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It is shown that a composite-fermion �CF� paradigm, which works nicely in the fractional quantum Hall
effect, can be applied to the case of a low-density two-dimensional �2D� conductor with long-range Coulomb
interactions between electrons without external magnetic field. This approach, based on the unitary Chern-
Simons �CS� transformation, relates the physics of the metal-to-insulator transition �MIT� in 2D correlated
electron system with the MIT in a 2D system of noninteracting CFs subject to the CS gauge field b
=2�0��r� ��0 is the flux quantum, ��r� is the electron density�. The MIT in such system is of the same origin
as a well-known transitions observed near the peaks in the diagonal resistivity Rxx of a 2D electron gas in the
integer quantum Hall effect. The calculated longitudinal resistivity changes the sign of the temperature deriva-
tive from the metal-like, dRxx /dT�0, at ���c to the insulatorlike, dRxx /dT�0, at lower densities ���c. A
separatrix Rxx

S �T� demarcating the metal and insulator phases at the critical density �c is temperature indepen-
dent in the uniform-density approximation ��r�=�. The CFs do not interact in this case, but if ��r��� a weak
interaction between the CFs makes the separatrix a linear function of T. The mechanism of the CF conductivity
near the �c is the Mott variable range hopping which, in full agreement with experiments, takes a form �xx

�exp�−AX�/2� assuming a scaling with respect to the variable X= ��−�c� /T�, where � and �=1 /� are the
critical indices of the MIT. External perpendicular magnetic field shifts the value of �c at which the MIT occurs
due to the partial compensation of the CS gauge field b but does not change the shape of the resistivity curves
Rxx�T�. Reflection symmetry between the Rxx and �xx on the opposite sides of the MIT and other relations of
the results obtained with experiments in the high-mobility silicon metal-oxide semiconductor field-effect tran-
sistors are discussed.
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I. INTRODUCTION

The discovery of the metal-insulator transition �MIT� in
two-dimensional �2D� electron system, a high-mobility sili-
con metal-oxide semiconductor field-effect transistor �Si
MOSFET�,1–6 raised a heated debates because of the conflict
with the scaling theory predictions.7 This theory prohibits a
true metallic state and the MIT in 2D systems of noninter-
acting electrons with disorder. The conflict was resolved af-
ter the role of electron-electron correlations in the MIT of 2D
conductors has been clarified with the help of a more elabo-
rated two-parametric scaling approach.8 In the above papers
the MIT means that the temperature derivative of the longi-
tudinal resistivity changes its sign from positive �metal-like�
dRxx /dT�0 at ���c to negative �insulatorlike� dRxx /dT
�0 at lower densities ���c. The critical concentration �c
demarcates the metal and insulator phases.

The experimental test of the two-parametric scaling
theory8 done in the work9 proved that the MIT is governed
by the two parameters controlling the strength of disorder
and electron-electron correlations, respectively. An empirical
two-parametric scaling function was suggested in this paper
which fits within the accuracy of a few percents the experi-
mental data.

Theoretically the problem is very difficult and in spite of
all efforts the physics of the MIT in 2D conductors remains a
puzzle so far. A review of the modern state of theory and
experiment in the field of strongly correlated 2D fluids is
given in Ref. 10.

On the contrary, the MIT in 2D conductors in quantizing
perpendicular external magnetic field is a well-understood
phenomenon related to the localization of electrons within
the disorder-broaden Landau levels. In these systems only
narrow stripes at the center of the Landau levels remain de-
localized and provide a metallic conductivity when the
chemical potential falls within the stripes. By changing ex-
ternal magnetic field or electron concentration one can shift
the chemical potential from the localized �insulating� to ex-
tended �metallic� states within the disorder-broaden Landau
levels. Such is a qualitative picture of the MIT in the 2D
conductor in perpendicular magnetic field. It takes place un-
der the conditions of the quantum Hall effect �QHE� within
the transitional plateau-to-plateau regions of the Hall con-
ductivity where narrow stripes of extended states provide
sharp peaks in the diagonal conductivity �xx both in the in-
teger and fractional regimes.11,12 The fractional QHE
�FQHE� is a result of strong electron correlations which be-
come important in the lowest Landau level.13,14 A concept of
the composite fermions �CFs� was introduced in Ref. 15 to
explain the FQHE as an integer QHE �IQHE� in a system of
these weakly interacting quasiparticles. In what follows we
will show that this concept can be applied to the case of
strongly interacting 2D particles even without external mag-
netic field. Based on that idea we explain the MIT in 2D
correlated and disordered conductors by mapping it onto the
corresponding transition in the QHE systems. In this connec-
tion we must note that numerous experiments on the MIT in
2D Si MOSFET conductors with and without external mag-
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netic field1–6 bear many similar features typical for the MIT
in the QHE.

It has been found yet in the early paper on the MIT in 2D
�Ref. 2� that the temperature dependencies of the in-plane
resistivity with and without perpendicular magnetic field are
absolutely identical in shape. The only difference is in the
shifted �enhanced� values of the electron concentrations � at
which the corresponding curves have been measured. This
observation is very important since external perpendicular
quantizing magnetic field in the experiment2 was so strong
that the filling factor was 3/2. In such fields electrons are in
the QHE regime and their wave functions dramatically differ
from the conventional plane waves of 2D electrons without
external magnetic field. The experiment2 tells that the phys-
ics �unknown so far� beyond the MIT in 2D conductors with
the strong Coulomb interaction between electrons with and
without external magnetic field is actually the same. In par-
ticular, the symmetry of the electronic states obviously does
not change in the quantizing magnetic field. We will show
that this is really the case since the Coulomb interaction
between electrons in 2D systems can be described in terms of
the Chern-Simons gauge �fictitious, statistical� field which
acts on a new quasiparticles, the composite fermions, very
much the same as external perpendicular magnetic field acts
on the trajectories of 2D electrons.

