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We determine the zero-temperature quantum phase diagram of a p,+ip,, pairing model based on the exactly
solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this
model. In the continuum limit, the exact solution exhibits a third-order quantum phase transition, separating a
strong-pairing from a weak-pairing phase. The mean-field solution allows to connect these results to other
models with p,+ip,, pairing order. We define an experimentally accessible characteristic length scale, associ-
ated with the size of the Cooper pairs, that diverges at the transition point, indicating that the phase transition
is of a confinement-deconfinement type without local order parameter. We propose an experimental measure-
ment to detect the transition. We show that this phase transition is not limited to the p,+ip, pairing model but
can be found in any representation of the hyperbolic Richardson-Gaudin model and is related to a symmetry

that is absent in the rational Richardson-Gaudin model.
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I. INTRODUCTION

One of the striking features of degenerate Fermi gases
whose constituents interact through an attractive potential is
that they can exhibit superfluidity or superconductivity. The
constituents may be neutral atoms, as is the case in trapped
Fermi gases of “°K and °Li (Ref. 1) or superfluid *He,? or
charged electrons as in conventional metallic superconduct-
ors, nucleons in heavy nuclei or nuclear matter.> The particu-
lar nature and symmetry of the attractive pairing interaction
may lead to exotic superfluid phases with complex order
parameters, as is well known in the case of liquid *He. For
order parameters with certain rotational symmetries, a
change in the coupling strength may induce a quantum phase
transition (QPT) separating different kinds of superfluid
phases. In a Fermi system whose pairing interaction has an
s-wave character, it is well understood that by increasing the
coupling strength there is a crossover, and not a QPT, be-
tween a weak-coupling Bardeen-Cooper-Schrieffer* (BCS)
and a Bose-Einstein condensate (BEC) phase.> However, for
higher rotational order, the ground state can exhibit a QPT
between qualitatively different superfluid states, with a cor-
responding nonanalyticity in the ground-state energy. In the
present paper we focus on p-wave pairing that might be en-
countered in ultracold Fermi gases®'? or in exotic supercon-
ductors such as Sr,Ru0,."?

As a schematic model for such systems we study the
quantum phase diagram of a spinless Fermi gas with p,
+ip, pairing interaction symmetry

2

k= . .
pr+ipy = % Eclck— 2 ka'CILC—kC—k/Cku (1)
k!

where V. =g,g is a separable interaction, with g; repre-
senting a complex function of wave vector k and symmetry
p,+ip,. Though schematic, this model captures the basic
physics of the BEC and BCS sides of the phase diagram and
offers detailed insights into the phase-transition mechanism.
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Previous studies concentrated on the standard mean-field
description.'*~!” The interesting point of the Hamiltonian in
Eq. (1) is that under certain conditions on the pairing coeffi-
cients g, the model is integrable and can be solved exactly
with a Bethe ansatz.'® This has the important consequence
that it demonstrates that the BEC-BCS QPT in this model is
not an artifact of the mean-field approximation, even though
the ground-state few-points correlation functions and energy
density coincides with the mean-field ones in the thermody-
namic limit for attractive interactions. Furthermore, the de-
fining properties of the Bethe ansatz wave function are so
qualitatively distinct from its mean-field counterpart that it
deserves further investigation. Indeed, as we will see, some
features and insights resulting from the Bethe ansatz state are
absent in the mean-field solution.

In this paper we restrict specific calculations to the two-
dimensional attractive case where a QPT with unusual char-
acteristics signals the transition between two gapped super-
fluid phases, one topologically nontrivial, known as weak
pairing,'® and another one characterized by tightly bound
quasimolecules, known as strong pairing.'* The quantum
phase diagram of the two-dimensional p,+ip, spinless fer-
mion pairing Hamiltonian displays several peculiarities (see
Fig. 1), depending on the fermion density p. For dense gases,
p>1/2, there is no QPT of any sort. When p<<1/2, the
model displays a QPT between weak-pairing and strong-
pairing phases while otherwise the ground-state energy is an
analytic function of the coupling strength g. Volovik
anticipated,’® using an equivalent effective field theory, that a
QPT of this kind can be signaled by a discontinuous change
in a topological quantum number. We show that the transi-
tion is continuous and third order (meaning that the third-
order derivative of the ground-state energy is discontinuous),
contrary to what has been claimed in the literature.?’-*? Fur-
thermore, we demonstrate that this phase transition can be
related to an experimentally accessible length scale that di-
verges logarithmically at the phase-transition point. We give
an interpretation of this length scale in terms of the size of
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FIG. 1. Quantum phase diagram of the p,+ip, or hyperbolic
model in terms of the fermion density p and the attractive coupling
strength g. It shows two superfluid phases, strong-pairing (confined)
and weak-pairing (deconfined) phases, separated by a third-order
confinement-deconfinement QPT at vanishing chemical potential,
m=0. Cooper pairs deconfine between the phase-transition line and
the Moore-Read line (indicated by a dashed line). The latter line
corresponds to p=1-1/g and vanishing total energy, £=0, and rep-
resents a situation where all Cooper pairs are deconfined. The small
symbols at p=0.25 (quarter filling) indicate the configurations that
are displayed in detail in Figs. 3 and 4.

the Cooper pairs, with strong pairing corresponding to con-
fined pairs that start to deconfine when the system enters the
weak-pairing phase, and that eventually convert to plane
waves in the weakly interacting limit.

A peculiar boundary in the quantum phase diagram is the
so-called Moore-Read line?® (shown as a dashed line in Fig.
1). The latter separates in principle a weak-coupling BCS
regime from the weak-pairing phase and is defined for a
particular relation between the density p and the interaction
strength g: p=1-1/g. At this line all Cooper pairs become
deconfined. As explained in detail in the text, our calcula-
tions indicate that there is no QPT at the Moore-Read line,
contrary to what is advocated in Refs. 18 and 22. Thus, the
weak-coupling BCS region and the weak-pairing phase are
adiabatically connected.

Technically, we solve the more general hyperbolic (or
XXZ) Richardson-Gaudin (RG) model first introduced in
Refs. 24 and 25, and recently realized to be related to the
py+ip, two-dimensional superfluid.'® We present results for
finite systems and, for determining the quantum phase dia-
gram, the relevant thermodynamic limit. Calculating those
results for the hyperbolic RG model implies solving the cor-
responding Bethe ansatz equations, a task that may happen to
be technically challenging, specifically for large finite sys-
tems. Here, we introduce a technique that solves the Bethe
ansatz equations numerically in polynomial time. For very
large systems one can define a thermodynamic limit that al-
lows one to solve the equations for the integrable p,+ip,
model analytically.??

We want to emphasize that any hyperbolic RG model in
the continuum limit displays the nonanalytic behavior ob-
served at the equivalent =0 line as long as the parameters
defining the model vanish at a given zero mode (e.g., k=0
mode). The underlying algebraic structure of the hyperbolic
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RG model allows us to prove a theorem that relates sub-
spaces with different number of pairs but with the same ei-
genvalues, thereby generalizing a relation from Ref. 18 to all
representations of the hyperbolic RG model. These relations
are inexistent in the case of the rational RG model (e.g., the
s-wave BCS superconductor) and are indeed at the root of
the existence of the QPT between the weak- and strong-
pairing phases.

In Sec. I we discuss the algebraic properties of the hy-
perbolic RG model. In Sec. III we present numerical and
analytical results for the p,+ip, model, analyze the phase
diagram, and interpret the QPT mechanism. Using an affine
Lie algebra, we show in Sec. IV that the hyperbolic RG
model possesses a symmetry that relates the two phases. In
the Appendices we give a detailed solution of the hyperbolic
RG model for one pair (Appendix A), for one level (Appen-
dix B), in the continuum limit (Appendix C), and in the
mean-field approximation (Appendix D).

II. ALGEBRAIC FORMULATION OF THE INTEGRABLE
Ppy+ip, MODEL AND ITS SOLUTIONS

A. Generalized Gaudin algebra

The p,+ip, integrable pairing model can be obtained as a
particular parametrization of the exactly solvable hyperbolic
family derived from the generalized Gaudin algebra. We re-
capitulate here the main ingredients of the procedure to con-
struct such exactly solvable models that we have laid out in
previous work.2® At the same time, this serves to demonstrate
that particular features of the zero-temperature phase dia-
gram of the p,+ip, model are not limited to this representa-
tion and analogs can be found in many other representations
of the same underlying Gaudin algebra. Assuming a system
characterized by [ levels (representations) of an su(2) algebra
labeled by the (in principle arbitrary) quantum number i, the
generic form of the exactly solvable RG Hamiltonians is

H= E €S; - E (- fj)X( i ﬂj)STS;
i ij

-2 (6- €)Z(1.7)S3S, )
ij

where the operators S}, S7, and S; close the su(2) commuta-

tor algebra, and X(x,y) and Z(x,y) are antisymmetric func-
tions depending on / parameters #; to be determined later on.
The generic Hamiltonian (2) commutes with the squared spin
operator of each level, S7=S5%(5—1)+S7S;, and with the total
spin operator S=2,S;. Let us introduce the notation s; for the
spin value of level i, such that (S?)=s;(s;+1). Apart from
this, one can evaluate the commutator between two such
Hamiltonians, H and H', based on the same set of parameters
7; but with distinct sets of parameters ¢; and €;. It turns out
that H and H' commute provided that the functions X(x,y)
and Z(x,y) fulfill the following condition for all x, y, and z
known as the Gaudin condition?’

