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We develop a systematic theory of multiparticle excitations in strongly interacting Fermi systems. Our work
is the generalization of the time-honored work by Jackson, Feenberg, and Campbell for bosons, that provides,
in its most advanced implementation, quantitative predictions for the dynamic structure function in the whole
experimentally accessible energy/momentum regime. Our view is that the same physical effects, namely,
fluctuations of the wave function at an atomic length scale are responsible for the correct energetics of the
excitations in both Bose and Fermi fluids. Besides a comprehensive derivation of the fermion version of the
theory and discussion of the approximations made, we present results for homogeneous 3He and electrons in
three dimensions. We find indeed a significant lowering of the zero-sound mode in 3He and a broadening of the
collective mode due to the coupling to two-particle–two-hole excitations in good agreement with experiments.
The most visible effect in electronic systems is the appearance of a “double-plasmon” excitation.
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I. INTRODUCTION

This paper is concerned with a systematic theory of mul-
tiparticle excitations in Fermi systems. We utilize an
equations-of-motion method that has been used in the past as
a vehicle for many purposes: the derivation of the time-
dependent Hartree-Fock �TDHF� theory,1–3 its analog for
strongly interacting systems,4,5 and for studying single-
particle and multiparticle correlations in strongly interacting
Bose liquids.6,7

The simplest way to deal with excitations is to assume
that the low-lying excited states of a quantum fluid can be
characterized by the quantum numbers of a single particle.
This is the core idea of Landau’s quasiparticle picture of
“normal” quantum fluids8,9 as well as of Feynman’s theory of
collective modes in the helium liquids.10 It is appropriate for
many long-wavelengths excitations such as sound waves in
Bose fluids or plasmons in an electron liquid.

Already Feynman realized that this concept is insufficient
to describe higher lying excitations, most prominently the
“roton” in 4He. Intuitively appealing, he introduced “back-
flow” correlations.11 These are recognizable as a new type of
excitations, depending on two particles: pair fluctuations.
The notion is plausible for excitations at wavelengths com-
parable to the interparticle distance, the time dependence of a
system’s short-ranged structure is expected to be relevant.

The presently state-of-the-art theory for Bose liquids
originates from pioneering studies by Jackson,
Feenberg,6,12–16 and Campbell and collaborators.17 Recently,
a complete solution of the pair equation of motion has been
accomplished in 4He,7 showing that the “uniform limit ap-
proximation” of Refs. 6 and 12–17 is surprisingly good.
Consequently, theoretical improvement must be sought in
three-body and higher-order fluctuations.18

Although quite successful for bosons, there exists to-date
no fermion version of the theory. We therefore develop here
the generalization of the equation-of-motion method for pair
fluctuations to fermions. We calculate the fermionic density-
density response function ��r−r� ; t− t��, relating the induced

density fluctuation ���r ; t� to a weak external perturbation
hext�r ; t�. In a homogeneous system this is written in momen-
tum space as

���q;�� = ���q;��h̃ext�q;�� , �1.1�

where � is the particle number N per volume �. We choose
Fourier transforms

f�r;�� �
1

N
�
q

e−iq·r f̃�q;�� �1.2�

to have the same dimension in q and r spaces.
The imaginary part of ��q ;�� is the experimentally acces-

sible dynamic structure factor,

S�q;�� = −
�

�
Im���q;������� . �1.3�

The dynamic structure factor satisfies, among others, the sum
rules

m0 = S�q� = �
0

	

d����S�q;�� , �1.4�

m1 =
�2q2

2m
= �

0

	

d������S�q;�� , �1.5�

where S�q� is the static structure factor.
We develop our theory with the following objectives.
�1� Technically, the extension of the Jackson-Feenberg-

Campbell theory to Fermi systems amounts to including
time-dependent two-particle-two-hole excitations. We re-
quire that the fermionic ��q ;�� reduces to that of the boson
theory in the appropriate limit.

�2� For bosons, neglecting pair-order and higher order
fluctuations yields the famous Bijl-Feynman spectrum10
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�q� =
�2q2

2mS�q�
�

t�q�
S�q�

. �1.6�

Its fermionic counterpart is the random-phase approximation
�RPA�, formulated in terms of effective interactions.19 We
require that our theory reduces to the RPA if pair fluctuations
are ignored. This implies, in particular, that we obtain in this
case a response function of the form

��q;�� =
�0�q;��

1 − Ṽp-h�q��0�q;��
. �1.7�

Here, �0�q ;�� is the Lindhard function and Ṽp-h�q� an appro-
priately defined static “particle-hole interaction” or “pseudo-
potential.”

One of the tasks of microscopic many-body theory is to

justify and calculate effective interactions such as Ṽp-h�q�, as
far as this is possible. Using Jastrow-Feenberg-correlation
functions13 to tame the microscopic hard-core repulsion, it
has been shown5 under what assumptions a density response
function of the RPA form Eq. �1.7� can be obtained, and a
microscopic expression for the static effective interaction

Ṽp-h�q� was derived. Under what conditions a form Eq. �1.7�
is meaningful at all will be discussed in depth below.

A phenomenological approach to define a particle-hole
interaction or pseudopotential for 3He and electrons was in-
troduced by Aldrich, Iwamoto, and Pines.19,20 They deter-
mined the physically intuitive and necessary requirements

for Ṽp-h�q�, postulating that the dynamic response is given by
the RPA form Eq. �1.7�. Reflecting the same physics, the

Ṽp-h�q� derived from microscopic many-body theory5 is very
similar to the Aldrich-Iwamoto-Pines pseudopotentials. The

microscopic derivation leads to a Ṽp-h�q� that is uniquely
determined from the static structure function by the two sum
rules in Eqs. �1.4� and �1.5�. Defining the RPA this way leads
for bosons to the Feynman approximation Eq. �1.6� for the
spectrum of collective excitations. From here on, we will use
the term “RPA” and Feynman spectrum in this sense.

Our work is organized as follows. Section II introduces
the basic quantities and the most important tools of varia-
tional and correlated basis function �CBF� theory. For details,
the reader is referred to review articles21 and pedagogical
material;22 a brief outline of our notations and definitions is
given in Appendix A. Section III is the core of our work; it
provides the derivation of the equations of motion, including
pair fluctuations. We show that the theory can be mapped
onto a set of TDHF equations3 with energy-dependent, effec-
tive interactions. Thus, our work provides the logical gener-
alization of Ref. 5, where single-particle fluctuations led to a
TDHF theory with static effective interactions.

Section IV focuses on the practical implementation of our
theory. We formulate, among others, the “convolution ap-
proximation” for fermions. In Sec. V we derive the density-
density response function ��q ;�� and discuss its features.

Modern techniques of many-body theory are robust
against the details of the interparticle interaction. We can
therefore use the methods developed here to examine the
dynamics of two very different systems: The very strongly

interacting 3He whose interaction is characterized by a repul-
sive hard core and a short-ranged attraction, and electrons
with their rather tame but long-ranged Coulomb interaction.
Section VI implements our method for bulk 3He and the
electron liquid. In 3He, we compare with neutron-scattering
experiments carried out at the Institut Laue Langevin �ILL�
in the group led by Scherm.23–25 The energetics of the col-
lective mode as well as the width of the spectrum at high-
momentum transfers are significantly improved compared to
RPA predictions. In the homogeneous electron liquid the
pair-excitation theory predicts plasmon damping as well as
double-plasmon excitations. Experimental verification of the
double-plasmon excitation in recent inelastic X-ray scatter-
ing measurements26,27 has added new interest in studying the
dynamics of electrons.

Our results are summarized in Sec. VII where we also
discuss the directions of future work. Appendices A and E
give further details on the derivations and Appendix F a very
brief summary of the minimal implementation of our theory.

II. THEORY FOR STRONGLY
INTERACTING FERMIONS

A. Variational theory

Microscopic many-body theory starts with a phenomeno-
logical Hamiltonian for N interacting fermions,

H = − �
i

�2

2m
�i

2 + �
i�j

v��ri − r j�� . �2.1�

For strong interactions, CBF theory13 has proved to be an
efficient and accurate method for obtaining ground-state
properties. It starts with a variational wave function of the
form

��o	 =
F�o	


o�F†F�o	1/2 , �2.2�

where o�1, . . . , i , . . . ,N� is a model state, normally a Slater
determinant, and “i” is short for both spatial and � discrete
�spin and/or isospin� degrees of freedom. The correlation
operator F�1, . . . ,N� is suitably chosen to describe the im-
portant features of the interacting system. Most practical and
highly successful is the Jastrow-Feenberg13 form

F�1, . . . ,N� = exp�1

2 �
1�i�j�N

u2�ri,r j�

+
1

2 �
1�i�j�k�N

u3�ri,r j,rk� + ¯� . �2.3�

The un�r1 , . . . ,rn� are made unique by requiring them to van-
ish for �ri−r j�→	 “cluster property.”

From the wave function Eqs. �2.2� and �2.3�, the energy
expectation value

Ho,o � 
�o�H��o	 �2.4�

can be calculated either by simulation or by integral equation
methods. The hierarchy of Fermi-Hypernetted-Chain
�FHNC� approximations is compatible with the optimization
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problem, i.e., with determining the optimal correlation func-
tions un�r1 , . . . ,rn� through functionally minimizing the en-
ergy

�Ho,o

�un�r1, . . . ,rn�
= 0. �2.5�

Due to the multitude of exchange diagrams, the FHNC and
corresponding Euler equations �FHNC-EL� can be quite
complicated;28 the simplest approximation of the Euler
Eq. �2.5� that contains the important physics is spelled out in
Appendix A 1.

The optimization of the correlations also facilitates
making connections with other types of many-body
theories, such as Feynman-diagram-based expansions and
summations.29

B. Correlated basis functions

Although quite successful in predicting ground-state prop-
erties of strongly interacting systems, the Jastrow-Feenberg
form Eq. �2.3� of the correlation operator F has some defi-
ciencies. The most obvious problem is that the nodes of the
wave function Eq. �2.2� are identical to those of the model
state �o	. To improve upon the description of physics, CBF
theory21,22,28 uses the correlation operator F to generate a
complete set of correlated and normalized N-particle basis
states through

��m	 =
F�m	


m�F†F�m	1/2 , �2.6�

where the �m	� form a complete basis of model states.
Although the ��m	 are not orthogonal, perturbation theory
can be formulated in terms of these states.13,30 We review
here this method only very briefly, details may be found in
Refs. 21 and 22; the diagrammatic construction of the rel-
evant ingredients is given in Ref. 31.

For economy of notation, we introduce a “second-
quantized” formulation of the correlated states. The Jastrow-
Feenberg-correlation operator in Eq. �2.3� explicitly depends
on the particle number, i.e., F=FN�1, . . . ,N� �whenever un-
ambiguous, we omit the corresponding subscript�. Starting
from the conventional ak

† ,ak, creation and annihilation opera-
tors �k

† ,�k of correlated states are defined by their action on
the basis states

�k
†��m	 �

FN+1ak
†�m	


m�akFN+1
† FN+1ak

†�m	1/2 , �2.7�

�k��m	 �
FN−1ak�m	


m�ak
†FN−1

† FN−1ak�m	1/2 . �2.8�

According to these definitions, �k
† and �k obey the same

�anti�commutation rules as the creation and annihilation op-
erators ak

† and ak of uncorrelated states, but they are not
Hermitian conjugates. If ��m	 is an N-particle state, then the
state in Eq. �2.7� must carry an �N+1�-particle correlation
operator while that in Eq. �2.8� must be formed with an
�N−1�-particle correlation operator.