The purpose of this paper is to demonstrate a fundamental
relationship between the MITs in the QHE systems and 2D
strongly correlated system such as Si MOSFET conductors
within the CF approach. This approach makes possible a
mapping of the MIT in 2D conductors without magnetic field
on the phase transition between delocalized and localized
states in the 2D QHE systems subject to the statistical gauge
field of the composite fermions. We will show that all basic
experimental observations can be explained within this
framework.

The CF is a quasiparticle composed of an electron with 2p
magnetic flux quanta �0=2	
c /e attached �p=1,2 ,3 , . . . is
an integer, �0=2.068�10−15 Wb�.15 In the FQHE regime
the 2D electrons in a strong magnetic field condense at the
lowest Landau level so that their kinetic energy becomes
smaller than the energy of the e-e Coulomb repulsion which
determines completely the physics of the FQHE. Within the
CF approach to the FQHE �Refs. 14 and 15� it was shown
that a system of 2D strongly interacting electrons can be
replaced by a gas of weakly interacting CFs moving in an
effective magnetic field

B� = B � 2p�0� , �1�

where B is the external magnetic field, � is the electron den-
sity, and � corresponds to two possible orientations of the
flux attached �along or opposite to the direction of the field
B�.

The Landau quantization of a gas of noninteracting CFs
yields discrete Landau levels with the filling factor 
�

=��0 /B�. The electron filling factor 
=��0 /B can be writ-
ten in the form 
=
� / �2p
��1�, as one can see from Eq.
�1�. At integer values of the CFs filling factor 
�=n the
IQHE regime develops so that the Hall conductivity �xy
jumps between the neighboring plateaus while the diagonal

conductivity �xx has peaks as a function of B� at the values
where �xy jumps. These jumps and peaks in the 2D system of
the CFs are mapped on the corresponding electron conduc-
tivities at fractional values of the filling factor 

=n / �2pn�1� called the principal sequence. That explains
the FQHE in 2D correlated electron system as an IQHE of
noninteracting composite fermions. In the case p=1 two flux
quanta are attached to each electron so that, if the gauge field
is antiparallel to the external field, Eq. �1� reads as B�

=B�1–2
�. At 
=1 /2 the external magnetic field is compen-
sated completely by the fictitious field of the CFs making the
effective field B�=0. The value 
=1 /2 is a special point in
the FQHE regime which is well confirmed by experiments. A
theory of the FQHE at fillings 
=1 / �2n�1� was developed
first in terms of the Laughlin’s wave function13,14 and then a
concept of the CF was introduced15,16 which explained the
FQHE states in the principle sequence. The Chern-Simons
�CS� gauge field plays a crucial role in the theory of CFs
which appears as vortices in the incompressible electron liq-
uid attached to the electrons and carrying 2p flux quanta. A
special experimental tests proved that the CFs at 
=1 /2 are
real quasiparticles rather than a convenient theoretical
construction.17,18

A natural question arises what happens with the compos-
ite fermions if the external magnetic field will be switched
off? Theoretically, the composite fermions in 2D conductors
appear as a result of the Coulomb interaction between elec-
trons in the FQHE regime.14,15 The key point is the CS uni-
tary transformation which replaces strongly correlated 2D
electrons by a 2D gas of weakly interacting composite fer-
mions moving in the gauge magnetic field b=2p�0�. The
value of this field for the typical experimental electron den-
sities in the Si MOSFET ��1011 cm−2 gives an estimate b
�4 T for CFs with two fluxes �p=1�. Such values of the CS
gauge magnetic field in Si MOSFET assume the QHE re-
gime and Landau quantization effects in the CFs dynamics
even without external magnetic field. In the next section we
will show how this unusual physics originates from the Cou-
lomb interaction of electrons in 2D conductors.

II. CHERN-SIMONS TRANSFORMATION AND THE
BASIC EQUATIONS

The driving force of the MIT in 2D IQHE systems is the
filling factor of the disorder-broaden Landau levels which
fixes the chemical potential either at extended or localized
states depending on the strength of magnetic field and elec-
tron concentration. In the FHQE regime the Coulomb e-e
correlations become important and the MIT takes place very
much the same as in the IQHE but with the replacement of
electrons by the CFs moving in the field B�. The CFs appear
in the FQHE physics as a result of the strong long-range
Coulomb interactions. We will show below that the external
magnetic field is not necessary for the creation of the CFs in
2D conductors with strong long-range Coulomb interactions.
That gives a new look at the MIT in 2D strongly correlated
electron systems such as Si MOSFET within the composite-
fermion approach.