[Z(x,y) = Z(x,2) ]X(y,2) = X(x,y)X(x,2) = 0. (3)

A consequence of this condition is that
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X(-x’y)2_Z(x’y)2=F’ (4)

where I' is a constant independent of x and y. Then, by a
suitable choice of the parameters ¢; in Eq. (2), one can define
a set of / linearly independent constants of motion, which
commute among themselves

Ri=Si— 2 X( m)(S{S; +S75) =2 2 Z(ny, m))S;S;.

j#i J#i
(5)

Therefore, Hamiltonians of the form of Eq. (2) are
integrable,?® and furthermore, they can be solved exactly by
a Bethe ansatz.

It is convenient to define the following operators:

S(x) = — % - E Z(x, 7S5, S*(x)= E X(x,m)S; .
J J

(6)

They fulfill the commutation relations of an XXZ Gaudin
algebra,

[S°(x),87(M]= * [X(x,y)S7(x) = Z(x,y»)S* )],

[S7(x),87(n)]=2X(x,y)[S*(x) - S*(y)]. (7

With this notation, the Bethe ansatz for the eigenstates of
order M takes the form

M
D) = [H S*(Ea)} V), (8)
a=1

where [v) is a vacuum state such that S7|v)=0, and S7|v)
=—s,|v) for all i. The unknowns E,, are solutions of a set of
nonlinear equations, the RG equations

> Z(Ea',Ea)%, Voa (9

! ’
a .o Fa

E siz(ni’Ea) -

We will call the variables E,, pairons.”® Equation (9) does not
depend on the parameters €, which means that the eigen-
states given by Eq. (8) do not depend on these parameters
either. This is due to the fact that the ansatz from Eq. (8)
represents the eigenstates of the complete set of the integrals
of motion R;, and therefore of any linear combination of R;’s,
as given by Hamiltonian (2) whose eigenvalues are given by

E(®,) = (WH|v) + 2, s;6Z(n,E,). (10)
For I'=0 one recovers the rational RG model, that can be
parametrized as

X(x.y) = Z(r,y) = x%y (11)

[any other expression for X and Z that fulfills Egs. (3) and (4)
at I'=0 can be transformed to this form through a redefini-
tion of parameters]. In this work we will focus on the prop-
erties of the hyperbolic RG model, which correspond to I"
< 0. Any set of functions X(x,y) and Z(x,y) that fulfills Egs.
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(3) and (4) with I'=—9?, can be mapped onto the following
parametrization:°
~ -

Vxvy xX+y
X(e,y)=2y——, Zlxy)=y—. (12)
X=y xX=y

We can simplify the discussion by choosing ;=\, with A a
parameter that will be fixed later on. Using this parametriza-
tion, and subtracting a diagonal term ZyEiniS?, one obtains
an interesting form for the Hamiltonian of Eq. (2),

H=N1+29)2 78 =Ny (n+ )83
i ij

— 2Ny Sty

ij
=N(1+2y- 29592 7,5 - 20y 2 N mSiS;. (13)
i ij

Now we can take advantage of the fact that S*=2;5% is a
constant of motion,

S|Py = (M = L12)|®,y), (14)

where L=2%s; is the maximum value that the model allows
for the order M (therefore L is a useful measure for the
dimension of the model space; e.g., if s;=1/2 for all levels,
then L equals the number of levels /). This allows us to fix

the parameters N and 7y such that
NMI+yL-2M+2)]=1, 2Ny=G, (15)

leading to a separable Hamiltonian for the hyperbolic RG
model

—_—

Hy,= 2 0S; - G2\ 5m,S;s;. (16)
i ij
The corresponding RG equations, Eq. (9), reduce to

oy e,

Si
> YV oa (17)
i 77i_Ea arar;&aEa’_Ea Ea
with
0 L L M-1 (18)
=——-—4+M-1.
2G 2

The eigenstates of H,, |®,,) of Eq. (8), involve the pair
operator

/2
SHE) =D — S, (19)
i 7]1' - Ea

defined in terms of the spectral parameters E, obtained from
Eq. (17), and have energy eigenvalues given by Eq. (10),

E(®y) = (v[H)|v) + D E,. (20)

For the remaining discussion we will assume that (v|H,|v)
=0, which amounts to a simple shift in the energy scale,
without loss of generality.

In the pairing representations each su(2) copy is associ-
ated with a single-particle level i. M is the number of active
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pairs. The vacuum |v) is now defined by a set of seniorities,
|v)=|v|,v5,...,;), where the seniority v; is the number of
unpaired particles in level i with single-particle degeneracy
Qi’ such that Si=(Qi—2vl~)/4.

In two spatial dimensions, one can define a representation
of the su(2) algebra in terms of spinless fermions in momen-
tum space, cZ, ¢~ One obtains a level 7, for each pair of
states (k,—k), where the index k now refers to the momentum
in two dimensions (in order to avoid double counting we
select k,>0 to label the levels). Furthermore, one can in-
clude a phase factor in the definition of S,

k. + ik,

1 + + X y
Se= E(C/LCk +chey 1), Sp= T cicly,
_ k,—ik,
k= TC_ka. (21)

By taking 77,=k, one obtains the Px+ip, model presented by
Ibafiez et al.'®

k2
H) 4ip = > E(CZCk"'CikC—k)
Y kk >0

-G Y (k+ iky)(k; — l.k;,)C;iCikC_erkr.
Kk >0,
K k>0
(22)

In the case of cold atom gases, the spinless fermions opera-
tors represent atoms in the same hyperfine state.

It is important to emphasize that Hamiltonian prﬂ»pv has
an SU(2) gauge symmetry.?’ The SU(2) symmetry genera-
tors are the local operators

. . 1 . s
7= C/LC—k =(7)", 7= E(C)cck —che), (23)

which commute with the su(2) algebra generators of Eg.
(21). This local symmetry amounts to the conservation of the
charge parity per mode pair (k,—k), and is responsible for the
Pauli blocking of the (unpair) singly occupied states.

B. Singularities in the Richardson-Gaudin equations

Just like in the rational case, the RG equations become
singular when two or more pairons approach the same
level.’*3! Analyzing the residues in the equation, one finds
that the number of singular pairons has to be equal to 2s;
+1 for a singularity around level 7,. However, around E,
=0, Eq. (17) for the hyperbolic RG model displays a peculiar
singularity not present in the rational models. Let us analyze
what happens when N of the pairons converge to zero en-
ergy, and M —N pairons do not. For the pairons that do not
converge to zero, one finds that the equations correspond to a
state of order M —N with all pairons distinct from zero. In the
equations for the N singular pairons the contributions of the
nonsingular pairons and the levels 7, are of order one and
become negligible compared to the singular terms. Therefore
we can replace the nonsingular terms by a single level, with
an averaged level parameter # given by
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L2-(M-N K 1
S
k Tk a',EaﬁOEa’

Appendix B gives the analytical solution of the one-level
problem. One finds that a necessary condition to have N
values converging to zero is that 2Q+1=N, or

1
E:L—2M+N+l. (25)

We recognize two special cases: special case (i) N=0. No
pairons can converge to zero for éSL—ZM +1; we will see
that this boundary coincides with the phase-transition line in
Fig. 1. Special case (ii) N=M. All pairons can converge to
zero for é:L—M +1; this situation determines the so-called
Moore-Read line'®?* in Fig. 1. Between these two regimes, a
fraction of the pairons can converge to zero at integer values
of G

To obtain a qualitative view of the quantum phase dia-
gram of Fig. 1, we will interpret the pair wave functions
resulting from S*(E,) in Eq. (19) as scattering states if the
pairon E, is real and positive, as a Cooper resonance if E, is
complex, and as a bound pair state if E,, is real and negative.
Although the total wave function is an eigenstate of the
Hamiltonian (i.e., a stationary state), the meaning of reso-
nance or bound pair states results from considering each pair
as isolated. The pair resonance (complex pairon) is not a
decaying state but it will acquire a finite lifetime if a physical
process could isolate it from the rest of the system. Analo-
gously, a pair with a real and negative pairon that is suddenly
isolated would behave as a highly excited dimer. On the left
side of the phase diagram one finds the weak coupling BCS
region, where the pairons behave much like in the rational
model: a fraction of the pairons form an arc in the complex
plane defining a set of Cooper pair resonance while the rest
of the pairs with real and positive pairons are scattering
states. If the coupling strength is increased, one reaches the
Moore-Read line that coincides with special case (ii) where
all pairons collapse to zero. Increasing the interaction
strength, still in weak pairing, some of the pairons can col-
lapse to zero (at integer values of G™') while the others are
real and negative. We therefore, interpret this region as a
mixture of Cooper resonances and bound molecular states.
Finally, for strong interactions and M <<L/2, the system
makes a transition to the strong-pairing phase. Here the
ground state corresponds to a configuration where all pairons
are real and negative, i.e., a BEC of bound molecular states.