In general, we label “hole” states, which are occupied in
�o	, by h, h�, hi , . . ., and unoccupied “particle” states by p,
p�, pi, etc. To display the particle-hole pairs explicitly, we
will alternatively to ��m	 use the notation ��p1,. . .,pdh1,. . .,hd

	.
A basis state with d particle-hole pairs is then

��p1,. . .,pdh1,. . .,hd
	 = �p1

† . . . �pd

† �hd
. . . �h1

��o	 . �2.9�

The execution of the theory needs the matrix elements of
the Hamiltonian, the unit operator and the density operator.
Key quantities are diagonal and off-diagonal matrix elements
of unity and H��H−Ho,o

Mm,n = 
�m��n	 � �m,n + Nm,n, �2.10�

Hm,n� � Wm,n +
1

2
�Hm,m + Hn,n − 2Ho,o�Nm,n. �2.11�

Equation �2.11� defines a natural decomposition31,32 of the
matrix elements of Hm,n� into the off-diagonal quantities Wm,n
and Nm,n and diagonal quantities Hm,m.

The ratios of normalization integrals, Im,m
�
m�F†F�m	, define the factors

zp1,. . .,pdh1,. . .,hd
� zm � �Im,m/Io,o. �2.12�

For large particle numbers and d�N these factorize as

zm =
zp1

. . . zpd

zh1
. . . zhd

+ O�N−1� . �2.13�

Likewise, to leading order in the particle number, the di-
agonal matrix elements of H��H−Ho,o become additive so
that for the above d-pair state we can define the CBF single-
particle energies


�m�H���m	 � �
i=1

d

epihi
+ O�N−1� , �2.14�

with eph=ep−eh where

ep = 
�o��pH��p
†��o	 = t�p� + u�p� ,

eh = − 
�o��h
†H��h��o	 = t�h� + u�h� �2.15�

and u�p� is an average field that can be expressed in terms of
the compound diagrammatic quantities of FHNC theory.

For the off-diagonal elements Om,n of an operator O �spe-
cifically the Hamiltonian, the unit, density, and current op-
erator� we sort the quantum numbers mi and ni such that
��m	 is mapped onto ��n	 by

��m	 = �m1

† �m2

† . . . �md

† �nd
. . . �n2

�n1
��n	 . �2.16�

From this we recognize that, to leading order in N, any Om,n
depends only on the difference between the states ��m	 and
��n	 and not on the states as a whole. Consequently, Om,n
can be written as matrix element of a d-body operator
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Om,n � 
m1m2, . . . ,md�O�1,2, . . . ,d��n1n2, . . . ,nd	a.

�2.17�

�The index a indicates antisymmetrization.� According to Eq.
�2.17�, Wm,n and Nm,n define d-particle operators N and W,
e.g.,

Nm,o � Np1p2,. . .,pdh1h2,. . .,hd,0

� 
p1p2, . . . ,pd�N�1,2, . . . ,d��h1h2, . . . ,hd	a,

Wm,o � Wp1p2,. . .,pdh1h2,. . .,hd,0

� 
p1p2, . . . ,pd�W�1,2, . . . ,d��h1h2, . . . ,hd	a.

�2.18�

Diagrammatic representations of N�1,2 , . . . ,d� and
W�1,2 , . . . ,d� have the same topology.31 In homogeneous
systems, the continuous parts of the pi ,hi are wave numbers
pi ,hi; we abbreviate their difference as qi. The highest occu-
pied momentum is �kF.

An important consideration is, for our purposes, the con-
nection between CBF matrix elements, the static structure
function, and the optimization conditions for the ground
state. The static structure function S�q�= 1

N 
�o��̂q�̂−q��o	 is
routinely obtained in ground-state calculations; for some sys-
tems it is also available from experiments. We can also write
S�q� as the weighted average of the matrix elements Eq.
�2.18�,

S�q� = SF�q� +
1

N
�
hh�

zpp�hh�Npp�hh�,0, �2.19�

where SF�q� is the static structure function of noninteracting
fermions.

Similarly, the optimization conditions Eq. �2.5� for the
pair-correlation function can, in momentum space, be written
in terms of off-diagonal matrix elements of the Hamiltonian

0 =
�E

�ũ2�q,q��
=


o�F†H�F��̂q�̂q� − �̂q+q���o	


o�F†F�o	

= �
hh�


o�F†H�F�ap�
† ap

†ahah�o	


o�F†F�o	
= �

hh�

zpp�hh�Hpp�hh�,0
� ,

�2.20�

i.e., the weighted average of the off-diagonal matrix ele-
ments H0,pp�hh�

� vanishes for optimized pair correlations.
Both features will provide rules for systematic and consistent
approximation schemes for the operators N�1,2 , . . . ,d� and
W�1,2 , . . . ,d�.

III. EQUATIONS OF MOTION

A. Excitation operator and action principle

To formulate a theory of excited states for strongly inter-
acting fermions we generalize the ansatz Eqs. �2.2� and �2.3�
in analogy to the pair-fluctuations theory for strongly inter-
acting bosons.6,7,12,14–17 We restrict ourselves here to uniform

systems. The system is subjected to a small external pertur-
bation

Hext�t� � � d3rhext�r;t��̂�r� , �3.1�

where �̂�r� is the density operator. The correlated wave func-
tion for the perturbed state is chosen to be

���t�	 = exp�− iHo,ot/����0�t�	 ,

��0�t�	 =
1

I1/2�t�
exp�1

2
U�t����o	 ,

I�t� = 
�o�exp�1

2
U†�t��exp�1

2
U�t����o	 �3.2�

with the excitation operator

U�t� � �
ph

�uph
�1��t��p

†�h +
1

2 �
pp�hh�

�upp�hh�
�2� �t��p

†�p�
† �h��h

� U1�t� + U2�t� . �3.3�

The particle-hole amplitudes �uph
�1��t� and �upp�hh�

�2� �t� are de-
termined by the stationarity principle for the action

S��u�1�,�u�1��,�u�2�,�u�2��� =� dtL�t� �3.4�

with the Lagrangian1,2,4,5

L�t� = 
��t��H + Hext�t� − i�
�

�t
���t�	

=
�0�t��H� + Hext�t� − i�
�

�t
��0�t�	 . �3.5�

A “boson” version of the theory is recovered when the
particle-hole amplitudes �uph

�1��t� and �upp�hh�
�2� �t� are restricted

to local functions that depend only on the momentum trans-
fers q���=p���−h���.

B. Brillouin conditions

To derive linear equations of motion, the Lagrangian �3.5�
must be expanded to second order in the excitation operator
U�t�. For the procedure to be meaningful, one should require
that the first-order terms vanish. This is, in principle, a nec-
essary condition, however, in practice it is not always pos-
sible to satisfy it rigorously.

The first variation in the energy with respect to �uph
�1��t�

and �uph
�1���t� is

� �
��t��H����t�	
���uph

�1��t��
�

�uph
�1��t�=�u

pp�hh�
�2� �t�=0

= H0,ph� �3.6�

and its complex conjugate. This term vanishes in the homo-
geneous liquid due to momentum conservation.

The variation with respect to �upp�hh�
�2� �t� leads to a similar

condition
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� �
��t��H����t�	

���upp�hh�
�2� �t�� �

�uph
�1��t�=�u

pp�hh�
�2� �t�=0

= H0,pp�hh�
� = 0

�3.7�

and its complex conjugate. This condition is not rigorously
satisfied by a Jastrow-Feenberg ground state. Recall, how-
ever, that the optimization condition Eq. �2.5� for pair corre-
lations can be written in terms of off-diagonal matrix ele-
ments of H� in the form Eq. �2.20�. If the correlation
operator F is chosen optimally, i.e., satisfying Eq. �2.5� for
all n, the weighted averages of Ho,n vanish. This shows pre-
cisely what an optimized ground state does. The Jastrow-
correlation function does not have enough flexibility to guar-
antee the Brillouin condition Eq. �3.7� because H0,pp�hh�

�

depends nontrivially on four momenta whereas the two-body
Jastrow-Feenberg function depends only on the momentum
transfer. Optimization has the effect that the Brillouin condi-
tions are satisfied in the Fermi-sea average.

To make progress we must assume that in the Lagrangian
terms that are linear in the pair fluctuations are sufficiently
small and can be omitted. Likewise, we also shall assume
that the ground-state correlation function Eq. �2.3� is well
enough optimized such that three- and four-body Brillouin
conditions are satisfied. In momentum space, these are


�0�H��q1
. . . �qn

��0	 = 0. �3.8�

C. Transition density

The quantity of primary interest is the linear density fluc-
tuation induced by the external field Hext�t�. We regard this
density as a complex quantity; it is understood that the physi-
cal density fluctuation is its real part. Assuming the excita-
tion operator Eq. �3.3�, it is

���r;t� = �
ph


�o��̂�r� − ���ph	�uph
�1��t�

+
1

2 �
pp�hh�


�o��̂�r� − ���pp�h�h	�upp�hh�
�2� �t�

� �
ph

�0,ph�r��uph
�1��t�

+
1

2 �
pp�hh�

�0,pp�hh��r��upp�hh�
�2� �t� . �3.9�

The matrix elements of the density with respect to the
correlated states can also be written as linear combinations of
the matrix elements �0,ph

F �r� with respect to uncorrelated
states, and one-, two-, and three-body matrix elements of the
unit operator. For the sake of discussion, let us briefly ne-
glect the pair amplitudes. Since the density operator is local,
we can commute �̂�r� to the right or to the left of the corre-
lation operator F. The form obtained by commuting �̂�r� to
the left is

�0,ph�r� = �
p�h�

�̃0,p�h�
F �r�Mp�h�,ph

= �̃0,ph
F �r� + �

p�h�

�̃0,p�h�
F �r�Np�h�,ph, �3.10�

where �̃0,ph
F �r��zph
o��̂�r�−��ap

†aho	�zph
h���̂�r��p	 are,
apart from the normalization factors zph, the matrix elements
of the density operator in a noninteracting system.

The second form is obtained by commuting �̂�r� to the
right of F

�0,ph�r� =
1

zph
2 �̃0,ph

F �r� + �
p�h�

N0,pp�hh��̃p�h�,0
F �r� . �3.11�

These two seemingly different expressions are identical, the
different analytic forms appear only because the second
quantized formulation hides the fact that the density operator
is local. We will see below that both forms are useful.

Including pair fluctuations, the fluctuating density Eq.
�3.9� can generally be written as

���r;t� = �
ph

�̃0,ph
F �r���

p�h�

Mph,p�h��up�h�
�1� �t�

+
1

2 �
p�p�h�h�

Mph,p�p�h�h��up�p�h�h�
�2� �t�� .

�3.12�

A key step that simplifies the structure of the equations of
motion significantly is to introduce a new one-body function.
In analogy to the boson theory,7 we define new particle-hole
amplitudes �vph

�1��t� through

���r;t� � �
ph

�0,ph�r��vph
�1��t� �3.13�

such that

���r;t� = �
php�h�

�̃0,ph
F �r�Mph,p�h��vp�h�

�1� �t� . �3.14�

This implies

�
p�h�

Mph,p�h��vp�h�
�1� �t� = �

p�h�

Mph,p�h��up�h�
�1� �t�

+
1

2 �
p�p�h�h�

Mph,p�p�h�h��up�p�h�h�
�2� �t� .