A quantitative measure of the effective e-e interaction in
2D conductors is the ratio of the Coulomb energy to the

V. M. GVOZDIKOV PHYSICAL REVIEW B 82, 235110 �2010�

235110-2



Fermi energy, known as a dimensionless Wigner-Seitz radius
rs= ��	�aB�−1, where aB=�
2 /me2 is the effective Bohr ra-
dius. The Coulomb interaction is taken in the form v�r�
=e2 /�r with � standing for a dielectric constant. It is be-
lieved that in the limit rs→� and in the absence of disorder
the ground state of a 2D conductor is the Wigner crystal.
Disorder, finite values of the correlation parameter rs, and
temperature prevent the Wigner crystallization but electrons
might remain a liquid. An example is the GaAs-based QHE
systems in which electrons comprise an incompressible elec-
tron liquid within the plateau regions.13,14 The value of the
correlation parameter rs in the 2D Si MOSFET high-mobility
conductors is evaluated as rs�10 which is less than the criti-
cal value rs�38 at which numerical calculations19 predict a
transition to the Wigner crystal state. Therefore electrons in
these systems are strongly correlated and the MIT is driven
by the electron concentration �.1–6

A decrease in the electron concentration enhances the pa-
rameter rs driving thereby interacting 2D electrons toward
the insulating Wigner-crystal state. In reality, disorder local-
izes the electrons long before the Wigner crystallization at
some critical value, �=�c, where a quantum phase transition
into the insulating state occurs. The critical concentration �c
separates the metal and the insulator phases in which the
derivative dRxx /dT has different signs.

As will be shown below, the fact that e-e correlations are
responsible both for the MIT and for formation of the CFs in
2D conductors assumes a fundamental relationship between
these two phenomena. Such relationship can be established
through the unitary Chern-Simons transformation which
maps a system of the 2D strongly correlated electrons on the
2D gas of the weakly interacting CFs placed in a gauge mag-
netic field. This approach yields a possibility to describe the
MIT as a quantum phase transition in the QHE system.

Although a concept of the CFs was introduced into the
physics of 2D systems in the context of the FQHE it has
been recognized later that the external magnetic field is not a
necessary ingredient of the theory. As was shown in Ref. 20
the Chern-Simons gauge-field approach, developed earlier in
Refs. 21 and 22 for description the FQHE, can be applied to
2D electron systems without external magnetic field. The CS
gauge transformation actually produces a mapping of the ki-
netic energy of the 2D electrons on the Landau Hamiltonian
for the new fermion particles of the same charge but inter-
acting with the perpendicular gauge �statistical� magnetic
field. Such a fermion-to-fermion transformation changes the
nomenclature of the eigenstates in the kinetic energy of the
Hamiltonian from the electronic plane waves to the Landau
orbitals of the composite fermions. The latter is possible be-
cause in 2D systems not only the momentum within the
plane but as well the angular momentum perpendicular to the
plane is a quantum integral of motion. Another important
point is that the CS transformation attaches an even number
of gauge magnetic field flux quanta to each electron which
means an appearance of new quasiparticles—the CFs.

Consider, following Refs. 20 and 21, a system of 2D spin-
less electrons with the Hamiltonian

H =� d2r
1

2m
	
− i
 � +

e

c
A���r�	2

+ V + U , �2�

where

V =
1

2
� d2rd2r�v�r,r��:��r���r��: �3�

is the energy of the screened e-e Coulomb interaction and

U =� d2rU�r���r� . �4�

U�r� is the disorder potential, ��r�=��r�+��r� is the density
of electrons in point r, and colons in Eq. �3� represent normal
ordering of the creation and annihilation electron operators.
In general, due to the intrinsic disorder of the QHE systems,
we assume below that the screened e-e Coulomb interaction
v�r ,r�� is a function of the two independent arguments r and
r� rather than �r−r��.

The key point of the composite-fermion approach is the
Chern-Simons unitary transformation

���r� = ��r�exp�i2p� d2r���r��arg�r − r��
 , �5�

where arg�r−r�� is the angle between �r−r�� and the X axis.
The density operator is an invariant of the CS transforma-

tion ��r�=��r�+��r�=���r�+���r� and so are the Coulomb
�Eq. �3�� and disorder �Eq. �4�� terms but the kinetic energy
changes. Therefore, after the CS unitary transformation
Hamiltonian �2� takes the form

H� =� d2r
1

2m
	
− i
 � +

e

c
A −

e

c
a����r�	2

+ V + U .

�6�

The gauge-field operator

a = 2p�0� d2r�
ẑ � �r − r��

�r − r��2
��r�� �7�

appears as a result of the CS transformation �ẑ is the unit
vector directed perpendicular to the 2D plane�. In difference
to the vector potential of an external magnetic field, A, the
quantity a is an operator which means that the kinetic energy
term in Eq. �6� contains interactions between the new
composite-fermion particles. At first glance this makes any
manipulation with Hamiltonian �6� nearly intractable in gen-
eral. Fortunately, as is well established in the CF theory, the
mean-field approximation is a rather good approach to the
problem which picks up the major physics and maps a sys-
tem of 2D correlated electrons of the FQHE regime onto the
nearly noninteracting gas of CFs in the IQHE regime.20,21

Following this standard approximation we first replace the
operator ��r� by its expectation value ��r�=�i��r−ri�,
which yields

� � a = 2p�0�
i

��r − ri� . �8�

One can see from this equation that a gauge field a is pro-
duced by the ensemble of � solenoids, each carrying 2p flux
quanta attached to every electron. These new particles are
nothing but the composite fermions.