At the Moore-Read line all pairons E, converge to zero,
which means that the total energy E also goes to zero. This
coincides exactly with the mean-field result. The correspond-
ing wave functions are not the same because the mean-field
wave function breaks pair number symmetry, and can be
written as a superposition of exact zero-energy states for a
range of numbers of pairs

1

|¢mf> o eXP<A E Czcik)h/) (26)

kk >0 kx - lky

while the exact wave function is given by the projection of
|thms) onto the M-pair sector,
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FIG. 2. Real and imaginary parts of the spectral parameters E,,
as a function of g=GL for ten pairons in a disk of dimension
L=40 (quarter filling), with levels as specified in Table 1.

M
| ) ( > ;.Cltcik) |v). (27)
kk, >0 kx - lky

Just below the line, when N=M-1=L-1/G-1, one finds
that the energy of the exact eigenstate is equal to the energy
E,, of the one-pair state calculated in Appendix A because of
the symmetry to be shown in Sec. I'V. Increasing the number
of pairs by one while maintaining G fixed, moves the state to
the Moore-Read line where the total energy is zero. This
means that for a small increase in density, AM/L=1/L
(which becomes infinitesimal in the thermodynamic limit),
there is a finite jump in energy, AE =|Ep|. This is interpreted
by Ibafiez ef al. as a signature of a zeroth-order QPT. Note
however, that E scales proportional to wL, where w is the
kinetic-energy cutoff as defined in Appendix A. Therefore,
the shift in energy AFE resulting from a shift in density AM/L
is given by

dE dE/(wL
aE = 2E ppg = o 2EN@D)

am d(M/L) AM, (28)

which is of order w for AM =1 because the derivative is free
of scales. This means that a jump in energy of size |Ep| for a
change in density of size 1/L is not a sign of a phase tran-
sition but rather a consequence of the pathological scaling
behavior of the energy in this model.

I1I. QUANTUM PHASE DIAGRAM OF THE INTEGRABLE
Px+ip, MODEL

A. Case of finite systems

We would like to stress here that in order to obtain the
exact solution of the pairing eigenproblem for M pairs in a
system of size L, one has to diagonalize a Hamiltonian ma-
trix of dimension L!/(M!(M—L)!). The integrability of the
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FIG. 3. Pairon distribution for L=504 at quarter filling,
p=0.25, for g=0.5, g=1.5, and g=2.5.

RG model reduces the exponential complexity of the prob-
lem to that of solving a set of M nonlinear equations in M
unknowns, Eq. (17), which can be done in polynomial time.
This justifies labeling these models as exactly solvable. For
instance, below we show exact results for L=504 and M
=126, which corresponds to solving an eigenvalue problem
of dimension 10'??> while in our case each eigenvector arises
as a particular solution of the 126 coupled nonlinear RG
equations.

Although easily written down, actually solving Eq. (17)
for more than a few pairs turns out to be a cumbersome task
due to singularities that occur when some of the pairons ap-
proach the origin or a certain level value 7, or if two or
more pairons approach each other. For the rational model
with all s,=1/2, where the singularities entail at most two
pairons, Richardson already proposed a practical solution,
by rewriting Eq. (17) in terms of the real part of the pairon
values and the square of the difference between two pairon
values. If singularities with three or more pairons occur, this
trick no longer works. More complicated change of variables
have been proposed to remediate this problem for the ratio-
nal model*®3! but in the hyperbolic model we are confronted
with a situation where all pairons can converge to zero and
where the change of variables can no longer be performed
with sufficient accuracy. Standard gradient methods to solve
Eq. (17) directly run into problems because the Jacobian ma-
trix becomes ill-conditioned well before the pairons reach
the singularities.

Our numerical strategy to solve the RG equations is to
start from an educated guess for the position of the M
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N

FIG. 4. Momentum density profiles, n,=(cjc,), for the same
parameter sets as in Fig. 3 (see symbols), compared to the mean-
field solution for the same system (continuous lines).

pairons in the weak-coupling limit. In this limit the RG equa-
tions decouple into M independent equations (one for each
level). As discussed in Appendix B, the solution for each of
these generalized Stieltjes equations is given by the roots of
a Jacobi polynomial, which we use as a starting point for the
iterative procedure at small values of G. The value of the
coupling strength G is then gradually increased up to the
desired value. At each step we solve Eq. (17) using a varia-
tion on the Levenberg-Marquardt algorithm,®* where care
has been taken to avoid singularities in the Jacobian matrix.
In order to avoid the typical divergencies that burden the
numerical procedures in intermediate steps, we modify the
level parameters 7, and the central charge O by adding a
modulated artificial imaginary part. Once the desired value
of G is obtained, a new iterative procedure is initiated, in
which the imaginary parts of 7, and Q are gradually reduced
to obtain the final solution. For the numerical results dis-
played in Figs. 2—11, we have taken the kinetic-energy cutoff
w=1/2, such that the level parameters 7, range from O to 1.

As a first illustration of the properties of the exact solution
in the different regions of the quantum phase diagram, we

002 Fg.g. g R o . 5 gt i
0 - -
000 .
© o -
-0.02 | 9=15 |
e -0.04 | E
BB . )
A .
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-0.06 g E
-0.08 E
R - )
o I
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%5 % % %
’7707 S 1/L © (2

FIG. 5. Finite-size scaling of the energy density & at quarter
filling for several interaction strengths (corresponding to distinct
regions of the phase diagram), both for the exact solution (symbols)
as for the mean-field solution (lines).
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FIG. 6. Analytical results for the chemical potential u as a func-
tion of g, for densities p=0.05,0.15,...,0.95, in ascending order.
The symbols mark the transition points at g=(1-2p)~".

treat ten pairs in a two-dimensional lattice in a disk geometry
with a five unit cell radius. The system has a total active
space of dimension L=22%,;s5,=40, hence this amounts to
quarter filling, i.e., p=0.25. The resulting level parameters
are depicted in Table I and the spectral parameters E, are
shown in Fig. 2. In the extreme weak-coupling limit the ten
pairs fill the lowest four levels. With increasing coupling the
pairons expand in the complex plane lowering their real part,
and consequently the total energy. There is a particular value
of the scaled coupling strength E,g=GL at which all pairons
collapse to zero (the Moore-Read line), later on expelling
one pairon with a negative real value. From this point up to
the QPT at Q=0 there are a series of collapses with nine,
eight, etc., pairons, and after each one a new real negative
pairon is produced. The exact solution for this small system
shows the qualitative behavior of the pairons in the quantum
phase diagram (Fig. 1). In order to get a more quantitative
picture of the pairon distribution in the three regions of the
quantum phase diagram, we plot in Fig. 3 the pairon distri-
butions for three representative values of the coupling
strength, g=0.5,1.5,2.5, at quarter filling for a disk of radius
18 corresponding to a total pair degeneracy L=>504, indicated
in Fig. 1 by their respective symbols.** One notes the dis-
tinctive features: in weak-coupling BCS part of the pairons

1.6 T T T T T T T

FIG. 7. Analytical results for the pairing field A and its deriva-
tive dA/dg in the inset, as a function of g for various densities.
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FIG. 8. Analytical results for the energy density & of the inte-
grable p,+ip, model as a function of the coupling strength g for
representative densities p, in the thermodynamic limit. The symbol
O marks the QPT point while [] the Moore-Read line.

stick to the lower part of the real positive axis while the
remaining pairons form a double arc in the complex plane.
Approaching the Moore-Read line it looks like the arc is
going to close around the origin, but just at the Moore-Read
line all the pairons collapse to zero, and then a first real
negative pairon emerges. In the intermediate weak-pairing
region a successive series of collapses ensues, at integer val-
ues of Q, each time producing one more real negative pairon
and reducing the size of the arcs around the origin. When the
last pairon turns real and negative, the system enters the
strong-pairing phase. From then on the most negative pairon
diverges proportional to the interaction strength G, while the
least negative pairon converges to a finite value that can be
related to the condensate fraction, as we will see later on.

In Fig. 4 we show the momentum density distributions
corresponding to each of the configurations in Fig. 3. In the
weak-pairing region one sees that the lowest momentum
states are fully occupied. On the other side of the phase
transition the lowest momentum states are vacated, resulting
in a nontrivial topology for the two-dimensional momentum
distribution.

d2e/(dg)?

