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Hidden XY structure of the bond-charge Hubbard model
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The repulsive one-dimensional Hubbard model with bond-charge interaction in the superconducting regime
is mapped onto the spin-1/2 XY model with transverse field, after assuming short-ranged antiferromagnetic
correlations between electrons. We calculate density correlations and phase boundaries, realizing an excellent
agreement with numerical results. The critical line for the superconducting transition is shown to coincide with
the analytical factorization line identifying the commensurate-incommensurate transition in the XY model.
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The Hubbard Hamiltonian and its extensions are known to
model several correlated quantum systems, ranging from
high-T,. superconductors to cold fermionic atoms trapped
into optical lattices.! In particular, the bond-charge interac-
tion (HBC) model describes the interaction between fermi-
ons located on bonds and on lattice sites.>3 This extension is
considered to be especially relevant to the field of high-7.
superconductors.* In fact, it has recently been found>® that a
superconducting phase takes place also for repulsive values
of the on-site Coulomb interaction. The phase is character-
ized by incommensurate modulations in the charge structure
factor. Its boundaries have been explored numerically,
though their fundamental nature has not been understood yet.

We find that the explanation of the above features resides
into the underlying effective model, which for the supercon-
ducting phase turns out to be the anisotropic XY chain in a
transverse field. Such model is known to be equivalent to
free-spinless fermions and it is remarkable how it can faith-
fully describe quantities of a strongly correlated system like
the HBC chain. Indeed, the mapping allows us to derive
analytical expressions for both the critical line and correla-
tions, reproducing with amazing accuracy the numerical
data.

The model Hamiltonian for the HBC chain reads
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where o=1, | (7 denoting the opposite of o) and the opera-
tor cT creates a fermion at site i with spin o. Moreover 7,
—ci ,Cio~ The parameters U and X, expressed in units of the
hopplng amplitude, are the on-site and bond-charge Coulomb
repulsions, respectively.

While the HBC model cannot be exactly solved for all X,
there are two integrable point at X=0 and X=1, for all values
of U. The former is the well-known Hubbard model which is
solvable by Bethe Ansatz. The integrability of the case X
=1 is due to the fact that the empty and the doubly occupied
sites in this case are indistinguishable, and the same holds for
the T and | spins in the singly occupied sites, so that the
model can be rephrased in terms of tight-binding spinless
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fermions in one dimension (1D).” In addition, the number of
double occupancies turns out to be a conserved quantity.

In the general case, Eq. (1) can be fruitfully recasted pass-
ing to a slave boson representation One can make the trans-
formation [0)—¢;|0), ¢f,J0)—£{,0), and cf;cf0)—d}|0),
where empty and doubly occupies sites are bosons, while the
single occupations are fermions. The hard-core constraint
e| Te; +de +3 fTafw—l completes the 1dent1ﬁcat10n Then,
the c fermlons are cw—fme,+d fiz and n;,=c] iy fafm
+2djd,. The total number of particles is N= Nf+2Nd. The
filling factor is v=N/L, with 0= v=2. Accordingly, we have
v+ vp+v,;=1 and v=v+2v, After the substitution, the
Hamiltonian becomes H=2,,H,,, where

U i
Hig=— Eﬁaﬁﬁ Uiale,o-(th:'lei - eiT+1€i)
- Sxfjaﬁﬂ,&(@mdi +d;ye) +He] (2)