Further standard approximation is a replacement of the
��r� in Eq. �8� by the constant average value � which means
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that the gauge magnetic field b�r�=��a�r� is a constant too
b�r�=bẑ, where b=2p�0�. In the case ��r�=� the Coulomb
�V� and disorder �U� terms in Eq. �6� become constants �fi-
nite, for samples of finite area S� and can be discarded.
Hamiltonian �6� in this approximation describes a motion of
the free CFs in the uniform magnetic field B�=B−b �Eq.
�1��. Note that nothing changes in the above derivation in the
absence of the external magnetic field A. We arrive therefore
at the following picture. In the first approximation �which
neglects the electron-density fluctuations� a system of 2D
electrons with e-e Coulomb interaction can be mapped
through a unitary CS transformation on a 2D system of non-
interacting CFs placed into a uniform gauge field of the
strength b=2p�0� directed perpendicular to the plane. The
nontrivial point is that the CFs belong to the Landau states
even without external magnetic field. That explains an enig-
matic experimental result of the paper2 in which a strong
perpendicular magnetic field B did not change the shape of
the temperature dependencies of resistivity in the MIT com-
pared to the case B=0. The shift in the electron concentra-
tions which was found for the identical curves follows di-
rectly from the relation B�=B−2p�0� �see the Appendix for
details�.

III. DIAGONAL IN-PLANE CONDUCTIVITY OF THE
COMPOSITE FERMIONS

To explain the experiments1–6 we have to calculate the
diagonal conductivity, �xx, of the strongly correlated 2D
electron system. In view of the unitary equivalence of
Hamiltonians �2� and �6� for electrons and the CFs this con-
ductivity equals to the �xx

CF, the conductivity of the CFs, mov-
ing in the CS gauge magnetic field b�r�=��a�r�.

In the uniform-density approximation, ��r�=�, CFs do
not interact. Small deviations from the uniform approxima-
tion make the CFs a weakly interacting particles. The effects
related with this interaction can be treated perturbatively and,
as the analysis shows,23 they only add some details but do
not change the physics and results of the free CF approach.

We start calculations of the diagonal conductivity �xx
=�xx

CF by putting ��r�=�+���r� into Eqs. �3� and �4� which
yields U=U0+�U, V=V0+�V. The constants U0 and V0
�given by Eqs. �3� and �4� with ��r�=�� can be discarded and
remaining terms are

�U =� d2rUef f�r����r� , �9�

Uef f = U�r� + �� d2r�v�r,r�� , �10�

�V =
1

2
� d2rd2r����r�v�r,r�����r�� . �11�

One can see from Eqs. �9� and �10� that the screened Cou-
lomb interaction changes effective disorder potential and
thereby can influence the localization-to-delocalization tran-
sition in 2D conductor. Within the renormalization-group ap-
proach this point was considered in Ref. 8.

Assuming then that the inhomogeneity is small, ����r��
��, we will neglect the interaction term �V��U and a
small correction �b= �2p�0���r�� to the gauge field B���b.
The role of the remaining weak correlations between the CFs
will be discussed later.

Then following the standard CF approach, we reduce the
problem of the conductivity calculation in a 2D strongly cor-
related electron system to calculations of the conductivity in
a system of 2D noninteracting CFs moving in a fictitious
uniform gauge field and weak disorder potential. The latter
problem is identical to calculations of the diagonal conduc-
tivity �xx in the 2D electron conductor subjected to perpen-
dicular magnetic field b. For typical concentrations of elec-
trons in the Si MOSFET ��1011 cm−2 this field can be
estimated as b�4 T. The 2D electrons in the Si MOSFET in
such perpendicular magnetic fields are in the QHE
regime.6,10,24

Therefore, the problem is reduced to the calculations of
conductivity for 2D gas of the composite fermions in perpen-
dicular magnetic field under the conditions of the QHE. The
main difficulty in the calculations of �xx in the QHE regime
is related to the localization. As is well known, all states
within the disorder-broadened Landau levels are localized
except those belonging to the narrow strips of extended
states in the middle responsible for the peaks in diagonal
conductivity located at the plateau-to-plateau transitions in
the Hall conductivity. Correspondingly, the neighboring in-
sulating phases on both sides of the peak in �xx�B� are sepa-
rated by metallic strips as follows from the phase diagram of
the Si MOSFET.6,10,24 At fields �or electron concentrations�
where the critical points are placed the derivatives dRxx /dT
change sign and the MITs occur.

An analytic expression for the �xx in 2D quantum Hall
conductor taking into account the localization and mobility
edges effects within the disorder-broaden Landau bands was
obtained in Refs. 25 and 26. It explains unusual quantum
magnetic oscillations with the MIT in the background mag-
netoresistance in quasi-2D organic superconductor,27 irregu-
lar peak-splitting effect in the �xx caused by the fractal Hof-
stadter butterfly substructure of the Landau levels28 in
experiments with the artificial lateral superlattices.29

At low temperatures, T�
 /�, �� is the scattering time�
the conductivity �xx in the QHE regime nearby the critical
field Bc takes the form25,26

�xx�B,T� = ���0�exp�− �T0/T� . �12�

The Mott exponent in this equation reflects the variable-
range-hopping mechanism of conductivity within the local-
ized states of disorder-broaden Landau levels.30,31 Since T0
�1 /�� �B−Bc�� this factor as a function of the magnetic field
and temperature reads as follows:

exp�− �T0/T� = exp�− A��B − Bc�/T���/2� . �13�

�� is the correlation length, � and �=1 /� are the critical
indices, Bc is the critical field at which the MIT occurs, A is
a constant�
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���0� =
e2NL��vx

2�

�

. �14�

The average of the velocity squared, is given by26

�vx
2� =

a2

2
2�
�min

�max

d�g����t�,��2. �15�

The other notations are: NL=� /S�0 is the electron density at
the Landau level, � is the flux through a sample, �t�,�� is the
hopping matrix element between the Landau orbitals, a is an
average distance of hopping, �=eB /mc is the cyclotron fre-
quency, m is electron mass, and c is the speed of light.