Vi — p=025 cmm p=0.75
014 F \VAS p=0.50 o g=(1-2p)" -
o 05 1 15 2 25 3 35 4
9

FIG. 9. Higher order derivatives of the energy density & as a
function of g for various densities. The small circles mark the tran-
sition point at g=(1-2p)~".
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FIG. 10. Condensate fraction of pairs, n,, as a function of g, for
densities p=0.05,0.10,...,0.95, in descending order. The circles
mark the transition points at g=(1-2p)~! while the triangular sym-
bols mark the point where 7, is maximal.

B. Thermodynamic limit

We are interested in determining the quantum phase dia-
gram of the integrable p,+ip, model defined by Hamiltonian
(22). To explore the possible QPTs we have to properly de-
fine the thermodynamic limit for this model. From Fig. 5 we
see that for large systems the exact solution and the mean-
field solution tend to the same results. Particularly, in mean-
field theory one observes that for static values of the chemi-
cal potential u and the pairing field A, the quantities M, E,
and G~! scale proportional with L. We can describe the ther-
modynamic limit when L goes to infinity in terms of inten-
sive quantities such as the scaled interaction strength g
=GL and the density p=M/L. At the same time we have to
establish a cutoff w in kinetic energy, such that the energy
density e=FE/L remains finite, and a density of levels o(7),
such that [3°0(7)dn=1. The cutoff w determines the energy
scale of the problem. It can be renormalized by relating it to
the energy of a single pair as explained in Appendix A.

As demonstrated in Appendices C and D, for intensive
quantities, the exact solution and the mean-field solution co-

10 T T T

rms

FIG. 11. Root-mean-square radius, ryms, of the condensate wave
function in units of 1/v2w, at quarter filling. The dashed lines in-
dicate the Moore-Read point (¢=0) and the phase-transition point
(n=0).
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TABLE 1. Level parameters 7, and s; for a disk with a radius of five unit cells in a two-dimensional square lattice.

s 0.04 0.08 0.16 0.20 0.32 0.36 0.40 0.52 0.64 0.68 0.72 0.80 1.00
Sk 1 1 1 2 1 1 2 2 1 2 1 2 3
incide in the thermodynamic limit and yield the following 1| ———
integral equations: p= 5 % V(o= w)* +200% - ||
20 7 1 ) o—pu+ A%+ \(w- )+ 2wA?
f e(n) > =dn =, (29) -A%In e . (39)
0 V(g=2u)"+479A g -+ |u
This allows us to rewrite Eq. (33) in a more elegant form
2w
21 1
o(n)— dnp=—-1+2p. (30) A2 WA w4
Jo V(g=2u)+4nA* " g 8=p(a)+,u,)+——q——M—|M|, (36)
2g M 2
Note that the chemical potential x and the pairing field A”
. . where
scale proportional to w, and can be determined from the self-
consistent solution of the above equations (see Figs 6 and 7). 1
The energy density in the thermodynamic limit is given by g=QI/L= i -5 +p. (37)

» AL
8=E+M(2p—1)+;—5 e(p\(n-2up)" +4nAdny.
0

(31)

One sees that Egs. (29) and (30) coincide with the conditions

e de
—=0, — =0, (32)
2 dA

meaning that the mean-field solution minimizes the energy
written as a function of the mean-field parameters p and A.

For the two-dimensional p,+ip, model one finds that
0(7)=1/(2w), and one can solve the integral appearing in
Eq. (31) analytically

8=§+M(2p—l)

A |pul(A% = )
+— 4+
g 2w

_w+A2—,u
2w

—

. AZ(AZ—ZM)I <w+A2—,u+ \,(w-ﬂ)%zwﬁ)

n .
20 A% — |y

V(w— )+ 2wA?

(33)

From Eq. (32) we obtain explicit expressions for g and p,

| —
g'= ;[V(w— )+ 2wA% - |y

w-pu+A+ \"(a)—,u,)2+2wA2)]

+ (- A2)1n<
A% — ]y

(34)

The appearance of the absolute value of w clearly indicates
that there exists a nonanalyticity in € at u=0.

Before closing this section we would like to point out that
even though the RG equation in the thermodynamic limit
coincides with the mean-field gap equation, strictly speaking,
the mean-field and exact solutions are not the same. It is
obvious that the mean-field state does not preserve the total
number of particles 2M while the exact solution does. In the
thermodynamic limit however the total energy per particle
(e=E/2M=E;/2M) becomes the same. Obviously, if two
variational states reproduce the exact ground-state energy in
the thermodynamic limit and if the ground state is not de-
generate then the two variational states have to be the same
in this limit but this is not the case here. This is not a paradox
because the density fluctuations are gapless and the two
functions (E and E;) differ by square-root fluctuations of M.
The same happens for other observables.

C. Derivatives of the energy density

The third term of Eq. (36) might suggest a singularity in &
at =0 and hence a zeroth-order QPT at this point. However,
it turns out that u=0 coincides with g=0 such that the sin-
gularity in & is canceled out and as a result £ is a continuous
function of g and p over the whole parameter range. A spe-
cial point that one observes in Egs. (34) and (35) corresponds
to u=AZ%/2, which leads to g~'=1-p. This is the Moore-
Read line we discussed in Sec. II B. As argued above and as
can be seen from Fig. 8, the energy vanishes at this point but
is continuous. Consequently, there is no zeroth-order QPT in
this model (contrary to previous reports in the literature'®22).

The fourth term in Eq. (36) might suggest a discontinuity
in the derivative de/du at u=0. However, it turns out that
the third term also has a discontinuity in its derivative that
exactly cancels the one in the fourth term. To formalize this,
let us consider the derivatives of & with respect to p and g,
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@:2% §:—A2/g2. (38)
ap g
In Eqgs. (34) and (35) we see that g~! and p are continuous
functions of w and A. Hence, u and A are continuous func-
tions of p and g, and therefore the derivatives of & with
respect to p and g are continuous functions of p and g. We
conclude that there is no first-order QPT in this model. Note
also that in the strong-coupling limit A tends to the same
value for p=0.25 and p=0.75 (see Fig. 7). This is a conse-
quence of the symmetry that we will discuss in Sec. I'V.
For higher order derivatives, we resort to a graphical rep-
resentation (an outline for their analytic derivation is given in
Appendix E). From Fig. 9 we see that there is a discontinuity
in the third-order derivative of e. The discontinuity occurs
when u=0. If we set =0 in Egs. (34) and (35), we find that
this coincides with g7'=1-2p. This transition line has been
identified in previous works as the Read-Green line.'*!® We
see that a third-order QPT occurs at this line, for densities
below half filling, i.e., p=1/2.

D. Characterization of the superfluid phases

In s-wave pairing models (rational RG model) the transi-
tion from a weak- to a strong-pairing phase is often described
in terms of a “BCS-BEC” crossover, where on the weak side
one has dilute pairs moving in a coordinated way as de-
scribed by BCS theory while on the strong side the fermion
pairs behave as molecules that become perfect bosons in the
strong-coupling limit, where they form a pure BEC. In the
p.+ip, case the picture differs in an essential way: we see
that instead of a crossover there is a sharp third-order QPT at
g '=1-2p.

Because the exact few points ground-state correlation
functions coincide with the mean-field ones in the thermody-
namic limit, we can use Eq. (D17) to evaluate the condensate
fraction n,, following the standard definition of Yamg:35

== 3 Us)P

Mk >0

=LA2 2 7
20M ), (p—2u)?+47A

>d7

A? aIn(1 -2w/a) — b In(1 - 2w/b
_Aa n( wla) n( 1) )’ (39)
2wp a->b

where a and b are such that

(7-2p)*+49A*=(n-a)(n-Db).

As explained in Appendix C, a and b are the lower and upper
bounds of the line of pairons in strong pairing in the thermo-
dynamic limit. We have used the mean-field expectation val-
ues because they coincide with the exact results in the ther-
modynamic limit. For finite systems one could evaluate the
exact correlation functions using techniques similar to the
ones presented in Ref. 36 for the rational RG model. Figure
10 displays the results for various densities. One observes

PHYSICAL REVIEW B 82, 224510 (2010)

that a pair condensate develops at large interaction strength.
Two features draw attention: first of all, we see that for a
fixed density p<<1/2 the condensate fraction reaches a maxi-
mum in the strong-pairing phase at a finite value of g, and
then slightly decreases to its limiting value for g—oc. This
means that the fermion pairs do not behave as pure bosons,
but rather as bound molecules with a certain spatial exten-
sion, such that the Pauli principle prohibits a complete con-
densation of all molecules.?” Secondly, note that because we
study here the condensate fraction as a function of the inter-
action strength, the limiting value of n, in the strong BEC
limit is not 1, contrary to what one is accustomed to in three
dimensions for the s-wave case,’® where one evaluates n, as
a function of the ratio between interparticle distance and
scattering length.