with #y=1-2X and sy=1-X. It can be recognized that the
first two terms describe the kinetic energy of a single elec-
tron (hole) with spin o in a background of empty (doubly
occupied) sites, whereas the third term describes the trans-
formation of two opposite spins into an empty and a doubly
occupied site. Since the coefficient sy turns out to give the
smallest contribution for X>2/3, it is not surprising that the
exact solution obtained assuming sy=0 (and arbitrary ry)
(Ref. 8) shares in this regime many features of the ground
state (GS) of the true model, obtained by numerical
investigation.9 To some extent, these features hold within the
range X > X,.=1/2, where X, is the value at which 7y changes
sign. This is true, in particular, as for the presence of phase
coexistence of domains formed by only empty or doubly
occupied sites in which the single particles move. On the
other hand, fixing sx=0 yields to a critical curve Upg=4X for
the stability of the phase separated (PS) region, whereas the
superconducting transition takes place (only for sy #0) at a
value Ugc- which is well below that line. Since the role of
empty and doubly occupied sites, as well as the conservation
of their number, appears to be the same as for sy=0 (Ref. 10)
also in the superconducting case, one can infer that it is just
the motion of the single electrons and holes which deter-
mines the change Upg— Ug for sy # 0. In this Brief Report,
we assume this point of view: treating the empty and doubly
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TABLE 1. Comparison between various quantities defined in the text computed either numerically (num)
with DMRG or analytically by means of the equivalent XY model (th) for X=0.8, both for periodic boundary
conditions. The latter is treated directly in the thermodynamic limit while the former are extrapolated to L
— o from finite-size data. The characteristic wave number ¢ is extracted from Fourier transforms at L=30.

th

th

U ess €Gs v Yy q/m Wyl
0 -0.5390 -0.54612 0.2511 1/4 14/30 172
0.5 -0.670 -0.67708 0.216 0.22611 14/30 0.44841
1 -0.81544 -0.82011 0.19016 0.20164 12/30 0.39539
1.5 -0.9717 -0.97565 0.173 0.17588 10/30 0.33914
2.5 —1.3300 -1.3287 0.1063 0.11488 6/30 0.20116

occupied states as the vacuum in which the single particles
move.

Let us go back to Eq. (2) and consider what happens at
sx# 0. The SU(2) charge symmetry is broken down to U(1),
which merely describes the conservation of the number of
fermions. The large spin degeneracy is removed, and it is as
if the fermionic dynamics is influenced by the background
imposed by the bosons and vice versa. This picture is correct
as far as the spin and charge degrees of freedom are not
separated. For X< 1, the pair creation term in Eq. (2) induces
short-ranged antiferromagnetic (AFM) correlations in both
spin and pseudospin degrees of freedom. Since at half filling
the probabilities of having an empty and a doubly occupied
sites are identical and coincide with 1/2, we can approximate
the term (e, e;~txd}, d;y~X. Thus, in this case the kinetic-
energy term in H,, becomes -Xf fii,+(X- l)fjaf;lﬁ
+H.c., where the term flf i+1.5 always takes place due to the
bosonic AFM correlations. Both the bosonic species are con-
sidered as a unique vacuum for the fermions f.

Assuming the existence of AFM correlations also in the
fermionic variables, we can drop the spin indices. The effect
of fo ',1 1s to open a gap at the Fermi level, hence reducing
considerably the GS energy. This mechanism is analogous to
what happens in the case of the Peierls instability (in that
case the gap is opened by the dimerization) where the bosons
here play the role of the phonons that distort the lattice. So,
we obtain a free-spinless fermion model HV=3% H'),
where

M = —X(f?fm P+ H.c.> - gfffi. (3)
It is instructive to notice that even in this form one can re-
cover the exact solution of the case X=1. Indeed a straght-
forward diagonalization in Fourier space gives H=
—23,[cos k+U/4]f}f;. The fermions fill the negative energy
states up to the Fermi point k;=mvy. The saturation occurs
for U.=—4 cos(mv) for 0<p<2.

In the general case, ") can be easily shown to be equiva-
lent to the following XY model in a transverse field:

1 1+
Hxy=Eo— (2 70}0)( a*’o*,’+1+haf ;
i=1
4)
where y='3, h=1%, E;=—%, and (=% at half filling.

As usual we have applied the Jordan-Wigner transformation

=2fifi=1, ot =fIK._,, and o7 =K_,f; with K,=II\_,(-0%)
=exp[i17§lf€=1nk].

AFM correlations in both bosonic and fermionic particles
are here assumed on the intuitive basic observation of the
reduction in GS energy by means of the pair creation terms.
A more rigorous approach would involve a self-consistent
determination of the hopping coefficients in the quadratic
model in which the spin labels are retained. Such approach
allows to extend the analysis away from half filling and in
magnetic field, and goes beyond the purpose of the present
Brief Report. We dedicate a forthcoming extended paper to a
self-consistent approach. In what follows, we examine some
important consequences that can be derived from the exact
solution of the XY model, written in Eq. (4).