The integral in Eq. �15� is taken within the narrow stripe
of delocalized states at the center of the disorder-broaden
Landau bands. The tails in the density of states within these
bands g��� can be wide but the width of the delocalized
states stripe is small ��M −�m��
 /�. It is believed that at
least one state in the middle of Landau bands is delocalized.
Variations in the magnetic field change the population of the
Landau bands and the MIT in the QHE takes place when the
chemical potential � crosses the mobility edge separating
extended and localized states. On the technical side the
smallness of the width of extended states simplifies equa-
tions and make possible to write the conductivity in a general
form of Eq. �12� without a specific choice of the density of
states g���.25,26

The Hall and diagonal conductivities in the QHE regime
are related through empiric semicircle rule32 which for tran-
sition between the neighboring plateaus with the Hall con-
ductivities �1 and �2 takes the form

��xx�2 + 
�xy −
�1 + �2

2
�2

= 
�1 − �2

2
�2

. �16�

The Hall conductivities in this equation can take integer
and/or fractional values in units of e2 /h.32–34 Physically the
semicircle rule reflects the fact that in transitional region the
critical regime is represented by the random mixture of the
two quantum Hall liquids in approximately equal proportion
with the local conductivities �1 and �2.32 Although a semi-
circle rule is not a universal it works well at high magnetic
fields when a few Landau levels are occupied.11 It was also
established in this paper that the MITs between adjacent
quantum Hall states are equivalent to the MIT in the lowest
Landau level. In particular, an equivalence of the transitions
�2-1� and �1-0� was demonstrated in Ref. 11. At typical elec-
tron densities of experiments in the Si MOSFET, �
�1011 cm−2, the gauge field scales as b�4 T. At the cor-
responding region of the phase diagram in Fig. 2 of Ref. 6
and Fig. 9 of Ref. 10 the metallic strips belonging to the
lower Landau levels merge into a metallic pool at the border
with the insulating state �xy =0. An increase in the � �say,
from �=7.12�1010 cm−2 to �=13.7�1010 cm−2, as in Fig.
3 of Ref. 2� results in a transition from the insulating state to
the metallic pool.

In that region of fields one can use the semicircle rule and
Eq. �12� for calculations of the Hall conductivity. The tem-
perature behavior of the resistivity Rxx�T� then can be found
from the equation

Rxx =
�xx

�xx
2 + �xy

2 . �17�

The result of numerical calculations for transition from the
insulating to metallic state �0-1� is shown in Fig. 1 in which
�xx and Rxx are plotted as a function of the effective magnetic
field of the CFs B�= �B−b� at three different temperatures.
One can see in Fig. 1 a fixed point B�=Bc in the resistivity
Rxx�B�� at which all curves cross independently of the tem-
perature. For B��Bc the temperature behavior of the Rxx�T�
is metalliclike with the positive derivative dRxx�T� /dT�0.
At fields B��Bc the insulatinglike behavior holds with the
negative derivative dRxx�T� /dT�0. This picture is in a good
agreement with the experimental plots of Refs. 2, 3, and 6.
The temperature dependence of the Rxx�T� for several con-
stant values of the effective field B�= �B−b� near the critical
point is shown in Fig. 2. The plots like this are typical for the
MITs observed in the QHE systems nearby the Hall plateau-
to-plateau transitions.35

It is important to note here that in full agreement with the
experiments of the paper2 the shape of the metal-to-insulator
transition in Figs. 1 and 2 does not depend on the value of
the perpendicular magnetic field which only shifts the effec-
tive field B�= �B−b�.

In the absence of external magnetic field B�=2p�0�, and
the MIT in Figs. 1 and 2 is governed by the electron density
only. In that case a transition from the metal-like type of the
resistivity �dRxx�T� /dT�0� at ���c=Bc /2p�0 to the insu-
latorlike behavior �dRxx�T� /dT�0� at ���c shown in Fig. 2
is typical for the numerous experiments on the MIT in 2D
conductors.1–6 The temperature-independent separatrix
Rxx

S �T� demarcating the insulating and metallic curves in Fig.
2 corresponds exactly the critical value of the electron con-
centration �=�c.

A. Scaling and the metal-to-insulator transition

The Mott-type conductivity given by Eqs. �12�–�15� de-
pends on the variable �B�−Bc� /T� very much the same as in

0.235 0.24 0.245 0.25 0.255 0.26
B�

0.25
0.5

0.75
1

1.25
1.5

1.75
2
Σxx �Rxx

FIG. 1. The conductivity �xx, according to the Eq. �12�, and the
resistivity Rxx, according to the Eq. �17�, as a function of the effec-
tive parameter B�= �B−b� given by Eq. �1�. A fixed point B�=Bc in
the magnetoresistivity is the critical point of the MIT �Bc=0.245 in
adopted dimensionless units� separating the metallic �B��Bc� and
insulating �B��Bc� branches of the Rxx�B��. The curves are normal-
ized, respectively, on the values �xx�0� and Rxx�0�. Three couples of
curves correspond to the temperatures T=0.1,0.2,0.3 in conven-
tional units and A=1. The conductivity �xx has a domelike shape
which is wider for higher temperature.
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Ref. 31 in which the universal scaling in the IQHE systems
with respect to this variable was studied. In the absence of
external magnetic field T0�1 /�� �b−Bc��� ��−�c��. Using
this relation we can write Eq. �12� in the form which has
been established experimentally in Ref. 2

�xx��,T� = ���0�exp�− A��� − �c�/T���/2� , �18�

where A is a constant and �=1 /�. The critical index � in Si
MOSFET equals to 1.6 �Refs. 1 and 2� which means a scal-
ing with the exponent �=0.625.