To understand the behavior of the condensate fraction in
the strong-coupling limit, we evaluate u and A% for g> 1 up
to leading order in g,

n~—2wg(l-2p/3)(1-2p)/4, (40)

A% ~2wg*(1 -2p/3)%p/2. (41)

Using the expressions for a and b in terms of x and A? from
Appendix C, and substituting these in Eq. (39), one finds that
in the strong-coupling limit

1 1-2p)% [1+2
lim nc=—[l _(1=2p) ln< p)] (42)
L—sw,g—00 4p 4p 1-2p

At low densities, this expression approaches Yang’s bound
for the condensate fraction of a generic fermionic
superfluid, n,<1-p.

Given that there is a condensate, it is worthwhile to ana-
lyze the corresponding condensate wave function in momen-
tum space, which in the thermodynamic limit is given by

k. — ik,
Byang(k) = v Vm- (43)

The condensate wave function has an inherent length scale
rms that can be calculated as’®

Foms = f |V (k)|*dk/ f | p(k)|*dk. (44)

After some algebra, one obtains the analytical expression
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a’—4ab + b?

2wlab - (a +b)w]

1
+ +
) B Qw-a)*> Qw-b)?

[In(1 = 2w/a) —In(1 — 2w/b)]
a-b

T rms,Yang —

The resulting radius ryms yang is plotted in Fig. 11. One sees
that it goes to a finite value in the strong-coupling limit, and
that it diverges at the QPT, with a singularity in the function
In(1-2w/a), that scales as In|u|. The condensate wave func-
tion can be related directly to observable quantities: from
Wick’s theorem for the mean-field solution one obtains

(cjci,)(c,w,) = (cjcj,c,rc) - <CIC,><CI,Crr> + (c}c,&(cj,c,).
(46)
We can rewrite this as

| bvang(r = ') o< {1, = ) (s = (o)) + |[F(r = 1")

2
i

(47)

where ¢yang(r) is the condensate wave function in coordi-
nate space and F(r) is the Fourier transform of the momen-
tum density (cick). In trapped Fermi gases the first term on
the right-hand side of Eq. (47) can be obtained through quan-

2w Re[E](Re[E] - 2w)<
2

2w—-E 20—E

(45)

(a-Db)[aIn(1 -2w/a)—b In(1 —2w/b)]

tum noise interferometry>® while the momentum density and
hence F(r) can be obtained from a time-of-flight analysis
after releasing the trap. Once these quantities are known, one
can calculate the radius rymg yang- Therefore this length scale
is an experimentally accessible quantity that would give a
clear signature of the third-order QPT in the p,+ip, super-
fluid.

We can apply a similar analysis to the Bethe ansatz solu-
tion: in Eq. (8) we see that the exact eigenstates are given by
a product of pair wave functions,

. k. + ik,
S'(E) =3 s, (Dcfcl, with ¢yl = "5 L. (48)
k -

The ground state is given by a set of pairon values E, and
hence can be interpreted as an ensemble of Cooper pairs of
varying size.?®#? Evaluating the root-mean-square radius for
the Cooper pair wave function ¢g(r) in coordinate space, one
finds that

) +|E[*[In(1 = 2w/E*) = In(1 - 2w/E)]

Fms,E= 8

4w(3E? — 6wE + 8w?)

(E-E*[E In(1 - 2w/E) - E* In(1 - 2w/E")]

; (49)

3E(E - 2w)’[In(1 - 20/E) + 2w/(E - 2w)]’

This length scale is finite if E is complex, and converges to a
finite value when E approaches the real negative axis. But
when approaching real and positive values of E, inside the
interval [0,2w], the length scale rys p diverges. The exact
solution of the integrable p,+ip, model gives us a beautiful
insight into the nature of the QPT: in strong pairing all pairon
values E, are real and negative, which means that the exact
ground state corresponds to an ensemble of confined Cooper
pairs (bound molecules) with finite radius. Lowering the in-
teraction strength one encounters the QPT at which one
pairon value becomes real and positive, which corresponds
to a single deconfined Cooper pair on top of the ensemble of
confined Cooper pairs. Further in the weak-pairing phase,
more and more pairons become complex, realizing a mixture
of bound molecules (negative pairons) and Cooper reso-
nances (complex pairons). At integer values of 2Q there are
20+1 complex pairons that collapse to zero giving rise to
deconfined Cooper pairs while at intermediate values part of

for E real and negative. (50)

the pairons form a closed curve around the origin in the
complex plane, some stick to the lowest part of the real posi-
tive axis (inside the closed curve) and the remaining ones
stay confined on the real negative axis outside the closed
curve. At the Moore-Read line all Cooper pairs are decon-
fined. From there on the pairon curve opens up in two arcs
and part of the Cooper pairs form resonances of finite size
(complex pairon values), till all Cooper pairs convert to
plane waves in the extreme weakly interacting limit. Hence
we can understand the QPT as a confinement-deconfinement
phase transition.

IV. SYMMETRIES OF THE RICHARDSON-GAUDIN
EQUATIONS

In this section we highlight some symmetry relations of
the RG equations that allow us to relate states in the strong-
pairing phase with mirror states in the weak-pairing range
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that have the same energy.'® To set the stage we would like
to introduce a new set of operators,

{rr 1., T:} with m=...,-2,-1,0,1,2,..., (51)
which form an affine Lie algebra

[T:,T]=2T¢

m+m'?

(75,7, 1==*T,. .. (52)

A possible representation of these elements of the algebra in
terms of su(2) spin operators is (o=z, %),

T =2 (m)"s, (53)

for (in principle arbitrary) quantum number i.
It is straightforward to check that the following two fami-
lies of Hamiltonians:

H,=T3,-GTT5, (54)
H,=T5,-GT}T;, (55)

define the integrable rational and hyperbolic RG models of
Eq. (16). It is illuminating to solve those integrable rational
and hyperbolic models in terms of the generators of the af-
fine Lie algebra. The eigenvectors can generically be written
as in Eq. (8) with (unnormalized)

©

=+ G -+
ST(E) =2 To

2 " E,#0,
S*(0)=T-,, rational model, (56)
=~ 2y E,
+ ’y\’ At
S*(E)=> ot s Ea# 0,
m=0 @
S*(0)=T",, hyperbolic model, (57)

where E, are the pairons. Notice that to represent these
eigenvectors one needs an infinite set of generators, the even
series for the rational model and the odd for the hyperbolic
model. In terms of the affine operators one can demonstrate
some interesting symmetry properties of the model:

Theorem 1. Given the hyperbolic Hamiltonian H), and a
particular eigenstate |®,,) of order M < (L-G~')/2, for inte-
ger values of G"'=L—-2M+1-N, there exists another eigen-
state | @\ =(T")Y|®,,) with the same energy E.

Proof. Define H,=T5-GT|T7. One can straightfor-
wardly evaluate the commutators

[H,, T*]=T*+2GT T}, (58)

[[H,, T ], T 1=2GTT?,. (59)
Now let us consider a state of the form
|q)M+N> = (Ttl)N|(DM>- (60)

We want to determine the conditions for |®,,,,) to be an
eigenstate if |d,,) is another eigenstate of H,, of energy E.
Using the commutation relations above we have
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[, (T2)Y]) = N(T YT+ 2GT G+ GIN = 1)].
(61)
Therefore
Hy| @y, n) = E|®pppp) + N(TE)N'T[1+ G2M = L+ N - 1)]
X| Dy (62)
The condition to be an eigenstate is
G'=L-N-2M+1. (63)

This means that for a certain value of G=1/(L-M-M'+1),
there exist two states, one of order M and another state of
order M', that have the same energy E. From this algebraic
relation, one can distinguish the two special cases already
mentioned in Sec. II B.

Special case (i). A first case is the symmetric case that
occurs when M=M’', i.e., when

M=(L+1-G")2, Q=—%. (64)

Special case (ii). Another special case occurs when M'=0,
which amounts to

. M-1
M=L+1-G, Q:T (65)

The corresponding eigenstate of order M is given by
[0,)=(T*)|v). The energy of this state is equal to the
vacuum energy, E(0,,)=(v|H,|v). Comparing this state with
the Bethe ansatz from Eq. (8), one observes that this state
corresponds to the case where the M pairons converge to 0.

These algebraic relations are easily recognized to be sym-
metries of the RG equations as well. Consider Egs. (17) and
(18) for G''=L-2M+1—-N, and evaluate Egs. (17) and (18)
for the cases with M and M+ N pairs, where N pairons Epg,
B=M+1,... ,M+N, are zero. Then, Q for the M pair case is
given by Q=—(N+1)/2 while for the M+N situation it is
Q=—(N+1)/2+N. On the other hand, the first term in Eq.
(17) is the same for M or M+N but the second one differs
precisely by N/E, so that it cancels with the —N/E, coming
from the third term. The bottom line is that the RG equations
remain the same for the two cases M and M +N.