�3.15�

Defining Mph,p�p�h�h�
�I� via

Mph,p�p�h�h� � �
p1h1

Mph,p1h1
Mp1h1,p�p�h�h�

�I� �3.16�

we can formally solve for �vph
�1��t�
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�vph
�1��t� = �uph

�1��t� +
1

2 �
p�p�h�h�

Mph,p�p�h�h�
�I� �up�p�h�h�

�2� �t� .

�3.17�

For this operation, the inverse of Mph,p�h� seems to be
needed. As its calculation is not immediately obvious, we
hasten to note that Mph,p�p�h�h�

�I� is, in terms of Jastrow-
Feenberg diagrams,31 a proper subset of the diagrams con-
tributing to Mph,p�p�h�h�. We will discuss the diagrammatic
analysis of �0,ph�r� in Appendix B 1. The diagrammatic con-
struction of Mph,p�p�h�h�

�I� in the spirit of Eq. �3.16� is carried
out in Appendix B 2.

D. Lagrangian

We split Lagrangian �3.5� as L�t�=Lext�t�+Lt�t�+Lint�t�
with

Lext�t� = 
�0�t��Hext��0�t�	 , �3.18�

Lt�t� = 
�0�t�� − i�
�

�t
��0�t�	 , �3.19�

Lint�t� = 
�0�t��H���0�t�	 . �3.20�

Lext�t� is obtained directly from the transition density

Lext�t� =� d3rhext�r;t����r;t�

=� d3rhext�r;t�Re��
ph

�0,ph�r��uph
�1��t�

+
1

2 �
pp�hh�

�0,pp�hh��r��upp�hh�
�2� �t��

= Re�
ph
� d3rhext�r;t��0,ph�r��vph

�1��t� . �3.21�

The time-derivative term Lt�t� is, to second order in the fluc-
tuations,

Lt�t� =
�

2
�0�t���0�t�	
Im ���u̇ph

�1��t�
��t���p
†�h��t�	

+
1

2 � �u̇pp�hh�
�2� �t�
�0�t���p

†�p�
† �h��h�0�t�	�

=
�

4
Im�� �uph

�1���t�Mph,p�h��u̇p�h�
�1� �t�

+
1

2 � �uph
�1���t�Mph,p�p�h�h��u̇p�p�h�h�

�2� �t�

+
1

2 � �upp�hh�
�2�� �t�Mpp�hh�,p�h��u̇p�h�

�1� �t�

+
1

4 � �upp�hh�
�2�� �t�Mpp�hh�,p�p�h�h��u̇p�p�h�h�

�2� �t�� .

�3.22�

Introducing the new amplitudes �vph
�1��t� defined in Eq. �3.13�

eliminates the terms that couple the one- and the two-body
amplitudes

Lt�t� =
�

4
Im�� �vph

�1���t�Mph,p�h��v̇p�h�
�1� �t�

+
1

4 � �upp�hh�
�2�� �t�Mpp�hh�,p�p�h�h�

�I� �u̇p�p�h�h�
�2� �t�� ,

�3.23�

where

Mpp�hh�,p�p�h�h�
�I� = Mpp�hh�,p�p�h�h�

− �
p1p2h1h2

Mpp�hh�,p1h1

�I� Mp1h1,p2h2

�Mp2h2,p�p�h�h�
�I� . �3.24�

The second term in Eq. �3.24� cancels, in a diagrammatic
expansion, some terms from the first one �cf. Appendix B 1�.
From Eqs. �3.21� and �3.23�, the advantage of introducing
the new particle-hole amplitudes �vph

�1��t� becomes obvious.
The contributions to the interaction term are classified ac-

cording to the involved n-body fluctuations Un as defined in
Eq. �3.3�,

Lint�t� = Lint
�11��t� + Lint

�12��t� + Lint
�22��t� �3.25�

with

Lint
�11��t� =

1

8

�o��U1

†�t�U1
†�t�H� + 2U1

†�t�H�U1�t�

+ H�U1�t�U1�t����o	 ,

Lint
�12��t� =

1

4

�o��U1

†�t�U2
†�t�H� + U1

†�t�H�U2�t�

+ U2
†�t�H�U1�t� + H�U1�t�U2�t����o	 ,

Lint
�22��t� =

1

8

�o��U2

†�t�U2
†�t�H� + 2U2

†�t�H�U2�t�

+ H�U2�t�U2�t����o	 . �3.26�

If the Brillouin conditions in Eqs. �3.6� and �3.7� as well
as their generalizations to higher order fluctuations were
satisfied exactly, all contributions to Lint

�ij��t� containing
Ui

†�t�Uj
†�t� and Ui�t�Uj�t� would be zero. For fermions with

optimized Jastrow-Feenberg wave functions it is only true in
the averaged sense Eq. �2.20�. These terms are nevertheless
expected to be small in Lint

�22��t� since neglecting these terms
is equivalent to negligible four-body correlations. Such
a simplifying assumption is not necessary in Lint

�12��t� and
Lint

�11��t� although we will see that the terms containing
U1�t�U2�t� and U1

†�t�U2
†�t� in Lint

�12��t� are indeed negligible.
We keep these terms for the time being since it will turn out
that their omission will suggest, for consistency reasons, fur-
ther simplifications.

BÖHM et al. PHYSICAL REVIEW B 82, 224505 �2010�

224505-6



The next step is to express the interaction term Eq. �3.26�
in terms of the CBF matrix elements introduced in Sec. II B.
In the following it is understood that we sum over all quan-
tum numbers when no summation subscripts are spelled out.

Lint
�11��t� =

1

8 � �uph
�1���t��up�h�

�1�� �t�Hpp�hh�,0
� + c.c.

+
1

4 � �uph
�1���t�Hph,p�h�

� �up�h�
�1� �t� , �3.27�

Lint
�12��t� =

1

8 � �uph
�1���t��up�p�h�h�

�2�� �t�Hpp�p�hh�h�,0
� + c.c.

+
1

8 � �uph
�1���t�Hph,p�p�h�h�

� �up�p�h�h�
�2� �t� + c.c.,

�3.28�

Lint
�22��t�

=
1

32 � �upp�hh�
�2�� �t��up�p�h�h�

�2�� �t�Hpp�p�p�hh�h�h�,0
� + c.c.

+
1

16 � �upp�hh�
�2�� �t�Hpp�hh�,p�p�h�h�

� �up�p�h�h�
�2� �t� .

�3.29�

Substituting �vph
�1��t� for �uph

�1��t� leads to new coefficient
functions in the interaction part of the Lagrangian

Lint�t� = Lint��11��t� + Lint��12��t� + Lint��22��t� �3.30�

with

Lint��11��t� =
1

8 � �vph
�1���t��vp�h�

�1�� �t�Hpp�hh�,0
� + c.c.

+
1

4 � �vph
�1���t�Hph,p�h�

� �vp�h�
�1� �t� , �3.31�

Lint��12��t� =
1

8 � �vph
�1���t��up�p�h�h�

�2�� �t�Kp�p�h�h�,0
�ph� + c.c.

+
1

8 � �vph
�1���t�Kph,p�p�h�h��up�p�h�h�

�2� �t� + c.c.

�3.32�

Lint��22��t� =
1

32 � �upp�hh�
�2�� �t��up�p�h�h�

�2�� �t�Kp�p�h�h�,0
�pp�hh�� + c.c.

+
1

16 � �upp�hh�
�2�� �t�Kpp�hh�,p�p�h�h��up�p�h�h�

�2� �t� .

�3.33�

The new coefficients Km,n are

Kph,p�p�h�h� � Hph,p�p�h�h�
� − �

p1h1

Hph,p1h1
� Mp1h1,p�p�h�h�

�I� ,

�3.34�

Kp�p�h�h�,0
�ph� � Hpp�p�hh�h�,0

� − �
p1h1

Hphp1h1,0� Mp�p�h�h�,p1h1

�I� ,

�3.35�

Kpp�hh�,p�p�h�h� � Hpp�hh�,p�p�h�h�
�

− �
p1h1

�Mpp�hh�,p1h1

�I� Hp1h1,p�p�h�h�
�

+ Hpp�hh�,p1h1
� Mp1h1,p�p�h�h�

�I� �

+ �
p1h1p2h2

Mpp�hh�,p1h1

�I� Hp1h1,p2h2
�

�Mp2h2,p�p�h�h�
�I� , �3.36�

and an analogous term for Kp�p�h�h�,0
�pp�hh�� .

E. Equations of motion

With the sole approximation to neglect the terms propor-
tional to U2�t�U2�t� and U2

†�t�U2
†�t�, the Euler equations

become

�
p�h�

�i�Mph,p�h�
�

�t
− Hph,p�h�

� ��vp�h�
�1� �t� − �

p�h�

Hpp�hh�,0
� �vp�h�

�1�� �t�

−
1

2 �
p�p�h�h�

�Kph,p�p�h�h��up�p�h�h�
�2� �t� + Kp�p�h�h�,0

�ph� �up�p�h�h�
�2�� �t�� = 2� d3r�ph,0�r�hext�r;t� , �3.37�

1

2 �
p�p�h�h�

�i�Mpp�hh�,p�p�h�h�
�I� �

�t
− Kpp�hh�,p�p�h�h���up�p�h�h�

�2� �t�

− �
p�p�h�h�

�Kpp�hh�,p�h��vp�h�
�1� �t� + Kpp�hh�,0

�p�h�� �vp�h�
�1�� �t�� = 0. �3.38�
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The time dependence of the external field can be assumed to
be harmonic with an infinitesimal turn-on component that
determines the sign of the imaginary part

hext�r;t� = hext�r;���ei�t + e−i�t�e�t/�. �3.39�

This imposes the time dependence

�vph
�1��t� = �vph

�1+����e−i��+i�/��t + ��vph
�1−����e−i��+i�/��t��,

�upp�hh�
�2� �t� = �upp�hh�

�2+� ���e−i��+i�/��t + ��upp�hh�
�2−� ���e−i��+i�/��t��.

�3.40�

Defining

Epp�hh�,p�p�h�h���� � ��� + i��Mpp�hh�,p�p�h�h�
�I� − Kpp�hh�,p�p�h�h� �3.41�

the equations of motion for the pair fluctuations are

1

2 �
p�p�h�h�

Epp�hh�,p�p�h�h�����up�p�h�h�
�2+� ��� = �

p�h�

�Kpp�hh�,p�h��vp�h�
�1+� ��� + Kpp�hh�,0

�p�h�� �vp�h�
�1−� ���� ,

1

2 �
p�p�h�h�

Epp�hh�,p�p�h�h�
� �− ���up�p�h�h�

�2−� ��� = �
p�h�

�Kpp�hh�,p�h�
� �vp�h�

�1−� ��� + Kpp�hh�,0
�p�h��� �vp�h�

�1+� ���� . �3.42�

All pair quantities are symmetric under the interchange of the involved pair variables, e.g., �pp� ,hh��↔ �p�p ,h�h�. We can
utilize this feature to replace the fully symmetric Epp�hh�,p�p�h�h���� by an asymmetric form, e.g., Eq. �C1�, which removes the
factor 1/2 in Eq. �3.42�.

