1

2
1
2 � octahedral interstices—these

are the centers of the six �001� faces bounding the vacant
site. Finally a seventh H atom may be placed at the vacant
site. These supercells are relaxed by energy minimization
and we denote the total energy of the supercell by E�Fe53Hn�.
Then we have1,62,86 in analogy with Eq. �5�

Ebind
v �n� = Edis

t − �E�Fe53Hn� − E�Fe53Hn−1� −
1

2
EH2



which is independent of the chemical potential of H. Table
IX shows our segregation energies, compared to LSDA-
GGA. The relaxation pattern is very simple in all cases ex-
cept n=3 and n=5. In the simple instances, each H atom
relaxes perpendicularly to its �001� face, by an amount we
denote ��

even�n�, toward the vacant site. The displacement de-
creases as n increases both in LSDA-GGA �Ref. 62� and our
TB model. In each of the cases n=3 and n=5 there is one H
atom which follows this trend whereas the remaining �n
−1� H atoms are displaced both toward the vacancy by
��

odd�n� and, by an amount ���n� in a direction parallel to the
�001� face containing the site where the H atom was origi-
nally placed, in a 
100� direction.

Table IX shows very much better agreement with the
LSDA-GGA than in the case of surface segregation. This
probably reflects the better transferability into the less under-
coordinated environment. Our absolute values of Ebind

v �n� are
no more than 50% underestimated while the trends are in
perfect accord: we observe the increase in segegration energy
going from n=1 to n=2 implying that a H atom segregates
more readily to a vacancy that has already trapped a H atom.
We also see that up to five H atoms will segregate exother-
mally to a vacancy while the sixth segregates endothermi-

cally. The displacement patterns in the symmetric cases are
consistent in magnitude with the LSDA-GGA �Ref. 62� and
follow the trend of decreasing ��

even with increasing n. For
the case n=1 we obtain ��

even=0.25 Å which agrees well
with the LSDA-GGA calculated value of 0.22 Å.62 An ex-
perimental estimate of 0.4�0.1 Å was obtained for deute-
rium in Fe by ion channeling.87 Effective medium theory for
n=1 results in ��

even=0.5�0.1 Å in Fe �Ref. 88� and
0.46�0.07 Å in Nb.89 The octahedral sites in which the H
atoms are originally placed correspond to the hollow sites at
the �001� surface, and as in the surface case the atoms relax
into the vacuum or vacancy and, symmetry permitting, later-
ally toward the tetrahedral positions. The interpretation of
Tateyama and Ohno62 that there is an electrostatic repulsion
between H atoms is unconvincing to us, since we imagine
that this will be screened by the electrons in the vacant site.
We note that in the highly endothermic segregation of a sev-
enth H atom to the vacancy there is still an inward relax-

TABLE VII. Dissolution energy, in electron volt, of H in Fe in
both tetrahedral �TET� and octahedral �OCT� interstices. Present
results are marked TB, experimental and LSDA-GGA values are
taken from Jiang and Carter �Ref. 76�.

TET OCT

TB 0.273 0.354

Expt. 0.296

GGA 0.19 0.32

TABLE VIII. Predicted structure and energetics of H adsorbed on Fe �001�. We show for the QT, hollow
�H� and bridge �B� sites of Fig. 12 the displacement � and height, h, above the surface �all in angstrom� and
the 0 K segregation or binding energy, Ebind, in electron volt. In parentheses are the LSDA-GGA results of
Ramasubramaniam et al. �Ref. 1�.

� h Ebind

TB �GGA� TB �GGA� TB �GGA�

QT 0.635 �0.19� 0.31 �0.38� 0.241 �0.768�
H 0.27 �0.38� 0.191 �0.775�
B 0.85 �1.20� 0.222 �0.655�
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δ

FIG. 12. �Color online� Three possible binding sites of H on the
�001� surface of Fe, after Ramasubramaniam et al. �Ref. 1�. Four
large circles represent the Fe atoms at the corners of a unit cell of
the �001� face of the bcc lattice. At the center is the “hollow” site, a
smaller circle; this may be displaced along �100� by an amount � to
become the QT site indicated by a triangle. The “bridge” site is
shown as a square. It is important to recognize that the bridge and
hollow sites in the plane of the truncated bulk surface are octahedral
interstices whereas the QT site at �=0.25a0 is a tetrahedral site. If a
H atom at the bridge site is displaced up or down by 0.25a0 then it
comes to occupy a tetrahedral site. Here, a0=2.87 Å is the equilib-
rium pure �-Fe lattice constant.
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ation, at least in our model, toward the vacant site, now
occupied by a H atom. However our Ebind

v �7� is more than
five times smaller than in LSDA-GGA.62

We should note, as Kirchheim has pointed out,82 that the
reduction in enthalpy of the impurity by segregating to a
defect is entirely equivalent to a reduction in the defect’s
enthalpy of formation. Hence ours and the LSDA-GGA bind-
ing energies of Table IX are consistent with the observed
“superabundant vacancy formation” in many metals subject
to a high hydrogen fugacity83,84 �see Fig. 7, Ref. 62�.