The Mott conductivity �Eq. �18�� is an exponential func-
tion of the argument ��−�c� /T� which assumes a universal
scaling with respect to this variable provided that index � is
the same �universal� for different samples and materials. Ex-
periments show that this is not the case, in general. Different
theoretical and experimental aspects related to the problems
of scaling in 2D correlated disordered conductors can be
found in the papers.9,12,36–38

The reflection symmetry near the critical point has been
established empirically in the MOSFETs which tells that the
normalized conductivity as a function of the ��−�c� on either
side of the transition is equal to its inverse on the other
side.39 This rule follows directly from Eqs. �17� and �18�. On
the insulating side �xy =0 and

Rxx��,T� = 1/�xx��,T� � exp�A��� − �c�/T���/2� . �19�

This is exactly the empiric formula �5� of the paper.2 On the
metallic side �xy =e2 /h and Rxx�T�� �h /e2��xx�T�.

B. Separatrix and the e-e correlations

The separatrix dividing metallic and insulating curves
Rxx�T� at the critical value of the effective field B�=0.245 in
Fig. 2 is a horizontal line. Such type of the temperature-
independent separatrix has been found in many experimental
papers.6,35,40 In general the separatrix is temperature depen-
dent, usually close to the linear function in shape.3–6

A temperature dependence of the separatrix follows from
the two parameter scaling near the critical point in which one
variable is related to disorder and another to the e-e
interaction.8 This idea was checked experimentally in Ref. 9.

Below we develop this idea further and put forward semi-
phenomenological arguments which relate a linear tempera-
ture dependence of the separatrix with the residual interac-
tions between the composite fermions. In this connection we
note that the result plotted in Fig. 2 was obtained without
taking account of the weak residual interaction between the
CFs given by Eq. �11�. Therefore, we can make conjecture
that a temperature-independent horizontal separatrix is a con-
sequence of the fact that the residual interactions between the
CFs are negligibly small as is really the case in many in-
stances. In our approach this is true if �V��U. The value of
the �U depends on the effective disorder potential Uef f�r�
�Eq. �10�� which varies with the changes in the electron den-
sity � and disorder potential U�r�. Therefore, in case the
above inequality is not too strong the interaction term �V
should be taken into account.

The effect produced by the small interactions between the
CFs on the FQHE has been discussed in the literature �see
paper,23 comment,41 and Refs. 41–43�. It was established that
they change only some details of the phenomenon compared
to the case of noninteracting CFs but preserve the principal
features of the FQHE. This is an important point since the
MIT in our approach is related to the CFs physics. The effect
of interactions between electrons on the conductivity of 2D
Fermi liquid was studied in Ref. 44. It was shown in this
paper under rather general assumptions concerning the shape
of the e-e interaction function V�r� that correlations renor-
malize the in-plane diagonal conductivity of the free elec-
trons, ��0�, by the temperature-dependent factor �=��0��1
−A0T�. The physics behind this linear in temperature correc-
tion to the conductivity is a coherent scattering of electrons
by the 2D Friedel oscillations.

The constant A0 can be either positive or negative depend-
ing on the specific form of the interaction V�r�. It was shown
in Ref. 44 that a linear temperature dependence of the resis-
tivity holds down to rather small values of the parameter
T� /
�0.05. Below this value the logarithmically driven
Altshuller-Aronov corrections to conductivity,45 caused by
the weak localization shift the conductivity from the linear
temperature dependence.

Experiments on the temperature behavior of the conduc-
tivity done on different 2D Si MOSFET samples confirmed a
linear dependence within a broad interval of values of the
parameter T� /
 ranging from the diffusive T� /
�1 to the
ballistic T� /
�1 regimes.6,46 Qualitatively, the linear in
temperature correction to the conductivity comes from the
thermal smearing of the Fermi distribution which results in
additional terms in the scattering time and conductivity pro-
portional to the Fourier transform of interaction function and
temperature.44 The composite fermions also have a sharp
Fermi distribution at low temperatures which assumes a
similar scattering physics with the same linear in temperature
correction to the conductivity in full analogy with interacting
electrons.

Thus, on a phenomenological level one can expect a lin-
ear temperature correction to the conductivity at low tem-
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FIG. 2. The resistivity Rxx as a function of temperature obtained
under the same conditions as in Fig. 1 for the five values of the
effective magnetic field B�= �B�−b�: 0.225, 0.235, 0.245, 0.255,
and 0.265 �from top to bottom�. The horizontal separatrix between
the insulating and metallic types of the Rxx�T� reflects the fact that
interactions between the composite fermions are absent in the
adopted uniform approximation ��r�=�. In agreement with the ex-
periment �Ref. 2� the shape of the Rxx�T� does not changed if B�

=0. The only effect is a shift in the electron density at which Rxx�T�
is observed. See text for details.
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peratures caused by the weak interactions between the CFs.
This effect can be included qualitatively by the substitution

Rxx�T� → Rxx�T��1 − CT� . �20�

Two factors contributing into the total resistivity Rxx�T� come
from the disorder and Coulomb interactions, respectively.
They are written in Eq. �20� in a fashion similar to the phe-
nomenology of the two-parametric scaling analysis of the
MIT given in Refs. 8 and 9. Equation �20� is in a good
agreement with experimental observations of the Rxx�T� in
2D Si-MOSFET.1–6,10,46 The value of the constant C and its
sign depend on the strength and shape of residual interac-
tions between the CFs. The diagrams for Rxx�T� with positive
and negative signs of the constant C are shown in Figs. 3 and
4. Both diagrams are typical not only for the 2D Si MOSFET
but rather for a broader class of different 2D conductors with
the strong correlations between the charge carriers. An ex-
ample of the case C�0 is given in the paper47 in which a
linear temperature dependence of the resistivity in 2D corre-
lated Si systems was studied near the metal-to-insulator tran-
sition. The case C�0, shown in Fig. 3, is typical for the
underdoped high-Tc cuprates, which are known to be 2D
strongly correlated hole conductors.48