The pair Eqs. �3.42� are now solved for the �upp�hh�
�2�� ��� and the solutions are inserted into the one-body equation. The latter

retains the structure of a TDHF equation but with the matrix elements of H� supplemented by frequency-dependent terms. We
adapt the definition of Wm,n in Eq. �2.11� by adding these corrections

Wph,p�h���� = Wph,p�h� + �
pihipi�hi�

Kph,p1p2h1h2
Ep1p2h1h2,p1�p2�h1�h2�

−1 ���Kp1�p2�h1�h2�,p�h� + �
pihipi�hi�

Kp1p2h1h2,0
�ph� Ep1p2h1h2,p1�p2�h1�h2�

�−1 �− ��Kp1�p2�h1�h2�,0
�p�h��� ,

�3.43�

Wpp�hh�,0��� = Wpp�hh�,0 + �
pihipi�hi�

Kph,p1p2h1h2
Ep1p2h1h2,p1�p2�h1�h2�

−1 ���Kp1�p2�h1�h2�,0
�p�h�� + �

pihipi�hi�

Kp1p2h1h2,0
�ph� Ep1p2h1h2,p1�p2�h1�h2�

�−1 �− ��Kp1�p2�h1�h2�,p�h�
� .

�3.44�

This TDHF form results also if the terms containing U2�t�U2�t� are retained but the expressions for the dynamic parts of the
W matrices become lengthier.

The equations of motion for the particle-hole amplitudes are then

2� d3rhext�r;���0,ph�r� = �
p�h�

���� + i��Mph,p�h� − �p,p��h,h�eph�vp�h�
�1+� ��� − �

p�h�
�Wph,p�h���� +

1

2
�eph + ep�h��Nph,p�h���vp�h�

�1+� ���

− �
p�h�

�Wpp�hh�,0��� +
1

2
�eph + ep�h��Npp�hh�,0��vp�h�

�1−� ��� . �3.45�

F. Supermatrix representation

We can now carry out exactly the same manipu-
lations as in previous work5 and reduce this Eq. �3.45�
to the form of TDHF equations with energy-dependent
effective interactions. Equations �3.10� and �3.11� express
the density in terms of CBF matrix elements in two
different forms. For the present purpose, it is
convenient to use these two representations symmet-
rically,

��0,ph�r� =
1

2�1 +
1

zph
2 ��̃0,ph

F �r�

+
1

2 �
p�h�

��̃0,p�h�
F Np�h�,ph + �̃0,p�h�

F� �r�N0,pp�hh�� .

�3.46�

Using Eqs. �3.13� and �3.40�, the density fluctuations can
then be written as
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���r;�� =
1

2�
ph

��0,ph�r��vph
�1+���� + �0,ph

� �r��vph
�1−�����

�
1

2�
ph

��̃0,ph
F �r��cph

�1+���� + �̃0,ph
F� �r��cph

�1−����� ,

�3.47�

�cf. Eq. �3.10� for the definition of �̃0,ph
F �r��. This defines new

amplitudes �cph
�1�����. These relate, apart from the normaliza-

tion factors, the observed density to the matrix elements of
the density operator in the noninteracting system. The equa-
tions of motion can now be simplified by introducing a “su-
permatrix” notation. Particle-hole matrix elements together
with their complex conjugate are combined into vectors, e.g.,

�̃F � ��̃0,ph
F

�̃0,ph
F� � ; �c � ��cph

�1+�

�cph
�1−� � �3.48�

�and analogously for �vph
�1���. Equation �3.47� then simply

reads

���r;�� =
1

2
�c��� · �̃F�r� . �3.49�

The matrices

N = � Nph,p�h� Npp�hh�,0

N0,pp�hh� Np�h�,ph
� �3.50�

and

C =
1

2�1 +
1

zph
2 0

0 1 +
1

zph
2
��p,p��h,h� +

1

2
N �3.51�

relate the amplitudes

�c = C · �v . �3.52�

In the driving term on the lhs of Eq. �3.45� we use �0,ph
= �C · �̃F�0,ph to obtain

2� d3rhext�r;���0,ph�r� = 2C · hext, �3.53�

where the vector hext is built with the noninteracting states
�cf. �̃0,ph

F in Eq. �3.10��

h̃0,ph
F ��� = zph
h�hext�r;���p	 . �3.54�

Defining the �-dependent matrices

� = ��� + i� − eph 0

0 − ��� + i� + eph�
��p,p��h,h�,

W = �Wph,p�h�
�+� ��� Wpp�hh�,0

�−� ���

W0,pp�hh�
�+� ��� Wp�h�,ph

�−� ��� � , �3.55�

the equations of motion assume supermatrix form5

�� +
1

2
�N +

1

2
N� − W�����v = 2Chext. �3.56�

We now formally define a new, energy-dependent interaction
matrix Vp-h��� by

�� +
1

2
�N +

1

2
N� − W� � C · �� − Vp-h����C .

�3.57�

Thus the response equations take the simple TDHF form

�� − Vp-h�����c = 2hext. �3.58�

With this, we have reformulated the theory for a strongly
interacting system in the TDHF form Eq. �3.58� but with an
energy-dependent effective interaction. Our derivation has
led to a clear definition of this effective particle-hole inter-
action and to a prescription on how to calculate this from the
underlying bare Hamiltonian.

The formal derivation appears to involve the calculation
of the inverse of a huge matrix. The key point, however, is
that the manipulation Eq. �3.57� can be carried out diagram-
matically. Then it becomes obvious that many terms occur-
ring in the combination of matrices in Eq. �3.56� are not part
of Vp-h���. Specifically, these are the chain diagrams in the
direct channel.5

IV. DIAGRAMMATIC ANALYSIS
AND LOCAL INTERACTIONS

A. General strategy

Generally, the nonlocal operators N�1,2� and W�1,2� in
Eq. �2.18� consist of up to four-point functions. Cluster ex-
pansions and resummations have been carried out in Ref. 31
and led to reasonably compact representations in terms of the
compound-diagrammmatic quantities of the FHNC summa-
tion method. Nevertheless, due to their nonlocality, it is dif-
ficult to deal with these quantities exactly. The simplest ap-
proximation for the operator is to keep just the local terms.
These are given by the “direct-direct” correlation function
�dd��r1−r2�� of FHNC theory. This approximation is ad-
equate but not optimal.

On the other hand, summing N0,pp�hh� over the hole
states, Eq. �2.19�, relates N�1,2� to the static structure
function. Accurate results are available for S�q�, either
from simulations33,34 or from the FHNC-EL summation
technique.28,35 An alternative strategy to deal with nonlocal
operators is therefore to demand that these results are repro-
duced in whatever approximate form one chooses to use. In
this sense, by choosing N�1,2� to be local, naming the cor-
responding function �dd�r�, and demanding that this operator
in Eq. �2.19� gives the known static structure function, we
obtain the relationship

S�q� = SF�q��1 + �̃dd�q�SF�q�� �4.1�

as a definition of �̃dd�q� in terms of S�q�. We adopt this view
here and define the “best” local approximation for N�1,2�
such that it reproduces the best known S�q�. Since the exact
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S�q� contains a summation of exchange terms, this implies
that their contribution to S�q� is mimicked by a local contri-

bution to �̃dd�q�.
An “optimal” local approximation for the effective inter-

action W�1,2� can be obtained along similar lines. From
Eqs. �2.14� and �2.11� we have

H0,pp�hh�
� = W0,pp�hh� +

1

2
�eph + ep�h��N0,pp�hh�. �4.2�

The ground-state Euler equation for pair correlations Eq.
�2.20� implies that the Fermi sea average of H0,pp�hh�

� van-
ishes. Postulating a local W�1,2��W�r12�, consistency re-
lates this quantity to the local approximation of N�1,2�. This
leads to28

W̃�q� = −
t�q�

SF�q�
�̃dd�q� . �4.3�

Our procedure of using the relationships in Eqs. �2.19�
and �2.20� to construct local approximations for N0,pp�hh� and
W0,pp�hh� can be generalized to a systematic definition of op-
timal local approximations for the matrix elements of any
nonlocal d-body operator. Averaging the matrix elements,
which depend on d particle and d hole momenta, over the
Fermi sea, generates functions of the momentum transfers
qi�pi−hi only. Spelling out Fermi occupation functions nh
and n̄p�1−np explicitly, this reads for a one-body quantity

Oq �
�

h

n̄pnhO0,ph

�
h

n̄pnh1
=

1

NSF�q��h

n̄h+qnhO0,ph. �4.4�

The extension to d variables is obvious,

Oq1,. . .,qd
= �

h1,. . .,hd

�
i=1

d n̄pi
nhi

NSF�qi�
O0,p1,. . .,pdh1,. . .,hd

, �4.5�

as is the extension to matrix elements Om,n�o.
We emphasize again that the quantities Oq1,. . .,qd

contain
all exchange and correlation effects in a localized manner.
Therefore, effects related to the zph, as well as CBF correc-

tions to the eph, are already part of W̃�q� and �̃dd�q�. This
implies, among others,

Mp�h�,ph � �p,p��h,h� + 
hp���dd�ph�	 , �4.6�

and the relationship Eq. �3.51� between the supermatrices C
and N simplifies to

C = 1 +
1

2
N . �4.7�

B. Matrix elements

The localization procedure discussed above for N�1,2�
implies

N =
1

N
�̃dd�q���q,+q� �q,−q�

�q,−q� �q,+q�
�n̄pn̄p�nhnh�. �4.8�

To simplify the notation, the �q,�q� functions, together with
the Fermi occupation numbers, are understood to be implicit
in all the matrices from now on. Matrix products, i.e., sums
over particle-hole labels, reduce to factors SF�q�. The inverse
of C is readily obtained from Eq. �4.7� as

C−1 = 1 −
1

2N
X̃dd�q��1 1

1 1
� �4.9�

with

X̃dd�q� =
�̃dd�q�

1 + SF�q��̃dd�q�
. �4.10�

In the spirit of the discussion in Sec. IV A, this is our defi-

nition of X̃dd�q�. According to Eq. �A11�, it can also be iden-
tified with the sum of all non-nodal diagrams.

Multiplying C−1 from both sides to Eq. �3.57� yields the
�-dependent effective interactions,

Vp-h��� =
1

N� ṼA�q;�� ṼB�q;��

ṼB
� �q;− �� ṼA

� �q;− ��
� . �4.11�

To summarize, the localization of N�1,2� in an S�q� conserv-

ing manner has uniquely fixed the functions �̃dd�q� and

X̃dd�q� and, consequently, the corresponding matrices N and
C−1. Calculating Vp-h��� from Eq. �3.57� has thus been re-
duced to calculating VA,B�q ;�� from W.

In order to derive the explicit expressions, we need the
optimal local form of Eq. �3.43�. This involves two steps,
calculating the localized versions of the three-body vertices
Kph,p�p�h�h� and Kp�p�h�h�,0

�ph� , and deriving the inverse of the
four-body energy matrix �E����−1. We expect these quanti-
ties to be sufficiently accurate within the convolution ap-
proximation, since improving on this only marginally
changes the results7 for bosons.