In the thermodynamic limit this symmetry manifests itself
as a particular transformation of the chemical potential w and
gap A which preserves the form of Egs. (29) and (30). For
certain values of u and A? there exists another set of values
' and A’? that lead to the same equations,

/'L, =M (66)

A?=A*-2u. (67)

The theorem above relates eigenstates belonging to differ-
ent Hilbert subspaces for particular values of G and is a
result also obtained in Ref. 22 in the context of the p,+ip,
superfluid. By using the affine Lie algebra introduced in Eq.
(52), we have generalized this result to arbitrary realizations
and representations of the general hyperbolic RG model. One
may wonder whether a similar symmetry property holds for
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the rational RG model H,=T5-GT (T . Let us assume that
there exists a state

|CDM+N> = (T_'—z)N|(I)M> (68)

and determine the conditions to be an eigenstate of H, when-
ever |®,,) is. The commutator

[H. (T )M =NT)V'[H,.T,]
L N-1)

2 (Tiz)N_2[[Hr»Tt2]9Ti2]

(69)

implies that the action of the Hamiltonian on the state [Eq.
(68)] is

H|®pp) = E|® ) + N(T )N PTHTE,(1+2GT 2y)
+G(N=1)T*,]|®,). (70)

To cancel out the second term two conditions need to be
satisfied. First, the number of pairons with E,=0 must be
N=1. Second,

(1+2GT%,)|d,) =0, (71)

which indicates that for a particular value of G, satisfying the
relation above, a state with at most one zero pairon may exist
in the rational model, as opposed to the hyperbolic case
where states with an arbitrary number of zero pairons are
possible eigenvectors. This qualitative difference reflects in
the quantum phase diagram. While the hyperbolic model dis-
plays a QPT from a weak-pairing phase to a strong-pairing
phase, the rational model displays a crossover. This is so,
since the symmetry relation indicates that at the u=0 line the
ground state becomes degenerate, while this is not the case in
the rational model. Connecting points with equal energies in
the phase diagram, we see that they form two lines (one in
weak pairing and one in strong pairing) that approach the
phase-transition line at the same point but under different
angles. Hence it is no surprise that the energy is continuous
but has a discontinuity in the third-order and higher order
derivatives at this point.

Another interesting symmetry relation, not discussed be-
fore, emerges by considering the integrable Hamiltonian

H,=T*,-GT*,T7,, (72)
which is another exactly solvable hyperbolic RG Hamil-

tonian, corresponding to parameters 7,=1/7;. A simple way
to derive it is to make the choice &=\7;" in Eq. (2).
Theorem 2. Given the hyperbolic Hamiltonian H), there
exists another H, with G™'=L-2M+2-G™" whose eigen-
states are the same but the eigenvalues are given by E

=(v|H,|v)+3,E;'. Hence, although H, must have the same
eigenstates as H,, for the same Hilbert subspace of order M,
their eigenvalues are different.

Proof. We explore now how the eigenvalues of H, are
related to those of Hj,. The commutator with H, is given by
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[H),H,]=(T T, - THT)[2GG(1-T§) -G -G].
(73)

Acting on a state of order M it results

[H,,. H,]|®y) =[GG(L-2M +2) - G- GI(T{TZ, - T"T7)
X|Dyy). (74)

Therefore, for given values of G and M the relation
G'+G'=L-2M+2 (75)

defines a value of G such that [H,,H,]=0. This algebraic
identity also shows up in Eq. (17) since these equations are
invariant under the transformation

m=n". E.,=E,), G'sL-2M+2-G'. (76)
Hence one can conclude that for a given eigenstate |®,,) of
H,, the following relation holds:

<®M|Hh|q)M>=<V|ﬁh|V>+EE;l (77)

In particular, at G™'=L—-2M+2, the state |®,,) becomes an
eigenstate of the operator 77,7T_,.

V. CONCLUSIONS

The exactly solvable hyperbolic RG model allows a pa-
rametrization that leads to a pairing model for spinless fer-
mions in two dimensions with a p-wave interaction of p,
+ipy character. The model can be solved with a Bethe ansatz,
even for large system sizes, using a numerical technique in-
troduced in this paper. The thermodynamic limit can be
evaluated analytically, leading to expressions for the ground-
state energy density and few-body correlation functions that
coincide with mean-field theory.

Even though the p,+ip, model has been studied
before,!822 we reach drasticaﬂy different conclusions about
the zero-temperature quantum phase diagram. Our numerical
and analytical results show that the quantum phase diagram
exhibits a third-order quantum phase transition when the
chemical-potential changes sign. Most importantly, as shown
in this paper, this transition is characterized by a logarithmi-
cally diverging length scale that can be obtained experimen-
tally from correlations in the density fluctuations. This length
scale can be associated with the size of the Cooper pairs
making up the correlated many-body state. Those Cooper
pairs, tightly bound in the strong-pairing phase, start to de-
confine at the QPT point where w=0. Thus, in a certain
sense, our physical picture is that the strong-pairing region
represents a confined superfluid phase while the weak-
pairing region is the deconfined phase. Similarly to many
other examples of phase transitions which are not of the Lan-
dau type, as for instance in lattice gauge theories, the transi-
tion is not associated with any broken symmetry and thus has
no local order parameter.

We show that these are general features of the hyperbolic
RG model, irrespective of the specific symmetry or dimen-
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sionality of the representation. This means that our conclu-
sions equally apply to other models derived from the same
generalized Gaudin algebra, be it models for pairing in
atomic nuclei, or Jaynes-Cummings-type models of reso-
nantly coupled fermionic atoms. Furthermore, the algebraic
underpinnings of the hyperbolic RG model allow us to dem-
onstrate that there exists a transformation that relates states
in strong pairing with states in weak pairing, and that the
phase-transition line corresponds to the states that are sym-
metric under this transformation.

Finally, we would like to emphasize the fact that the phase
diagram is based on the exact solution, which guarantees that
the phase transition is not an artifact of the mean-field ap-
proximation. Moreover, Hamiltonian (1) is integrable for at-
tractive and repulsive interactions while there is no mean-
field solution in the yet unexplored repulsive case. Therefore,
exact solvability could be a unique tool to investigate repul-
sive p-wave interactions.
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APPENDIX A: ONE PAIR

Already the state with one pair leads to a non-trivial re-
sult. Equation (17) reduces to

1 1
2. 1l's
E; 20 Er—m

=0. (A1)

In order to solve this equation, we have to specify the space
in which the model is defined. Let us consider a disk in
momentum space, with radius aR such that R is integer and a
is the spacing between successive momentum states. The
kinetic-energy dispersion is given by k?/2, which means that
there is a kinetic-energy cutoff w=(aR)?/2. In the continuum
limit, corresponding to R>1, one can take L=mR?/2 and
replace the sums over k by integrals with dk,=dk,=a,

ko, >0

S k)=~ J f 02k dk,
a k>0,k<aR
aR

=2 kdk
a Ji=0
TR%/2 f (aR)?

=R’ flpdn

0
2w

L
=— | flnpdn.
0

2w (42)

Hence,
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1 L (* 1
vieo E1-K 20)y Ej-7

dn

L 2w
=——In{1-—]. (A3)
2w El
Substituting this result in Eq. (A1), one obtains that
2w 2w
2(Q/L)——-In{ 1 ——/=0. A4
(/L) E n( E ) (Ad)

In the limit L> 1 one finds that £;,=2w/f,, where g=GL and
S s the solution of the following equation:

(Vg =1)f=In(1-f,).

If 1/g <1, then f, <0 and one obtains a ground-state en-
ergy for one pair,

(A5)

E, = 20/f,, (A6)

such that £, <0. This value E, then defines a physical energy
scale that can be used to eliminate the cutoff w as done in
Ref. 16. For 1/g=1, the one-pair ground state corresponds
to a nonpaired state with £;=0. In this case there is no rel-
evant energy scale to renormalize the cutoff.

The one-pair energy is a physically meaningful quantity
that allows one to relate different models describing the same
physics. Typically, models with p,+ip, pairing will have an
interaction that scales as (kx+iky)(k;—ik;) for small k, just
like the integrable p,+ip, model but for large momenta the
interaction could be very different. Because the peculiarities
of the quantum phase diagram are determined mainly by the
small-k behavior, we expect similar results for other two-
dimensional p +ip, models, as, e.g., in Ref. 16. To relate
their results to ours, one has to renormalize the interaction
strength, which can be done by equating the one pair energy.