As known, Hamiltonian (4) can be diagonalized: H=E|
+= EkeBzAk(ﬁkﬁk 2) where the sum is performed in the
Br1110u1n zone (BZ), and the dispersion relations are A,
=2\(cos k+h)>+~? sin® k. Given the positiveness of A, the
GS energy Egg is determined by the vacuum of the Bogoliu-
bov quasiparticles B, giving EGson—;—LEkeBZAk. By tak-
ing the thermodynamic limit L — o0, we get an energy density

U_ X ¢m
egs=—4 = 1) TndkAy.

We have compared the outcomes of our mapping with
numerical calculations using the density-matrix renormaliza-
tion group (DMRG)."" In particular, we used extrapolations
in 1/L of data collected by selecting seven finite-system
sweeps and 1024-1152 states. Numerical and analytical re-
sults of the energy density at X=0.8 are displayed in Table I.

An important feature of the XY chain is the presence of a
factorization line h’>+9?=1, which corresponds to a
commensurate-incommensurate (CIC) transition. In the HBC
model this transition is mapped analytically into

—_—
USC=4V’2X_ 1.

(5)

Such transition was discovered numerically in Ref. 5 and
separates a incommensurate singlet superconducting (ICSS)
phase from a bond ordered wave (BOW) phase.® As seen in
Fig. 1, the curve obtained with our mapping describes rather
accurately the numerical data of the transition.

Along the factorization line the GS in the S=1/2 model is
written as ®%,|¢), where |¢>=cosg| T>+sing|l), with
cos 0=[(1-7)/(1+7)]"?>=a. Here the local magnetization is

2vy—1=a=y2X~-1. Accordingly, the number of double oc-
cupations along the factorization line at half filling is v,
=(1-a)/4=(1-\2X- l)/4 In the rest of the phase diagram,

233105-2



BRIEF REPORTS

4
/"/
| sSDw ]
31 , .
F//
U2t by _
L » s —
ICSS
1+ . 9 B
y i
L ‘ ]
L BOW|
o] = Y - Iy | |
0 0.2 0.4 0.6 0.8 1

X

FIG. 1. (Color online) Comparison between the phase diagram
of the HBC chain, calculated numerically in Ref. 6 (symbols with
dashed lines) and the phase diagram obtained from the mapping
onto the XY model in transverse field (continuous lines). The upper
curves correspond to the spin gap transition where spin excitations
become gapless while the lower curves mark the transition into the
ICSS phase where the charge compressibility diverges.

the transverse magnetization of the XY chain is given by
(a“;):%Eke sz(h+cos k)A;'. The diverging charge compress-
ibility of the ICSS phase is explainable simply by observing
that adding two particles produce the conversion of an empty
site onto a doubly occupied one, without changing the energy
in the XY representation.

In addition, the XY model in 1D is known to undergo a
quantum phase transition along line 2=1, belonging to the
universality class of the classical Ising model in two dimen-
sions (2D). This translates directly into the line U=4X in the
phase diagram of the HBC model (see Fig. 1). The latter
coincides with the critical line of stability of PS (Ups) in the
integrable case sy=0, and is close to the numerical critical
line between the spin-density wave and the BOW phase in
Fig. 1, at least for X close to 1. Moreover, the line y=1,
which is known to describe the Ising model in a transverse
field, here corresponds to the case X=1/2. While it is ques-
tionable whether the assumptions that have originated our
approximations for the ICSS phase are still valid in the
above limiting cases, one can recognize that instead at the
very crucial critical point X=1/2 and U=0, our system de-
scribed in Eq. (1) is mapped into nothing but the Ising
model.

From the seminal paper of Barouch and McCoy'? on the
statistical mechanics of the XY model, it is known that the
oscillation wave number of the correlator p,(R)=(0 07, ) in
the incommensurate region h>+9> <1 is

T \/2x—1

@n =" = N e

(6)

with a period Ry=2m/ .