The details of the derivation of the local three-body ver-

tices K̃q,q�q� and K̃q�q�,0
�q� defined in Eqs. �3.34�–�3.36� can be

found in Appendix B 3. These are

K̃q,q�q� =
�2

2m

S�q��S�q��
SF�q�SF�q��SF�q��

�q · q�X̃dd�q�� + q · q�X̃dd�q��

− q2ũ3�q,q�,q��� + �1 −
SF�q��SF�q��
S�q��S�q��

�−1

K̃q�q�,0
�q� ,

�4.12�

K̃q�q�,0
�q� =

�2

4m
�̃dd�q�� S�q��S�q��

SF�q��SF�q��
− 1�� q2SF

�3��q,q�,q��
SF�q�SF�q��SF�q��

+ � q · q�

SF�q��
+

q · q�

SF�q��
�� . �4.13�

Here, SF
�3��q ,q� ,q�� is the three-body static structure function

of noninteracting fermions, defined in Eq. �B8�, and
ũ3�q ,q� ,q�� is the ground-state triplet correlation function.28
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The implicit momentum-conservation functions ��q,q�+q� en-
sure that both vertices depend on the magnitudes of the three
arguments only.

Going back to the Lagrangian, we realize that the term

K̃q�q�,0
�q� is the coefficient function of the contributions to

L��12��t� containing U1�t�U2�t� which we expect to be small.
Our numerical applications to be discussed below will sup-

port this expectation. However, the vertex K̃q,q�q� contains a

term of the same form. Neglecting K̃q�q�,0
�q� should, for consis-

tency, also mean neglecting the same term in K̃q,q�q� which is
then given by the very simple first part of Eq. �4.12�. In this
term we recover, apart from SF�q� factors, also the Bose ver-
sion of the three-body vertex.

C. Effective interactions

Next, the matrix elements Eqs. �4.12� and �4.13� are used
in Eq. �3.43� to calculate the dynamic parts of W,

Wph,p�h���� =
�q,q�

N
�W̃�q� + W̃A�q;��� ,

Wphp�h�,0��� =
�q,−q�

N
�W̃�q� + W̃B�q;��� , �4.14�

where the energy-independent part W̃�q� has been defined in
Eq. �4.3�. Because of the locality of the three-body matrix
elements, we can write for the first dynamic contribution to
Eq. �3.43�,

�
p1p2h1h2

�
p1�p2�h1�h2�

Kph,p1p2h1h2
�E���−1�p1p2h1h2,p1�p2�h1�h2�

�Kp1�p2�h1�h2�,p�h�

=
1

N2 �
q1q1�

K̃q,q1q2
K̃q1�q2�,q

1

N2 �
h1h2h1�h2�

�E���−1�p1p2h1h2,p1�p2�h1�h2�

=
1

N2 �
q1q2

K̃q,q1q2
Ẽ−1�q1,q2;��K̃q1q2,q �4.15�

with implicit factors �q,q1+q2
�q,q1�+q2�

for momentum conser-
vation. The other contributions to Eq. �3.43� are calculated
analogously. The inverse four-body energy matrix and the
pair propagator

1

N2 �
hh�h�h�

�E���−1�pp�hh�,p�p�h�h� � �q,q��q�,q�Ẽ
−1�q,q�;��

�4.16�

are calculated and discussed in Appendix C. Basically, the
pair spectrum is built from two particle-hole spectra. These
are, however, not centered around free particle spectra but
around the Feynman dispersion relation. Consequently, our
pair propagator also includes two-phonon intermediate states.

The resulting expressions for the energy-dependent

W̃A,B�q ;�� are then

W̃A�q;�� =
1

2N
�
q�q�

��K̃q,q�q��
2Ẽ−1�q�,q�;��

+ �K̃q�q�,0
�q� �2Ẽ−1��q�,q�;− ��� , �4.17�

W̃B�q;�� =
1

2N
�
q�q�

K̃q�q�,0
�q� K̃q,q�q��Ẽ

−1�q�,q�;��

+ Ẽ−1��q�,q�;− ���� . �4.18�

Similar to the boson theory, the dynamic parts of the inter-
actions are expressed in terms of three-body vertices and an
energy denominator, the latter now being “spread” over the
whole width of a two-particle-two-hole band.

The last step in our formal derivations is the calculation of
Vp-h���. Carrying out the operations in Eq. �3.57� yields the
energy-dependent, but local functions

ṼA�q;�� = Ṽp-h�q� + ��q
+�2W̃A�q;�� + ��q

−�2W̃A
� �q;− ��

+ �q
+�q

−�W̃B�q;�� + W̃B
� �q;− ��� , �4.19�

ṼB�q;�� = Ṽp-h�q� + ��q
+�2W̃B�q;�� + ��q

−�2W̃B
� �q;− ��

+ �q
+�q

−�W̃A�q;�� + W̃A
� �q;− ��� �4.20�

with �q
���SF�q��S�q�� /2S�q�.

V. DENSITY-DENSITY RESPONSE FUNCTION

A. General form

We now derive the density-density response function
��q ;��. The final result for the dynamic effective interac-
tions, Eqs. �4.19� and �4.20�, is inserted into Eq. �3.58�,
which is solved for �c. The induced density is then obtained
from Eq. �3.47�. Using �̃0,ph

F �r�= �
Ne−i�p−h�r we obtain

���q;�� =
�

2�
h

�zh+q,h�ch+q,h
�1+� ���n̄h−q

+ zh−q,h�ch−q,h
�1−� ���n̄h+q� , �5.1�

�
NSF�k��

2
��c�1+��q;�� + �c�1−��q;��� , �5.2�

where we abbreviate in the second line �c�1���q ;��
� 1

N�h�cph
�1�����. Spelling out Eq. �3.58� explicitly,

2h̃0,ph
F ��� = ����� + i�� − eph��cph

������

− ṼA�q;���c����q;�� − ṼB
� �q;− ���c����q;�� ,

�5.3�

dividing by �����+ i��−eph� and summing over h yields
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�c�1���q;�� = � 2

N
h̃ext�q;�� + ṼA�q;���c�1���q;��

+ ṼB
� �q;− ���c�1���q;���� �0�q;��

�0
��q;− ���

�5.4�

with the positive-energy Lindhard function

�0�q;�� �
1

N
�

h

n̄pnh

�� − eph + i�
�5.5�

which is related to the full Lindhard function by

�0�q;�� = �0�q;�� + �0
��q;− �� . �5.6�

Solving for �c�1���q ;�� and inserting into Eq. �5.1� we
obtain for ��q ;��

��q;�� = N�q;��/D�q;�� ,

N�q;�� = �0�q;�� + �0
��q;− �� − �0�q;���0

��q;− ���ṼA�q;��

+ ṼA
� �q;− ��− ṼB�q;��− ṼB

� �q;− ��� ,

D�q;�� = 1 − �0�q;��ṼA�q;�� − �0
��q;− ��ṼA

� �q;− ��

+ �0�q;���0
��q;− ���ṼA�q;��ṼA

� �q;− ��

− ṼB�q;��ṼB
� �q;− ��� . �5.7�

Equation �5.7� is the TDHF response function for local- and
energy-dependent interactions. Evidently, the conventional
RPA form Eq. �1.7� can only be recovered if the interactions

ṼA�q ;�� and ṼB�q ;�� are energy independent and equal.
Clearly, our result in Eq. �5.7� significantly differs from Eq.

�1.7� with Ṽp-h�q� simply replaced by some energy-dependent

Ṽp-h�q ;��. Such an RPA-like form for the density-density
response function lacks microscopic justification.

B. Long-wavelength limit

In the limit q→0, the spectrum is dominated by collective
excitations, e.g., zero sound or plasmons. Both vertices in

Eqs. �4.12� and �4.13� vanish linearly in q, hence W̃A�q ;��
and W̃B�q ;�� are quadratic in q as q→0.

For neutral systems, the dynamic corrections to the effec-

tive interactions ṼA,B�q ;�� in Eqs. �4.19� and �4.20� are
therefore negligible in the long-wavelength limit. The long-
wavelengths density-density response function is then given
by its RPA form Eq. �1.7� with the static particle-hole inter-

action Ṽp-h�q�. The zero-sound speed c0 is determined by the
long-wavelength solution of the RPA equation.

For charged quantum fluids, �q
��SF�q� /2S�q�, hence

ṼA�q ,��= ṼB�q ,��, which again implies the RPA form Eq.
�1.7�

��q;�� =
�0�q;��

1 − �0�q;��ṼA�q;��
as q → 0. �5.8�

However, now the effective interaction is

ṼA�q;�� = Ṽp-h�q� +
SF

2�q�
4S2�q�

�W̃A�q;�� + W̃A�q;− ��

+ W̃B�q;�� + W̃B�q;− ��� as q → 0. �5.9�

The static particle-hole interaction approaches the Coulomb
potential ṽc�q�=4�e2 /q2

Ṽp-h�q� = ṽc�q� + V0 as q → 0. �5.10�

We can therefore write Eq. �5.9� as

ṼA�q;�� = ṼB�q;�� = ṽc�q� + V0��� as q → 0.

�5.11�

As for charged bosons,36 the two-pair fluctuations modify the

RPA result. The static potential Ṽp-h�q� and W̃A,B�q ;�� con-
tribute for q→0 at the same level.

C. Static response function

Ẽ−1�q ,q� ;�=0� is real and negative, this is most easily
seen from the representation Eq. �C9�. Therefore, all interac-

tions W̃A,B�q ;0� in Eqs. �4.17� and �4.18� and ṼA,B�q ;0� in
Eqs. �4.19� and �4.20� are real. The response function Eq.
�5.7� can again be cast into the RPA form

��q;0� =
�0�q;0�

1 − Ṽstat�q��0�q;0�
�5.12�

with a static effective interaction

Ṽstat�q� � Ṽp-h�q� +
SF

2�q�
2S2�q�

�W̃A�q;0� + W̃B�q;0�� .

�5.13�

Unlike Eq. �5.9�, this form holds for all wavelengths.
For short wavelengths the static response function has the

asymptotic form37,38

��q → 	;0� = −
2

t�q�
−

8

3t2�q�

T̂	
N

+ O�q−5� , �5.14�

where 
T̂	 is the kinetic energy. In the RPA, one obtains in
Eq. �5.14� only the kinetic energy of the noninteracting sys-
tem. To obtain the correct asymptotic form, it is therefore
necessary to include pair and, possibly, higher order fluctua-
tions.

Again, we know the result for bosons as a guide: treating
pair fluctuations in the “convolution” approximation leads to

the correct asymptotic behavior with 
T̂	 in Eq. �5.14� given
in that approximation.18
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We show in Appendix D that

Ṽstat�q → 	� =
1

2
W̃A�q → 	;0� = −

2

3


T	CA − TF

N
,

�5.15�

where 
T	CA is the kinetic energy in “uniform limit” or con-
volution approximation Eq. �A10�. Hence, inserting the
short-wavelength expansion of the Lindhard function, the
static response function Eq. �5.12� indeed assumes the form
Eq. �5.14�

��q;0� = −
2

t�q�
−

8

3t2�q�

T	CA

N
as q → 	 �5.16�

with the kinetic energy being calculated in the uniform limit
approximation Eq. �A10�.

VI. APPLICATIONS

A. Dynamic structure of 3He

1. Motivation

The helium fluids are the prime examples of strongly cor-
related quantum many-body systems. They have been stud-
ied for decades and still offer surprises leading to new in-
sight. It is fair to say that understanding the helium fluids lies
at the core of understanding other strongly correlated sys-
tems. The most important and most interesting field of appli-
cation of our theory is therefore liquid 3He.