APPENDIX B: POLYNOMIAL SOLUTION
FOR THE ONE-LEVEL MODEL

In the limiting case of a single level, /=1, Eq. (17) takes
the form

N 1
Yy 2 v
77_Ea o/a'#aE“’_Ea Ea

(B1)

Equation (B1) is a generalized Stieltjes equation*! that can

be solved by multiplying it by 2E(n»—E,)P),(E,), where

PM(x):HZI,zl(x—Ea;) is the polynomial that has the un-

knowns E,, as its roots. One finds that

[2(S + Q)Ea_ 2Q7]]P1,l/](Ea) +Ea(77_ Ea)P;l,/](Ea) = O»

(B2)

for a=1,...,M. Since this is a polynomial expression of

order M, valid in M distinct points (assuming that none of

the E, coincide), one can identify the polynomial expression
with a multiple of P(x),
[2(s + Q)x = 2077]P},(x) + x(7 - x) P (x)
=M[2(s+Q)-M+1]Py(x), V x. (B3)

This equation can be transformed into the Jacobi equation in
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the variable y where x=(7/2)(1+y). The solution is a Jacobi
polynomial

Py(x) o« Pff(Zx/”/]— 1) (B4)

with parameters a=20/n-20-2s—1 and B=-20/7n-1.
Let us expand Py (x)==Yp, x, where p, ,=1. By

equating orders of x' in Eq. (B3), one obtains a recurrence

relation that defines the coefficients p,,; completely

(20 +1-i)i
MM+i-2-2(s+Q) M +1-1i)
for i=M,M-1, ...,1.

Pm,i-1= Pwm.is

(B5)

If 2Q+1 equals an integer value N=<M, one sees that P,(x)
has a factor x". This means that a singularity occurs in which
N pairons will collapse at 0. Of particular interest are the
cases N=M, where all pairons collapse to zero, and N=0,
where no more singularities occur.

For multilevel systems, e.g., a system of / levels, the poly-
nomial P,,(x) is still well defined. Rather than a Jacobi-type
equation, it now has to fulfill a generalized Lamé differential
equation with negative residues,*

1

Pl) + (E 5

k=0 X~ Tk

Viu(x)
Hi=0 (x =7

)P,’Vl(x) - Py(x)=0

(B6)

with ry==20, r,=-2s;, and 7,=0. The solutions P, (x) are
known as Stieltjes polynomials, while the polynomials V,,(x)
of order /-1 or less are known as Van Vieck polynomials. If
all r, were positive, i.e., all s, and Q negative, which can
occur for su(1,1) representations (e.g., boson pairs), then the
polynomials P,,(x) would be orthogonal polynomials with
respect to some weight function. The case of negative resi-
dues, r, <0, is much less understood and a topic of ongoing
research.*?

APPENDIX C: CONTINUUM LIMIT OF THE
INTEGRABLE p, +ip, MODEL

A full analysis of the continuum limit of the integrable
D.+ip, has been presented in Refs. 22 and 43. We give here
a brief overview of the procedure, that applies to the hyper-
bolic RG model in general, in order to maintain consistency
with the other sections and to demonstrate that the transitions
between the different regions in Fig. 1 are genuine phase
transitions and not merely crossovers. The continuum limit
of the RG equations [Eq. (17)] is based on the following
scalings:

L, M— o, (C1)
M/L=p finite, (C2)
GL=g finite, (C3)
Q/L=q=L—l+p, (C4)

2¢ 2
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FIG. 12. Contours used to evaluate the continuum limit.

S = [ esman. )
k A

-3 (B, = f P f)dsx, (C6)
a ()

where A is the support of the weighted level density o(7)
and ) the support of the pairon density p(x). Their normal-
ization is given by

f o(ndn=1, (C7)
A

f p(x)dx=p. (C8)
QO

The RG equations [Eq. (17)] take the following form in the
continuum limit:

l !
z+_f e(n)dn_Pf P
A ¢

x 2J)yx—-7m VX=X

vV xe .

(C9)

The integral over x’ is to be understood as a Cauchy princi-
pal value, P. To solve this equation, we start from an elec-
trostatic analogy that goes back to work of Stieltjes on or-
thogonal polynomials,*>* and has been applied in the
present context by Gaudin® and was later elaborated in Refs.
28 and 46 for the rational model and in Refs. 22 and 43 for
the hyperbolic model. One considers the pairons to repre-
sents M free charges with unit negative charge, positioned in
the two-dimensional plane at coordinates given by the real
and imaginary parts of pairon values E,. Then Eq. (C9) rep-
resents the two-dimensional electrostatic force generated by
the repulsion among the free charges, the attraction of a fixed
charge density ¢(7) along the interval A, and the interaction
with a central charge ¢ located at the origin, derived from a
potential V(z) in the two-dimensional complex plane,

1
V(z)=—q In(|z]) - Ef o(nn(|z - 7))dn
A

+j p()In(|z —x'|)dx’. (C10)
Q

Therefore, any particular solution of Eq. (C9) gives the equi-
librium positions of the pairon density p(x) in the two-
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dimensional plane. Note that g can change from attractive to
repulsive depending on the filling p and on the coupling g.
This change in sign is associated with a QPT whose inter-
pretation is one of the main goals of this work. To find the
unknown pairon density p(x), we assume that it corresponds
to a continuous charge distribution along a certain curve (or
set of curves) (). The electric field F(z) created by the charge
g at the origin and the charge densities p (repulsive) and @
(attractive) will have a discontinuity across () given by

Flx,) - Fx.)

plx) = o

for x € Q. (C11)

This allows us to rewrite the Cauchy principal value integral
over () as an integral along a clockwise contour C around

Q,
' 1 F
Pf —p(x),dx’=—,3€ P&
QX—x 2mi ), X2

To model the discontinuity in F(z) we propose the following

ansatz:
F(z) =Ro(2) f —¢(7I)dn,
AT

where Rq(z) is a function that explicitly takes into account a
cut along Q (Fig. 12). If ) corresponds to a single segment
with endpoints a and b, then one can take

R, »(2)=V(z—-a)(z-D).

For more segments, Rq(z) has to be a higher order function,
e.g.,

(C12)

(C13)

(C14)

Ro(2) =1 Vz-a)(z-b), (C15)
i=1

where 7 is the number of segments. In general, one can write
an asymptotic expansion for large z as
400

Ro(z) =2 r" (C16)
i=0

Note that the total charge in the system is given by p—g
—1/2=-1/(2g). Therefore the asymptotic behavior of F is
given by

(C17)

1
F(z)=—+O(z?), for |z| — o0.
28z

This allows us to put constraints on the unknown function

(2),

n—1, (C18)

J¢(77)77id77=0, for i=0,
A

J ¢(n)n”dn=2i. (C19)
A 8

Now we can rewrite Eq. (C12) by deforming the contour
around () into a contour C, around A plus a contour C,
around the point at infinity
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» J P o 1 4; Ro(@) [ 90,
QX—x 2mi) e, x-2 AZ—77

_r Q(Z)
f e, = =) 7
b RQ(Z)
f jg (z=nx-2) dadn
¢(7])RQ(7])d7]’ (C20)
A X7

where the integral along C., vanishes because of Eq. (C18) as
can be seen in the following expansion:

Q(Z)
f"’( )3{; et
Er,z 2
f ‘/’(”)fﬁ (1= )1 =) 247

=- E xr; J <i>(77)77*d773g "2y

Jok =0
+00

=2m D,

j=0,k=0,1=0

xlrjfsk,n-l-j-zf[\ d(p)fdn=0 (C21)

because only terms with k<<n are allowed by the Kronecker
delta. Comparing Eq. (C20) with Eq. (C9), we find that the
solution is given by

a8() + ~o()

2
d(n) = Ra(n)

The segments of ) correspond to equipotential curves in the
complex plane, determined by

(C22)

Rern F(z)dz=0. (C23)

n

The energy density is given by e=E/L and can be evaluated
as

s=<V|Hh|v>/L+J xp(x)dx

Q
=—%f 779(71)6177+2L an(Z)f Md ndz
i) ¢,
=—%f ne(n)dm% ZR(2) Md ndz
A mJc, AZ—
+_3g ZR(2) (ﬁ(_nd ndz
[ etna ; [ et
==3 Ane(n) s Ane(n) 7
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+2—]k20
l 7]n+1
- ZJA ol R )

Let us analyze in particular the case of a single segment, i.e.
n=1. Egs. (C18) and (C19) reduce to

() nd 74 7" dz

E(a+b

(C24)

3@f___£@L__ I S
2 im=am-p""" T2 2"
(C25)
(n)n
—_— L p=—. C26
[\«n—axn—w = (€26)

It is interesting to compare this to the result of a mean-field
theory for the ground state (see Appendix D) based on a
grand potential Hj,—uS*, with chemical potential u and a
pairing field A=GZ=,\7{S;). One obtains the same expres-
sions as in Egs. (C25) and (C26), provided that one equates

V(n=a)(n-b)=\(n-2m)?* +49A%,  (C27)
which means that one can identify
a+b=4(u—-A%, ab=4u>, (C28)
a-b=+4AVA*—2p, (C29)
Vab vab a+
=*x—, A=+ —- C30
I 5 > 2 (C30)

Again one can distinguish the three regions in the quantum
phase diagram: weak-coupling BCS. 0<=- Az <u, and a and b
complex. The pairons form an arc in the complex plane.
Weak pairing at intermediate coupling. 0 < u< £ and a and
b real and negative. The distribution of pairons along the
negative real axis between a and b has to be supplemented
with two arcs in the complex plane that close around the
origin, touching the real negative axis in a, and a segment of
real positive pairons between the origin and the point where
the arcs touch the positive real axis. Strong pairing. uw<<0,
and a and b real and negative. All pairons fall in the segment
on the negative real axis between a and b.