C. MIT in perpendicular magnetic field

Numerous experiments1–6 display a strong effect of exter-
nal magnetic field on the MIT in a 2D conductors. It was
found first that even in a strong quantizing perpendicular

magnetic field B� the MIT as a function of temperature pre-
serves the same shape as in the case B�=0. The only differ-
ence is that the same curves Rxx�T� correspond to shifted
values of the electron concentrations.2 This puzzling experi-
mental fact is in full agreement with our approach in which
the effective magnetic field B�= �B�−b� is the driving force
of the MIT. The curves Rxx�B� ,T� in Figs. 1–3 with and
without perpendicular magnetic field are identical in the
same sample with the only difference that they correspond to
the shifted values of electron concentration �.

Without external magnetic field the effective field B�

equals to B�= �2p�0��. In perpendicular magnetic field B�

�0 the effective field is shifted B�= �B�−2p�0�� but the
curves in Figs. 1–4 remain intact in agreement with experi-
ments. The shift in electron concentrations at which the same
curves holds is ��=B� /2p�0. For B��1 T the estimated
value of this shift, ���1010 cm−2, is in a good agreement
with the corresponding observations in 2D Si MOSFETs.2

IV. RESULTS AND DISCUSSION

In conclusion, in this paper an approach to the theory of
the metal-to-insulator transition in 2D correlated electron
systems such as Si MOSFET is proposed based on the
composite-fermion paradigm. The physics behind this ap-
proach is as follows. The correlations between electrons in
2D are strongly depend on the phase of their wave functions.
By the appropriate unitary Chern-Simons transformation the
phase may be chosen in such a way that new quasiparticles
�the composite fermions� would be free or weakly interacting
�depending on the interplay between the disorder and quasi-
particle correlations�. The price for the freedom of the CFs is
their complex dynamics in the gauge magnetic field which
they produce collectively by the fluxes attached to each CF.
If the electron density is uniform throughout the sample,
which is really often the case, the gauge field is uniform as
well and the CFs dynamics is reduced to the Landau problem
of a charged particle moving in external magnetic field. The
estimate of this field for typical electron densities �
�1011 cm−2 yields b=2�0� on the order of a few tesla
which assumes a QHE regime for the CFs. The conductivity
of the 2D correlated electrons in this approach equals to the
diagonal conductivity of a 2D gas of the CFs subject to the
perpendicular quantizing uniform gauge magnetic field at
which the QHE holds. This conductivity has sharp peaks
each time the chemical potential crosses the narrow metalli-
clike stripes of delocalized states within the disorder-broaden
Landau levels. The MITs occur at the boundaries of these
metallic stripes. Therefore, within the CF approach the MIT
in a 2D conductor with the Coulomb interaction between
electrons is mapped on the MIT in a well-studied system of
free 2D fermions in external magnetic field in the QHE re-
gime.

The key point of the approach is the Chern-Simons uni-
tary transformation �Eq. �5�� which maps 2D strongly corre-
lated electrons with Hamiltonian �2� on a system of weakly
correlated composite fermions—electrons each capturing an
even number 2p �p=1,2 ,3 , . . .� of the gauge-field flux
quanta as described by Eqs. �6�–�8�.
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FIG. 3. The resistivity Rxx as a function of temperature accord-
ing to Eq. �20�. The difference with Fig. 2 is that the additional
factor 1−CT is taken into account which is due to the weak residual
interaction of the composite fermions. The interaction parameter is
taken equal to C=−5.
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FIG. 4. The same as in Fig. 3 but with a different value of the
interaction parameter C=5.
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In 2D AlGaAs heterostructures the Coulomb correlations
between electrons become important only at high magnetic
fields when the parameter rs�1 and the FQHE regime with
the CFs physics develops in the lowest Landau level. In the
Si-MOSFETs the parameter rs�10 and electron correlations
are strong even without external quantizing magnetic field.
That makes a principal difference with the AlGaAs hetero-
structures. Correspondingly, the CFs quasiparticles appear in
Si MOSFET without quantizing magnetic field and that may
be the reason why the FQHE has not been observed in these
conductors so far.

The CS gauge field within the uniform-density approxi-
mation acts on the orbital motion of the CFs in the same
fashion as an external magnetic field does in the QHE re-
gime. In the case ��r�=� CFs do not interact. Correspond-
ingly, the MIT in 2D strongly correlated electron system can
be described in a full analogy with the MITs which hold near
the plateau-to-plateau transitions in conventional QHE sys-
tems.