Recent developments7,39 have brought manifestly micro-
scopic theories of 4He to a level where quantitative predic-
tions of the excitation spectrum are possible far beyond the
roton minimum without any information other than the un-
derlying microscopic Hamiltonian �2.1�. 3He is the more
challenging substance for both, theoretical and experimental
investigations. Experimentally, the dynamic structure func-
tion S�q ;�� of 3He is mostly determined by neutron scatter-
ing. The results are well documented in a book,40 the theo-
retical and experimental understanding a decade ago has
been summarized in Ref. 25. Recent inelastic x-ray scatter-
ing experiments have led to a controversy on the evolution of
the zero sound mode at intermediate wave vectors,41–43 we
will comment on this issue below.

The RPA Eq. �1.7� suggests that S�q ;�� can be character-
ized as a superposition of a collective mode similar to the
phonon maxon roton in 4He, plus an incoherent particle-hole
band which strongly dampens this mode.44 The picture is
qualitatively adequate but misses some important quantita-
tive physics. In 3He the RPA, when defined through the form
Eq. �1.7� and such that the sum rules in Eqs. �1.4� and �1.5�
are satisfied, predicts a zero-sound mode that is significantly
too high. This is consistent with the same deficiency of the
Feynman spectrum Eq. �1.6� in 4He. Drawing on the analogy
to 4He,44 the cure for the problem is, as pointed out above, to
include pair fluctuations �upp�hh�

�2� �t� in the excitation operator.
An alternative, namely, to lower the collective mode’s en-

ergy by introduction of an effective mass in the Lindhard
function, leads to various difficulties. First, one violates the
sum rules in Eqs. �1.4� and �1.5�, i.e., one disregards well-

established information on the system. Second, the effective
mass is far from constant; it has a strong peak around the
Fermi momentum,45–48 a secondary maximum around 2kF,
and then quickly falls off to the value of the bare mass. In
fact, it is not even clear if the notion of a “single �quasi�par-
ticle spectrum” that is characterized by a momentum is ad-
equate at these wave numbers.

The localization procedure of Sec. IV implies that the
only input needed for the application of our theory is the
static structure function S�q� whereas the single-particle
spectrum is that of a free particle. We hasten to state that we
do not claim that the precise location of the single-particle
spectrum is completely irrelevant for the energetics of the
zero sound; we only claim that the dominant mechanism in
Bose and Fermi fluids is the same, namely, pair fluctuations.
In order to maintain the sum rules in Eqs. �1.4� and �1.5�, any
modification of the particle-hole spectrum must go along
with an inclusion of exchange effects. At the level of
single-particle fluctuations,4,5 such a calculation is quite
feasible.49,50 However, to describe the dynamics of 3He cor-
rectly, it is insufficient to include only the CBF single-
particle energies Eq. �2.14�. These suggest a smooth spec-
trum with an effective mass slightly less than the bare mass,
in contradiction to the highly structured spectrum mentioned
already above.

2. Collective mode

For our calculations we have used input from the
FHNC-EL calculations of Ref. 28 that utilizes the Aziz-II
potential51 and includes optimized triplet correlations as well
as four- and five-body elementary diagrams. An overview of
our results for bulk 3He and a comparison with both the RPA
and experimental data is shown in Fig. 1 for four different
densities. The most prominent consequence of pair fluctua-
tions is a change in energy and strength of the collective
mode and its continuation into the particle-hole band. Pair
fluctuations also contribute a continuum background outside
the particle-hole continuum.

At long wavelengths, the collective mode is sharp and
well defined above the particle-hole band, exhausting most
of the sum rules in Eqs. �1.4� and �1.5�. In this regime, the
RPA provides a faithful description of the physics. This is in
accordance with the observation that the dynamic correction
to the effective interactions vanish, for neutral systems, in
the long-wavelength limit. With increasing density, the speed
of sound increases and the phonon becomes farther separated
from the particle-hole band.

Further details are shown in Fig. 2. At intermediate wave-
lengths the collective mode bends down due to the attractive-
ness of the effective interaction. This is where the dynamic
theory starts to deviate visibly from the RPA. Evidently, pair
fluctuations are the major cause for lowering the energy of
the collective mode, although they do not completely bridge
the discrepancy between the RPA and experiments.24,25 This
is expected because, for bosons, pair fluctuations bridge only
about two thirds of the gap between the Feynman and the
experimental roton energy.7,17 Three-body and higher-order
fluctuations are also important.18 We expect that these cor-
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rections are smaller in 3He due to its lower density, yet not
negligible.

When the collective mode enters the particle-hole band, a
slight kink in the position of the maximum in S�q ;�� is
expected, as well as an abrupt broadening of the mode. At
saturated vacuum pressure, shown in the left part of Fig. 2,
these effects are difficult to identify in the experiments.25 A
possible reason is that the observed mode stays always very
close to the particle-hole band. The measured mode width in
Fig. 2 gives no clear indication of the upper boundary of the
particle-hole band other than that it is determined by a spec-
trum with an average effective mass of m��m.

The situation is much clearer at higher pressure. With
increasing density, the speed of sound increases, separating

the collective mode farther from the particle-hole band. For
�=0.02 Å−3 a clear kink is identified at q�5 nm−1 �Fig. 2
right part�. The broadening is also more abrupt and, in par-
ticular, does not increase for larger values of q. Similar to
saturated vapor pressure, explaining these data requires a
boundary of the particle-hole band that is even above that of
the noninteracting Fermi fluid. Damping due to multiparticle
excitations is, on the other hand, for both densities far too
small to account for the experimentally seen broadening of
the zero sound mode.

3. Frequency dependence of S(q ;�)

For a quantitative discussion we show in Fig. 3 the dy-
namic structure factor as a function of frequency at a se-
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FIG. 1. �Color online� −Im��q ;�� of 3He, for the densities �=0.0148, 0.0166, 0.018, and 0.02 Å−3. The experimental results for the
collective mode �dots� are from inelastic neutron-scattering experiments at the ILL �Ref. 24�. The densities 0.0166, 0.0180, and 0.0200 Å−3

correspond in good approximation to the pressures p=0, 5, and 10 bar �Refs. 52 and 53�. Dashed lines are equidistant contours at
0.1,0.2, . . . ,1.0tF

−1 marking the same absolute value in all plots. Solid lines are the boundaries of the particle-hole continuum for m�=m. The
blue boxes show the RPA result for the collective mode.
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FIG. 2. �Color online� Zero-sound mode cal-
culated within the pair-fluctuation theory �full
blue line�, RPA �dashed red line�, and experimen-
tal data by the ILL group, Ref. 25 �square sym-
bols� and Ref. 24 �circles�. The bars indicate the
width of the fit to the data, the line at the bottom
of the figure gives the width due to pair fluctua-
tions enhanced by a factor of 10 to make it vis-
ible. The dashed blue line gives the full width at
half maximum of the mode within the particle-
hole continuum. Left part: �=0.0166 Å−3, right
part: �=0.02 Å−3.
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quence of wave vectors. We conclude that the RPA quantita-
tively and even qualitatively differs from our theory and the
experiment. Including pair fluctuations improves the agree-
ment with experiment significantly. The arrows in panels �c�
and �d� indicate the maximum of the experimentally ob-
served dynamic structure function.

In Fig. 3�b� we also show the consequence of the plau-
sible simplification of our theory discussed already in con-
nection with Eqs. �4.12� and �4.13�. We neglect all terms that
vanish for bosons as well as for large momentum transfers

q ,q� ,q��2kF. This is K̃q�q�,0
�q� and, consequently, the second

term in Kq,q�q�, Eq. �4.12�. The three-body vertex is then
given by the first term in Eq. �4.12�, see also Eq. �D1�. This
simplifies the effective interactions significantly: Only the

first term of Eq. �4.17� for W̃A�q ;�� contributes and

W̃B�q ;�� is neglected. Figure 3�b� shows that these simpli-
fications modify our results only marginally, the form Eq.
�D1� can therefore be considered a practical and useful sim-
plification of our theory.

Figures 3�c� and 3�d� show our results for the two
momentum transfers q=2.4kF=1.89 Å−1 and q=3.2kF
=2.52 Å−1. Recent x-ray scattering experiments in that mo-
mentum range41–43 appeared to support the notion of a high-
momentum collective mode without visible damping by in-
coherent particle-hole excitations. Figures 3�c� and 3�d�
show that pair fluctuations lead to a narrowing of the
strength of S�q ;�� compared to the RPA. To facilitate the
comparison with experiments, we have convoluted our result
with the instrumental resolution of 1.58 meV, the results are
also shown in Figs. 3�c� and 3�d�. After this, our results agree
quite well with the experimental spectrum. Also, the location
of the observed peak intensity for q=2.4kF appears to be
consistent with our calculation. The RPA is, on the other
hand, too broad to explain the data. We also point out that a
value of the effective mass close to m��m is consistent with

our theoretical calculations.48 We have to conclude therefore
that the observed width of the x-ray data are also consistent
with our picture.

After a regime of strong damping we see in Fig. 1 an
intensity peak at momentum transfer of q�2.5kF. With in-
creasing density, this peak moves toward the lower edge of
the particle-hole band and becomes sharper. Such a peak
should be identified with the remnant of the roton excitation
in 4He, broadened by the particle-hole continuum. The over-
all agreement with the experiment is quite good, see Fig. 1 of
Ref. 24. Our theory predicts a “roton minimum” that is
slightly above the observed energy; this is expected because
for bosons a similar effect is observed. To obtain a higher
accuracy, triplet- and higher order fluctuations must be
included.18

4. Static response

For completeness, and because the quantity should be ob-
tainable by experiments and simulations similar to those for
4He �Refs. 54 and 55� and on bulk jellium,56 we show in
Fig. 4 the static response function ��q ,0� of 3He at �
=0.0166 Å−3. The main peak, which is a result of the local
symmetry in the fluid, is visibly raised compared to the RPA
result. We suspect, form experience with the boson theory,
that this peak is still a bit underestimated.

The comparison also lets us assess the validity of an
energy-independent particle-hole interaction. Figure 5 shows

a comparison between the FHNC Ṽp-h�q� and the static ef-
fective interaction Eq. �5.13�. Evidently, the qualitative struc-

ture is very similar, in particular, Ṽp-h�q→0�= Ṽstat�q→0� as
discussed in Sec. V B. The most visible difference is that

Ṽstat�q� approaches a constant for large q, see Eqs. �5.14� and
�5.15�.
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FIG. 3. �Color online� ��a�–�d�� −Im��q ;��
for 3He as a function of energy at �
=0.0166 Å−3 for a sequence of momentum trans-
fers q=0.8, 1.6, 2.4, 3.2kF. Also shown is the
RPA dashed �red�. The full �blue� line is the result

of this work with the simplified W̃A�q ;�� and

W̃B�q ,��=0 as discussed in the text. In panel �b�,
we also show the results when the full W̃A�q ;��
and W̃B�q ;�� of Eqs. �4.17� and �4.18� are re-
tained �short dashed magenta line�. The results
from the different approximations are almost in-
distinguishable in panels �a�–�d� and therefore not
shown. The black dashed-dotted line in panels �a�
and �b� are fits to the experimental results of Ref.
24. In panels �c� and �d� we indicate the maxi-
mum of the experimentally observed dynamic
structure function by an arrow. We also plot in
panels �c� and �d� recent inelastic x-ray diffrac-
tion data obtained by Albergamo et al. �Ref. 41�
�boxes� as well as our theoretical results folded
with the experimental resolution �dashed line�.
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B. Electron liquid

The second typical area of application of microscopic
many-body methods is the electron liquid.38,57 It provides the
basic understanding of valence-electron correlations in
simple metals. In its two-component version it has proved
useful for describing the electron-hole liquid in semiconduc-
tors.