A first striking observation is the fact that the correlations
of the fotal density exhibit a peak very close to the charac-
teristic wave number ¢ in Eq. (6): in the last two columns of
Table I we report the wave vector g at which the total density
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FIG. 2. Analysis of the various contributions [see Eq. (7)] to the
static structure factor (Fourier transform) of the density correlation
function for the HBC model (L=30) with the parameters reported in
the legend. The vertical line corresponds to ¢/ (see Table I).

structure factor has a peak (see an example in Fig. 2) and the
corresponding value of . For X=0.9 and U=3 with L=32
the peak is located at ¢/ 7=0.1875 while ¢/ 7=0.18342.

The appearance of the peak at wave number Q in the
Fourier transform of a correlation function that decays as
cos(QR)exp(—R/ &)/ R is related also to the exponent a: the
smaller is a the sharper is the peak. In particular, for a=2
which is the case for the correlation p,.(R)=(0;075,) of the
XY model, the peak it not visibile at all, despite the fact that
the oscillations actually have characteristic wave number 2.
Hence, it is worth to inspect in more detail the origin of the
peaks observed numerically. Since the local-density operator
n; in terms of single and double occupancies ng; and ny; is
given by n;=ng+2ny, the correlation function of the total
density decomposes in the following parts:

(inipr) = (Ngingisg) + Kngingivr) + 2 Mg g) + 2N Mg g) -

()

It turns out that the peak in the static structure factor is not
due to the first term but it is instead provided by (nyn4.z)» as
shown in Fig. 2 for the test case X=0.8 and U=2.5, although
we obtained the same qualitative picture at U=1.
According to our mapping, we can compare directly the
connected correlator N{(R)=(ngn,g)—(n;)*> in the HBC
model with the density correlation function p(R)
=(fIfif 5 afier)—{fLf)? for the spinless fermions with Hamil-
tonian (3). The calculation of the latter is omitted here since
it is quite lengthy, though it simply involves a standard ap-
plication the Wick theorem. The fully fermionic correlator
N,(R) and the spinless fermions correlator p(R) are compared
in Fig. 3 for various choices of the parameters U and X in the
ICSS phase of our starting system (i.e., the incommensurate
one in the XY model); the agreement in real space is gener-
ally very good. Such behavior of Ny(R) is not obvious a
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FIG. 3. (Color online) Comparison of the connected real-space
correlation functions Ny(R) (at half filling) and p(R) for the HBC
and XY model, respectively (see text for definitions based on singly
occupied sites operators). The parameters of the two models are
related by mapping as y=(1-X)/X and h=U/4X. All the DMRG
calculations for the HBC model and the analytical expressions of
the curves for the XY model refer to L=50. From top to bottom the
data have been offset by +0.15, +0.10, and +0.05 for the sake of
clarity.

priori in the HBC model and we interpret it as a remarkable
nontrivial prediction of our mapping.

In summary, we have studied the Hubbard model with
bond-charge interaction in the superconducting regime, un-
veiling its underlying XY structure. We have shown that at
half filling the numerical critical line for superconductivity
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coincides with remarkable accuracy to the analytical factor-
ization curve that marks the CIC transition of the anisotropic
XY model in a transverse field. Exploiting the mapping for
the calculation of correlations in the effective model has al-
lowed us to predict rather accurately the peak in the charge
structure factor of the original model. The results confirm a
posteriori the crucial role of short-range AF correlations and
spin degrees of freedom as to the onset of superconductivity.
The ultimate presence of the latter is however to be ascribed
to the interplay of the spin with the charge degrees of free-
dom, the superconducting quantum phase transition reducing
to a purely mathematical feature (the factorization line) in
the free fermions model.

Based on the success of the present mapping, a number of
further results are now in order. First, since the one dimen-
sionality of the model is not crucial to the mapping, the latter
should hold in higher dimension as well. In 2D, the model is
reduced to a free fermionic system with pair creation, whose
investigation could provide useful hints on the phase dia-
gram of the 2D HBC model. Moreover, it would be interest-
ing to understand the implications on the HBC model of a
nonvanishing string order parameter which is peculiar of the
XY model in transverse field. Finally, we expect that a simi-
lar mapping should hold also in the strongly repulsive regime
U — o, since in that case no doubly occupied sites occur, and
it is still quite natural to assume short-range AFM order of
single particles.
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