For n=1 one can further elaborate Eq. (C24) for the en-

ergy

wo A1 7
g & 2J, V(p=2u)*+475A
2

=M%—U+%—W%NL (©31)

where we have defined
1 —_———s
O(u,A%) = Ef e(MV(n-2um)*+49A%dn. (C32)
A

We can formally express Egs. (C25) and (C26) as
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70 5 J0 n 1
Substituting these conditions into Eq. (C31), we see that they
guarantee that £(u,A?) reaches an extremum at the corre-
sponding values of x and A%, which coincides with the
mean-field theory of Appendix D.

Note that the pairon distribution does not depend on the
details of the representation for the su(2) operators S;. The
only model factor that enters into the equations is the
weighted level density ©(7), which corresponds to the dis-
tribution of s, in the vacuum state |v). The fact that &, p, and
g all depend on O(u,A?) means that a QPT will occur only
if @(w,A?) displays a singularity in one of its derivatives.
From Eq. (C32) one can infer that this will be the case if the
argument of the square root vanishes, which happens at u
=0 if =0 is included in the domain A.

APPENDIX D: MEAN-FIELD THEORY OF THE
HYPERBOLIC RICHARDSON-GAUDIN MODEL

Mean-field theories for separable interactions have been
discussed before in the context of p,+ip, pairing models.'®!8
Here we present a more general derivation applicable to all
exactly solvable models derived from the hyperbolic RG
model, the p,+ip, model representing a particular case. Our
mean-field theory for the Hamiltonian Hj, from Eq. (16) is
based on a variational wave function

|6) = X065t ). (D1)
For fermions, the mean-field theory is often presented in
terms of a double set of complex parameters v,/ u;= 6, with
the condition that |u|>+|v;/>=1. These parameters can be
related to 6 as

D ST WS
V146, VI+]6
Let us denote normalized expectation values as (...). From
the normalization condition
Ooy=T1 1+, S|vy=-sv), (D3)
k

one easily finds the normalized expectation values for the
basic operators of the algebra

116, Oy
SD=-sipp SO, (D)
+ |64
Furthermore, one can show that
_ _ (s + (S >)2
(SESe) =SS + O ———— s (D5)
k

This allows us to write the mean-field expectation value for
H, as
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(Hp) = E’?k(sk> G2 N (SENS )

ki
Z\\2
~G3 nk(s”zﬂ. (D6)
k Sk

To derive the mean-field equations, we will vary the follow-
ing expression:

(61H;|0) = 21(6|S°| 6) — Eri(6]6). (D7)

where u is a Lagrange multiplier that fixes (S%) and repre-
sents the chemical potential in particle (fermion or boson)
representations of the model while E,; is needed to fix the
normalization. By varying Eq. (D7) with respect to (8] we
obtain the mean-field equation

Hmf| ‘9> = Emfl ‘9> (DS)
with
Hui=22 £Si— 2 \nAS;+A"Sp), (DY)
k k
1 s+ {(S%)
§k=<§—G%>m—M, (D10)
Sk

A=G2 (S, (D11)
k

To check whether the ansatz of Eq. (D1) is indeed an eigen-
state of Hpy, we evaluate

Hol0) = k0t =2k OS] Ho eEkﬂkSZ| )

:eEkaSZ(zz [&+ 9k\@A*]S;’;
k

+ S (RA" - A7 +20,£15 - > \@A*S;) ).
k k

(D12)
One sees that |6) is an eigenstate provided that
(A" = AW+ 26,4, =0. (D13)
The corresponding eigenvalue of H, is given by
Epg==22 si{ &+ 0 mA"]. (D14)
k

0, must have the same phase as A, which we can absorb in
the definition of the operator Sy, so we can take A and 6, to
be real without loss of generality. One finds that the ground-
state solution of Eq. (D13) is given by

—
& + g A% -

6, = \§k 7/k fk (D15)
VmA

Then, the mean-field eigenvalue becomes

Emi=—22 siVE 2

&+ A (D16)

and the expectation values become
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(S5 =5 fg" (Spy= —ﬂ, (D17)
f A \fk"' 77kA
E A
H)=— K
< h> Ek:Sk\/gi-i-’}?kAz G

-GS M(l - —L)z. (D18)
i 2 \§2+ 77kA2

k

In the particle representation of Eq. (21), the occupation
probabilities are given by

- 1Sp 1 &
(cfepy==-"F=- o —22 (D19)
K-k 2 ZSk 2 2\1‘5}%-{- nkAz

Self-consistency with the definition of A in Eq. (DI1)
gives us the gap equation

1
PO R/ S———

(D20)
k \"f%"'??kAz G

while fixing the expectation value of S* gives us the number
equation

(D21)

&
) Y e— a—— g ;)
k k\/fi"‘ mA?

In the thermodynamic limit L—oe, with g=GL finite. The
expression for &, simplifies to

&=m/2 - p. (D22)

Adding 1/2 times Eq. (D20) to Eq. (D21) allows us to rewrite
the number equation as

We see that u=0 occurs at g~'=1-2p, i.e. special case (i)
from Sec. II B. Another interesting situation occurs when u
=A72 because then one has that &+ 7A%=|7,/2+u| and
consequently 6,=A/k. By adding 1/2 times Eq. (D20) to Eq.
(D23) for this case, one obtains (assuming all 7,>0) that
g '=1-p, ie., special case (ii) from Sec. I B.

(D23)

APPENDIX E: HIGHER ORDER DERIVATIVES IN THE
THERMODYNAMIC LIMIT

From Eq. (38) we notice that g~!
quantities to A? and pu,

and 2p are conjugate

de
d(2p)

de _A2
g™ T

We can thus obtain the Jacobian matrix J with respect to A2
and w, after Eqs. (34) and (35),

=u. (E1)

g™ alg™
AA? I

=\ aep s | (E2)
A% du

whose inverse
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(A 9(A?)
-1
]—1: a(jﬂ) afif) (E3)
g™ a2p)

represents the Hessian of & with respect to g~' and 2p be-
cause of Eq. (El). If the matrix elements of J~! are continu-
ous and its determinant is nonzero over the whole parameter
space, then the second-order derivatives of & are continuous.
For instance, the second-order derivative of & with respect to
¢!, keeping p constant, is

Pe B J(A?) B a(2p)
(9g™)* g™ om

and the second-order derivative with respect to g can then be
obtained as

det(J™") (E4)

Pe _z de +i Pe
(9g)* g ag™")  g*(ag™")?

2 192
=—3A2 + —4Mdet(J_1). (E5)
8 g Iu

To obtain a compact notation for the derivatives, we de-
fine the following quantities:

—_—

V=V(w-u)?+2wA%, (E6)

F=w—-pu+A*+V, (E7)

f=07—p+|pl, (E8)
T42p-1 1 (F

5:%=—ln<—>. (E9)
M o \f

Then we can derive

ag") |4l (@+V)?
9(A?) =-<- of T wVF (E10)
e _ap) . pll (@+V(@+V-p

é’_

b}

aw (A of wVF

(E11)
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(2 - + V= p)?
(2p) _, |M|+(w W’ E12)
u of wVF
By combining these results one finds that
27 (0+V—|u|)?
det())=— - *- El3
et(J) v 4 |M| a)szF ( )

For g#0 we know that A”>>0. One easily verifies that then
also V>0, F>f>0. The quantity { remains finite and con-
tinuous when u crosses 0, as can be seen from the right-hand
side of Eq. (E9). Hence the only singularities in the deriva-
tive of Eq. (E5) can come from a zero in the determinant of
J. By inspection one finds that det(J) <0 for all finite values
of ; and A?, even though there is a cusp at u=0 due to the
absolute value |u| that appears in Eqgs. (E8) and (E13). For
u—0, the condition det(J)=0 is satisfied if and only if

Vi=2
()
(7]
—In|—]=2
o \f
()
Vto _ sov
V-w
()
e
— =tanh{ —
Vv Vv
)
A’ =0, (E14)

However, A? is finite for any finite value of g implying that
there is no discontinuity in the second-order derivative of the
energy at u=0, where the quantum phase transition occurs.

The third-order derivatives of & can be written as combi-
nations of Egs. (E10)-(E13) and their derivatives. Because
of the cusp in det(J) at =0 one can expect a discontinuity
in the third-order derivatives at the phase-transition line, as
indicated in Fig. 9.
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