Compared to the helium fluids, the soft repulsion of the
Coulomb interaction induces substantially weaker correla-
tions. Therefore, electrons are much less challenging than
3He and the RPA �or slightly modified versions� contain
much of the relevant physics.

Correlations are somewhat more pronounced in layered
realizations of the electron liquid, such as Si- and GaAs-
AlGaAs heterostructures. For electrons on He surfaces pre-
liminary results show58 that at very low densities, again, a
rotonlike structure evolves for intermediate wave vectors.

We have seen that pair fluctuations contribute, already at
long wavelengths, to the static response function, see our
discussion in Secs. V B and V C. Most important are, of

course, those effects that are qualitatively new consequences
of multiparticle fluctuations. These are the short-wavelength
behavior of the static response function and the appearance
of a new feature in the dynamics structure function, namely,
the “double-plasmon” excitation. The latter has raised new
interest26,27 in studying the dynamics of electrons at metallic
densities in this �q ;�� region.

1. Double plasmon

Figure 6 shows the dynamic structure factor S�q ;�� ob-
tained from the pair-fluctuation theory. We have chosen two
different densities ��3 / �4�rs

3aB
3 �, corresponding to Al, rs

=2.06 and Na, rs=3.99. Immediately obvious are the finite
width �i.e., lifetime� of the plasmon above the particle-hole
band and a second peaklike structure around twice the
plasma frequency �p.

Characteristic cuts at constant wave vectors q are shown
in Fig. 7 for Na. In parts �a� and �b� the plasmon is outside
the particle-hole band and rather sharp; the second peak
slightly above 2��p=4.5tF is clearly visible. We identify this
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feature, which has also been observed experimentally,27 with
the double-plasmon.

The double-plasmon excitation is due to the emergence of

an imaginary part in ṼA�q→0,�� at ��2�p, caused by the
appearance of an imaginary part of the pair propagator

Ẽ−1�q� ,q� ;��. It is therefore a genuine multipair effect. The
properties of the pair propagator are discussed in Appendix C
2. From Eq. �B19� we obtain for the double-pole part of the
dynamic interaction Eq. �5.9�

ImṼA�q → 0;�� =
9�2�p

2

16tF
2

�

8N
�
q�
� kF

q
Kq,q�q��2

z2�q��

� ��2��c�q�� − ���

+ ��2��c�q�� + ���� . �6.1�

In Fig. 7�c�, the plasmon is broad and Landau damped
while the double plasmon still shows a clear structure, even
at the brink of entering the particle-hole continuum. Some
structure in the spectrum persists to even higher momentum
transfers: At q=2.0kF in Fig. 7�d�, traces of the ordinary as
well as the double plasmon show up as a faint double-peak
structure with its minimum where the RPA yields a single
maximum.

We now investigate the nature of the slight but
measurable27 peak in the loss function at approximately
twice the plasmon frequency �p. Figure 8 shows S�q ,�� for
rs=3.99 for three different momentum transfers, the position
of the double plasmon is marked with arrows.

We have already shown in Fig. 6 the location of the
double-plasmon excitation and a comparison with the experi-
mental inelastic x-ray scattering data.26,27 The double plas-
mon is also accessible by Green’s function methods.59 These
results are very close to those of our pair-fluctuation theory.
This can be understood from the fact that the leading terms
of the long-wavelength part of the pair propagator actually
contain no correlation effects, see Eq. �C30�. Hence, theories
that are less well suited than CBF for the description of

strong correlations should, similar to the single plasmon,
give the right answer. The remaining discrepancy with ex-
periments must therefore be attributed to lattice effects. Fig-
ure 8 shows more details of S�q ,�� at a sequence of three
different momentum transfers for rs=3.99 �the position of
the double plasmon is marked with arrows�, in particular, in
order to assess the relative strength of the double-plasmon
excitation compared to the underlying continuum.

2. Static response

Monte Carlo studies of the static response function
��q ;0� were performed for two- and three-dimensional 4He
�Refs. 54 and 55� and on bulk jellium56 for rs=2, 5, and 10.
While ��q ;�� is accessible experimentally, for electron liq-
uids it is popular to define a static local field correction to
the Coulomb interaction ṽc�q� via38

Ṽstat�q� � ṽc�q��1 − G�q�� . �6.2�

From our analysis it is clear that a response function in the
RPA form can be defined only for q→0 and at �=0. There-
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FIG. 7. �Color online� −Im��q ;�� for Na
�rs=3.99�, at wave vectors q0 �a� 0.15kF, �b�
0.6kF, �c� 1.3kF, and �d� 2.0kF. The full �blue�
lines are our pair-fluctuation theory, dashed �red�
lines are the RPA results using Ṽp-h�q�. To make
the plasmon visible, the RPA data have been
broadened artificially by adding an imaginary fre-
quency of 10−5 eV /�. The dotted �green� lines in
�a� and �b� refer to neglecting Kq�q�,0

�q� in Eqs.
�4.12� and �4.13� and the dashed-dotted �black�
lines include ground-state triplet correlations. At
larger momentum transfers these effects are too
small to be visible.
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fore, only in these two cases such a function is a physically
meaningful quantity.

In the q→	 limit, our theory yields a finite value for

Vstat�q�, resulting in G�q��q2, whereas Ṽp-h�q� falls off like
the bare potential. This correct q dependence arises solely
from multiparticle fluctuations. In Fig. 9 we compare our
results with the Monte Carlo data and with curves calculated
from an analytic fit for −vc�q�G�q� obtained from the latter.60

The agreement is remarkably good.
No trace of a possible “hump” in G�q� around 2kF as a

remnant of some charge- or spin-density wave instability was
found in the simulations, but it also was not fully conclu-
sively ruled out. Our results, clearly, do not yield any such
peak structure at 2kF either.

VII. SUMMARY

We have presented the fermion version of theories of the
dynamic response of Bose fluids that have been developed in
the past successfully by Jackson, Feenberg, and Campbell.
These methods form the basis of our present understanding
of the dynamics of Bose fluids. Our derivations were admit-
tedly lengthy but eventually led to a reasonably compact
formulation of the dynamic response of correlated Fermi flu-
ids. Our final result could be formulated as a set of TDHF
equations in terms of dynamic and nonlocal effective inter-
actions.

For the first applications we have reduced the theory to a
practical level capturing the relevant physics while avoiding
many of the technical complications. In particular the version
of the equations of motion spelled out in Appendix F has
proved to be adequate for systems as different as 3He and
homogeneous electrons. It is hardly more complicated than
TDHF. The sole required input is the static structure function
S�q� which can, in principle, also be obtained from simula-
tions. Our developments have led to quantitative improve-
ments of our understanding of 3He and electrons as well as
to the description of qualitatively new effects such as mode-
mode coupling, multiparticle spectra, and damping.

We have, at various places, commented on the role of the
particle-hole spectrum. In the homogeneous electron liquid,
the interaction corrections to the single-particle spectrum are
relatively small,35,61 the theory formulated here should there-
fore suffice for many purposes. The situation is more difficult
in 3He. As is seen from our results, good agreement with
experiments can be reached by assuming a spectrum of non-

interacting fermions. In particular looking at the zero-sound
damping suggests that, at q�kF, the boundary of the single-
particle continuum should be close �perhaps even above� to
the one given by a noninteracting spectrum, cf. Fig. 2. This is
not in contradiction to experiments52,62 suggesting an
effective-mass ratio m� /m�3 at the Fermi surface. One rea-
son is that the effective-mass ratio drops rapidly with dis-
tance from the Fermi surface. The more fundamental reason,
however, is that the concept of describing the particle-hole
excitations by a spectrum that depends on momentum only is
questionable at elevated wave numbers. More precisely, the
single-particle motion is described by a nonlocal, energy-
dependent self-energy. Upon closer examination it becomes
clear that exchange effects are intimately related to self-
energy corrections and exchange effects must therefore be
included simultaneously.

In independent work, we have used the ideas of CBF
theory as well as the Aldrich-Pines pseudopotential theory
to calculate the single-particle propagator in 3He. In
both three and two dimensions, we found good agreement
between the theoretical effective mass near the Fermi sur-
face and that obtained experimentally from specific-heat
measurements.47,48,63 However, the somewhat ad hoc use of
the effective interactions in that work is still awaiting rigor-
ous justification. This is the subject of future work.
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APPENDIX A: GROUND-STATE THEORY

1. Essence of FHNC-EL

For the sake of the discussions of this work we here
briefly review the essence of variational FHNC theory. The
diagram expansion and summation procedure that is used to
derive, for the variational wave function Eq. �2.2� a set of
equation for the calculation and optimization of physical ob-
servables has been described at length in review articles21

and pedagogical literature.22 Details on the specific imple-
mentation for 3He are given in Ref. 28.
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Here, we spell out a reduced set of equations. These do
not provide the quantitatively best implementation28 of the
FHNC-EL theory, but they contain the relevant physics:
They provide, in the language of perturbation theory, a self-
consistent approximate summation of ring and ladder
diagrams,29 thereby capturing both, long-ranged as well as
short-ranged features.

In the simplest approximation,64 which contains, as we
shall see momentarily, the RPA expression �1.7�, the Euler
Eq. �2.5� can be written in the form28

S�q� =
SF�q�

�1 + 2
SF

2�q�
t�q� Ṽp-h�q�

, �A1�

where t�q�=�2q2 /2m is the kinetic energy of a free particle
and

Vp-h�r� = �1 + �dd�r��v�r� +
�2

m
���1 + �dd�r��2 + �dd�r�wI�r�

�A2�

is what we call the particle-hole interaction. Auxiliary quan-
tities are the “induced interaction”

w̃I�q� = − t�q�� 1

SF�q�
−

1

S�q��2� S�q�
SF�q�

+
1

2
� , �A3�

and the “direct-direct correlation function”

�̃dd�q� = �S�k� − SF�q��/SF
2�q� �A4�

�see also Eq. �4.1��. Equations �A1�–�A4� form a closed set
which can be solved by iteration. Note that the Jastrow cor-
relation function has been eliminated entirely.

The relationship in Eq. �A1� between the static structure

function S�q� and the particle-hole interaction Ṽp-h�q� can
also be derived from Eq. �1.7�, if the Lindhard function is
replaced with its “mean spherical” or “collective” approxi-
mation �CA�,

�0
CA�q;�� =

2t�q�
��� + i��2 − t2�q�/SF

2�q�
. �A5�

The essence of this approximation is to replace the branch
cut in �0�q ;�� by a single pole; its strength chosen such that
the first two sum rules agree when evaluated with the full
Lindhard function �0�q ;�� or in the collective approxima-
tion �0

CA�q ;��, i.e.,

Im� d��0
CA�q;�� = Im� d��0�q;�� ,

Im� d���0
CA�q;�� = Im� d���0�q;�� . �A6�

In fact, Eq. �1.7� together with Eq. �A5� or, alternatively,

Ṽp-h�q� =
t�q�

2
� 1

S2�q�
−

1

SF
2�q�� �A7�

can be used28 to define the particle-hole interaction from an
accurately known S�q�.