The analysis of the phase diagram shows that without
external magnetic field the MIT in Si MOSFET holds at the
border between the Hall insulator �xy =0 and metallic strip in
the middle of the lowest Landau band. The MIT is driven by
the enhancement of the electron density along the line paral-
lel to the metallic strip 
=1 /2 at the phase diagram in the
vicinity of ��1011 cm−2. The conductivity of the CFs near
the MIT in the QHE regime is governed by the Mott variable
range hopping mechanism and has a simple exponential form
given by Eqs. �12�–�14�. Without external magnetic field the
conductivity takes the form in Eq. �18� which was estab-
lished empirically in Ref. 2 and displays a scaling with re-
spect to the variable ��−�c� /T� as well as reflecting symme-
try with the resistivity �Eq. �19�� on the insulating side of the
MIT.2,24

The basic results of the calculations are summarized in
Figs. 1–4. The resistivity Rxx�B�� as a function of the effec-
tive magnetic field B�= �B−b� near the critical point Bc is
shown in Fig. 1 for different temperatures. Different types of
the temperature behavior of the resistivity Rxx�T� in Figs. 2–4
are related to the cases of the free and weakly correlated CFs.
The temperature-independent horizontal separatrix in Fig. 2
corresponds to the case of noninteracting CFs. Small residual
interactions between the CFs makes separatrix a linear func-
tion of temperature as shown in Figs. 3 and 4. All three types
of the temperature behavior of the resistivity shown in Figs.
2–4 have been observed experimentally.

In perpendicular magnetic field the MIT depends on the
effective field B�= �B�−b� which, in agreement with the
experiment,2 results in that the shape of the curves in Figs.
2–4 remains the same in external field as without it. The only
difference is the shift of electron concentrations at which the
same curves are observed �see the Appendix for more detail�.

So far CFs have been studied experimentally only in
semiconducting heterojunctions at strong magnetic fields in
the FQHE regime. It was shown above that in 2D strongly
correlated systems such as Si MOSFET they can exist with-
out external magnetic field. I hope that this paper will stimu-
late the experimental search for the CFs in the Si MOSFET
and other 2D strongly correlated systems.

ACKNOWLEDGMENTS

The author is grateful to M. E. Zhitomirsky and S. L.
Drechsler for reading the manuscript and useful comments. I
also would like to express my deep gratitude to R. Moessner,
P. Fulde, and S. Flach for the hospitality at the MPIPKS in
Dresden. This work was supported in part by European Com-
mission CORDIS Seven Framework Program, Project No.
247556.

APPENDIX: THE IDENTITY OF THE RESISTIVITY VS
TEMPERATURE PLOTS WITH AND WITHOUT

QUANTIZING MAGNETIC FIELD

An observation made in Ref. 2 that the temperature be-
havior of resistivities in the Si MOSFET with and without
quantizing perpendicular magnetic field is identical and cru-
cial for the understanding the nature of the MIT in correlated
2D conductors. The important point of this experiment is that
electron density � and perpendicular magnetic field B have
been varied along the metallic strip with the fixed filling
factor 
=��0 /B equal to 
=3 /2 as shown by the arrow at
the schematic phase diagram of Ref. 2. Under such condition
of experiment there is only one critical point at the phase
diagram where the MIT occurs which is located at the
boundary between the insulating state �xy =0 and metallic
strip 
=3 /2.

Without external magnetic field the effective field is given
by B�= �2p�0�� and corresponding effective filling factor

�=��0 /B�=1 /2p. Since at the schematic phase diagram of
Ref. 2 and experimental phase diagrams in Fig. 2 of Ref. 6
and Fig. 9 of Ref. 10 there are no metallic strips below the
one at 
=1 /2 the only option is p=1. Under this condition
the MIT occur at the boundary between the insulating state
�xy =0 and metallic strip 
=1 /2 on the same scenario as in
case 
=3 /2. In the Si MOSFET this boundary has a very
nontrivial oscillating shape at the �-B plane in the low-field
region ���1011 cm−2 and B�4 T�.6 In this region a fan of
metallic strips merge into a pool at the border with the insu-
lating state where the above MITs take place. The basic fea-
tures of such MIT plotted in Figs. 1–4 are in good agreement
with experiments on the Si MOSFET. According to these
experiments and Eqs. �12�–�20� the resistivity of the Si
MOSFET is an universal function of the variable �B�

−Bc� /T�. Equating this variable taken at B=0 and 
=3 /2 we
arrive at the condition at which the corresponding resistivity
plots vs temperature, Rxx�T�, with and without external mag-
netic field become identical, as in experiment of Ref. 2

�2p
 − 1/
��0�
 − Bc

� = 2p�0� − Bc

�. �A1�

Here we take into account the experimental fact that critical
index � in both transitions remains the same. Subscript 

marks the quantities related to the filling factor 3/2. We also
assume that, in general, p
�p. The equation relating p
 and
p follows from Eq. �A1�

p
 = p�1 − ��/�
� + 1/2
 − �Bc/2�
�0, �A2�

where ��=�
−� and �Bc=Bc
�−Bc


� �Bc

� �Bc

��. The metallic
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strips have finite widths which can be estimated numerically
from the phase diagrams in Fig. 2 of Ref. 6 and Fig. 9 of Ref.
10. This yields �Bc of the order 1 T. The quantity 2�
�0 in
Fig. 8 of Ref. 2 vary together with �
 between 2.95 and 4.72
T. For the upper curves in Fig. 8 of Ref. 2 we have ��
= �7.13–6.68��1010 cm−2 which yields �� /�
�0.063. Un-
der such conditions and in view that the upper bound of the

ratio �Bc /2�0�
 is close to the value 1/3 �i.e., 1 /2
 taken at

=3 /2� Eq. �A2� can be satisfied by the choice p
= p=1. In
that case the observed in Ref. 2 identity of resistivities re-
quire a fulfillment �at least approximate in real experiments�
of the condition �Bc=2�
�0�1 /3−�� /�
�. Further experi-
mental and theoretical works are necessary to clarify this
issue.
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