VI. DISCUSSION AND CONCLUSIONS

We have described simple and robust tight-binding mod-
els for pure Fe, transferable from bcc into hcp and fcc struc-
tures and hence able to describe the common phases of Fe, �,
�, and �. Furthermore we have included a description of the
electronic structure of monohydrides and this model has
been shown to be transferable into the dilute limit of inter-
stitial H impurity in Fe. A simple orthogonal d-band model is
expected to be most appropriate for the pure transition metals
and their alloys35–37 and indeed the addition of s or p elec-
trons does not usually result in better energetics.4,15 This is
confirmed here �Table II� in the case of bulk elastic constants
and structural energy difference. The only improvement to
bulk properties arising from the nonorthogonal sd model is
an improved cohesive energy. Vacancy formation and surface
energies are somewhat improved in the nonorthogonal sd
model.

The focus on transferability is made in Sec. IV where,
while not permitting the parameters of the pure Fe model to
be adjusted, we seek additional parameters to describe Fe-H
interactions. We give reasons in Sec. IV in addition to the
transferability arguments for choosing to extend the nonor-
thogonal sd rather than the orthogonal d model to the de-
scription of hydrogen. There are only few additional param-

eters needed �Table V� and we emphasize that these were
fitted to just seven fiducial points in the LSDA-GGA energy-
volume curves for four putative iron hydrides �Fig. 6�. Pos-
sibly as a consequence of our adoption of a nonorthogonal
model both for pure Fe and Fe-H, our resulting model pre-
dicts calculated adiabatic potential surfaces with quantitative
accuracy. It is particularly notable that in these tests H atoms
are brought perpendicularly toward Fe-Fe bonds to the point
that the H atom comes between the two host atoms. This
happens in both bcc and fcc hydrides; in the latter case a H
atom also pushes through the triangle of nearest-neighbor Fe
atoms in the �111� plane and the matching to the LDA is
excellent �Figs. 10 and 11�.

Our approach has been to find a model purely by refer-
ence to the concentrated limit of a stoichiometric monohy-
dride, FeH, and then to test that model into the dilute limit of
H in Fe. Therefore all the results in Sec. V B are predictions.
In contrast, in constructing a classical model Ramasubrama-
niam et al.1 needed to put all the properties that we describe
in Sec. V B into the training set for the potential. In conse-
quence, the tight-binding approach cannot hope to reproduce
the quantitative accuracy that is achieved by a well-fitted
classical model. However dissolution energies, site selectiv-
ity, and vacancy segregation are very well rendered in the
model. Its most obvious shortcoming is in the prediction of
adsorption energies of H on the �001� surface of Fe. The
absolute cohesive energy is problematic in LSDA �Refs. 38
and 90� but even more so in tight binding �see the caption to
Table II�. Possibly for this reason we find that H2 will not
dissociate on the �001� surface if we use the known binding
energy of the H2 molecule as our reference. In future work
we will need to account for molecular hydrogen and this
matter will be revisited. On the other hand qualitatively the
TB model gives a reasonable account of H adsorption which
is certainly a subtle and complex problem in surface physics.
In this way the TB model does not transfer faultlessly into

TABLE IX. Segregation of H atoms to a vacancy in Fe. We show our model’s predicted Ebind
v �n� com-

pared to LSDA-GGA results �Ref. 62�, quoted by Ramasubramaniam et al. �Ref. 1� in electron volt. Also
shown are the displacements of the H atom toward the vacancy, and away from the octahedral site in the
�001� plane in which it was originally placed. In cases of higher symmetry the displacement of all H atoms
is an amount ��

even�n� normal to the �001� face and toward the vacant site. In the cases n=3 and n=5 one atom
follows this displacement, while all those remaining move both perpendicular to the face—by an amount
��

odd�n�—and parallel to the face in a 
100� direction by an amount ���n�, rather like the knight’s move in
chess. A displacement �� =0.25a0=0.71 Å will take the H atom into a tetrahedral site. Displacements are
given in angstrom.

n

Ebind
v �n�

��
even�n� Expt.a ��

odd�n� ���n�TB LSDA-GGA

1 0.319 0.559 0.25 0.4�0.1

2 0.330 0.612 0.27

3 0.263 0.399 0.19 0.27 0.35

4 0.160 0.276 0.28

5 0.144 0.335 0.13 0.26 0.25

6 −0.033 −0.019 0.19

7 −0.474 −2.68 0.14

aReference 87.
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the problem of surface energetics. Our predictions of segre-
gation to a vacancy, in contrast, are in very good accord with
the known theoretical LSDA-GGA results and experimental
facts. In particular, we predict that a vacancy will bind up to
five H atoms exothermically and that the segregation energy
is somewhat larger to a vacancy at which one H atom is
already bound. The trapping of vacancies is central to the
mechanism of the action of H on the mechanical properties
of Fe alloys.74,81,82

In conclusion, the quantum mechanical tight-binding ap-
proximation lies between the first-principles LSDA and the
atomistic classical approach to defect energetics in iron. Be-
cause the TB approximation is grounded in electronic-
structure theory it may be applied to this question rather
easily and just a few parameters—adjustable within intuitive
limits—are required. Because of this and because of its sim-
plicity the TB approach may give rise to a better understand-
ing than the LSDA, which after much labor produces a total
energy and force, often without clear insight to their origins.
In contrast the huge number of parameters and the rather

opaque functional form of the interatomic interactions in the
classical potentials, while able to model many properties
quantitatively, must be at risk of failure once they are trans-
ferred into situations for which they were not fitted. There-
fore we expect the TB approximation to provide a useful and
complementary tool to the classical potentials, and once aug-
mented with parameters to describe carbon, to become com-
petitive in the atomistic simulation of the properties of iron
and steel.
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