The energy, consisting of kinetic and potential energies

T	+ 
V	, is28

E =
3

5
NtF + ER + EQ,

ER =
�N

2
� d3r�g�r�v�r� +

�2

m
�1 + C�r�����1 + �dd�r��2� ,

EQ =
N

4
� d3q

�2��2�
t�q��̃dd

2 �q��SF
2�q�/S�q� − 1� . �A8�

Here, tF is the Fermi energy of noninteracting particles, and,
in this approximation,

C̃�q� = SF�q� − 1 + �SF
2�q� − 1��̃dd�q� . �A9�

To make the connection with the limiting behavior of
��q ;0� in Sec. V C, we next spell out what is known as the
uniform limit or CA. Products of functions which in coordi-
nate space vanish for r→	 are considered small. This im-
plies to expand ��1+�dd�r�� 1

2 ��dd�r� and to neglect C�r�.
The kinetic energy then is


T	CA = TF +
1

4�
q

t�q�S�q�X̃dd
2 �q� . �A10�

Here, TF=3NtF /5 and X̃dd�q� is the “non-nodal” function. In

our reduced FHNC approximation, X̃dd�q� is related to the
static structure factor by

X̃dd�q� =
1

SF�q�
−

1

S�q�
. �A11�

APPENDIX B: DIAGRAMMATIC ANALYSIS

1. Transition density

We first examine the diagrammatic structure of CBF ma-
trix elements �0,ph�r� of the density operator, Eqs. �3.10� and
�3.11�. The simplest approximation for Mph,p�h� has been
spelled out in Eq. �4.6�, the corresponding approximation for
�0,ph�r� is

�0,ph�r� = �0,ph
F �r� + �� d3r�� d3r����r − r��

−
�

�
�2��r − r��kF���dd�r� − r���0,ph

F �r�� . �B1�

The diagrammatic representation of some leading dia-
grams contributing to �0,ph�r� is shown in Fig. 10. As usual,
open points represent particle coordinates ri while filled
points indicate an integration over the associate coordinate
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space and a density factor. Dashed lines connecting points ri
and r j represent a function �dd�rij� and oriented solid lines an
exchange function ��rijkF�. New elements are particle and
hole states, depicted as upward �particles� or downward
�holes� lines entering or leaving the diagram.

The three leading terms in Eq. �B2� are shown in the
upper row of Fig. 10. In the second row of Fig. 10 we show
the leading exchange diagrams. In the representation Eq.
�3.10�, these originate from the factors zph in the definition of
the �̃0,ph�r�, these are shown as the first two diagrams. Ex-
change terms also originate from the matrix element

ph���dd�hp�	a, these are shown as third and fourth diagrams
in that row. Evidently there is a partial cancellation. The
diagrams shown in that row also serve as an example for
how the representations Eqs. �3.10� and �3.11� are equal.
Starting from the form Eq. �3.11�, the diagrams originating
from the zph factors �i.e., the first two diagrams in the second
row�, have opposite signs; and the exchange term of

pp���dd�hh�	a yields the third diagram with interchanged
particle and hole labels. The sum of all three diagrams is the
same.

2. M(I) matrix

Our next task is to show that the diagrams representing
Mph,p�p�h�h�

�I� are a proper subset of those contributing to
Mph,p�p�h�h�. We restrict ourselves here to the simplest case,
which is the numerically implemented version. We start with
the two-body matrix Mph,p�h�. As spelled out in Eq. �4.6�,
besides the � function, the leading contribution is the local
term in the two-body operator

Nloc�1,2� = �dd�r12� . �B2�

The diagrammatic representation of this approximation for
Mph,p�h� is shown in Fig. 11.

A diagrammatic expansion of the matrix elements
Mph,p�p�h�h� can be derived in exactly the same way
as the corresponding expansions of the two-body matrix
elements.31 Generally, the Mph,p�p�h�h� are matrix elements
of a nonlocal three-body operator, which can be expressed
in terms of FHNC diagrams. Restricting ourselves again to
the numerically implemented level, we need these quantities
in an approximation equivalent to the uniform limit
approximation17 for bosons. We generalize this approach to
fermions by keeping all diagrams contained in the Bose case
plus those, where the end points of the correlation functions
are linked by exchange paths �the bosonic g�rij�−1 is iden-
tified with the direct-direct correlation function �dd�rij��.
This procedure has already been used for deriving the opti-
mal triplet correlations for the fermion ground state.28 The
diagrammatic representation of this approximation is shown
in Fig. 12, the analytic form is

Mph,p�p�h�h�
CA = �h,h�
ph���dd�1,2��p�p�	 − �p,p�
h�h���dd�1,2��hp�	 +

1

2

ph�h���dd�3,1��dd�1,2��hp�p�	

−
1

2�
h1


ph���dd�h1p�	
h�h1��dd�p�h	 −
1

2�
h1


ph���dd�h1p�	
h�h1��dd�p�h	 + 
ph�h���dd�1,2��dd�2,3��hp�p�	

− �
h1


ph���dd�hh1	
h�h1��dd�p�p�	 − �
h1


ph1��dd�hp�	
h�h���dd�h1p�	 + 
ph�h���ddd
CA�1,2,3��hp�p�	

+ �p�h�� ↔ �p�h��� . �B3�

Here, in convolution approximation,

p h

p h p h

1
2

p h

1
2

p h p h
p h

p h

p h

FIG. 10. Diagrammatic representation of some contributions to
�0,ph�r�. The upper row shows the diagrams defining the local ap-
proximation. The second row are the leading exchange diagrams
and the third row shows two corrections due to the nonlocality of
N�1,2�.

p h

p’ h’

p h

h’ p’

FIG. 11. Diagrammatic representation of the local approxima-
tion for Mph,p�h�.
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�ddd
CA�r1,r2,r3� =

�

2
� d3r4�dd�r1 − r4��dd�r2 − r4��dd�r3 − r4�

+
�2

2�
� d3r4d3r5�2��r4 − r5�kF��dd�r1 − r4��dd�r2 − r5��dd�r3 − r5�

+
�2

�
� d3r4d3r5�2��r4 − r5�kF��dd�r1 − r4��dd�r3 − r4��dd�r2 − r5�

+
�3

�2� d3r4d3r5d3r6���r4 − r5�kF����r5 − r6�kF����r6 − r4�kF��dd�r1 − r4��dd�r2 − r5��dd�r3 − r6� . �B4�

The first two lines are invariant under exchanging r2↔r3,
equivalent to exchanging �p�h��↔ �p�h�� in Eq. �B3�.

Optimized triplet correlations improve the description of
the ground-state structure, in particular, in the area of the
peak of the static structure function and also improve, for
bosons, the density dependence of the spectrum.17 These
correlations add another term to the three-body function
�ddd

CA�r1 ,r2 ,r3�. The expressions are lengthy,28 we refrain

from spelling them out here and just show the diagrammatic
representation of some typical terms in the last row of
Fig. 12.

Per definition in Eq. �3.16�, Mph,p�p�h�h�
�I� is to be con-

structed such that its matrix product with Mph,p�h� reproduces
Mph,p�p�h�h�. A low-order manifestation of this is easily veri-
fied with choosing for Mph,p�p�h�h�

�I� the uniform limit dia-

grams shown in the first row of Fig. 12,

hp

p’ h’’p’’ h’

p h

h’ h’’p’’p’

h p

h’ p’ h’’p’’

h p

h’ p’ h’’p’’

h p

h’ p’ h’’p’’

p h

h’ p’ h’’p’’

p h

h’ p’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

p h

p’ h’ h’’p’’

FIG. 12. Diagrams of Mph,p�p�h�h� in the convolution approximation Eq. �B3�. Graphs obtained by exchanging the pairs �p�h�� and �p�h��
are to be added. The last row shows some diagrams containing ground-state triplet correlations �shaded triangle�, all of these contribute to
Mph,p�p�h�h�

�I� .
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Mph,p�p�h�h�
�I�CA = �h,h�
ph���dd�p�p�	 − �p,p�
h�h���dd�hp�	 + �p�h�� ↔ �p�h���

+ �
p1


ph���dd�p1p�	
p1h���dd�hp�	 − �
h1


ph���dd�h1p�	
h1h���dd�hp�	 , �B5�

=
1

N
�q,q�+q�n̄pn̄p�n̄p�nhnh�nh���̃dd�q����h,h� − �p,p�� + �p�h�� ↔ �p�h��� +

1

N
�̃dd�q���̃dd�q���n̄h+q� − nh+q��� , �B6�

where the term originating from triplet correlations has not
been spelled out.

Generally, Mph,p�p�h�h�
�I� is represented by the subset of

Mph,p�p�h�h� diagrams that cannot be cut into two pieces, one
connected to the labels ph and the other to p�p�h�h�, by
cutting either two exchange lines or cutting the diagram in an
internal point.The third row of Fig. 12 shows such contribu-
tions.

Mph,p�p�h�h�
�I�CA depends nontrivially on three-particle and

three-hole quantum numbers. We define the localized version
as its Fermi sea average, Eq. �4.5�,

M̃q,q�q�
�I�CA �

1

SF�q�SF�q��SF�q��
1

N
�

hh�h�

Mph,p�p�h�h�
�I�CA

= �q,q�+q��� S�q��S�q��
SF�q��SF�q��

− 1� SF
�3��q,q�,q��

SF�q�SF�q��SF�q��

+
S�q��S�q��

SF�q��SF�q��
ũ3�q,q�,q��� . �B7�

Here, the relationship in Eq. �A4� was used for the connec-

tion between �̃dd�q� and S�q� and

SF
�3��q,q�,q�� �

1

N
�

h

nhn̄h−q�n̄h+q� − nh+q�� �B8�

is the three-body static structure function of noninteracting
fermions.

3. Three-body vertices

We now apply the localization procedure Eq. �4.5� to the
three-body vertices. Starting with Eq. �3.35�, we have

K̃q�q�,0
�q� � N2Kq�q�,0

�q� =
1

NSF�q�SF�q��SF�q�� �
hh�h�

�Hpp�p�hh�h�,0
�

− �
p1h1

Hpp1hh1,0� Mp�p�h�h�,p1h1

�I� � . �B9�

As discussed in Sec. III B, the Euler Eq. �2.5� for the ground-
state optimizations ensure that the Fermi sea average Eq.
�3.7� of Hpp�p�hh�h�,0

� vanishes. For the matrix elements
Hpp1hh1,0� Eqs. �4.1�–�4.3� yield

Hpp1hh1,0� =
1

2N
�q+q�,0�eph + ep�h� − 2

t�q�
SF�q���̃dd�q� .

�B10�

Therefore, using Eq. �B6� for Mph,p�p�h�h�
�I�

1

N3 �
hh�h�

Kp�p�h�h�,0
�ph� = −

1

N3 �
hh�h�

�
p1h1

Hpp1hh1,0� Mp�p�h�h�,p1h1

�I�

= −
1

2N3 �̃dd�q�SF�q� �
h�h�h1

�eh1−q,h1

−
t�q�

SF�q��Mp�p�h�h�,�h1−q�h1

�I�

=
�q+q�+q�,0

N2

�2

4m
�̃dd�q�� S�q��S�q��

SF�q��SF�q��
− 1�

� q2SF
�3��q,q�,q��

+ q · �q�SF�q�� + q�SF�q���SF�q�� .

�B11�

This term vanishes when q and q� are larger than 2kF. It is
also zero if the matrix element Hpp1hh1,0� in Eq. �B11� is re-
placed by its Fermi sea average. We therefore expect this
term to be small, in particular, since it has no analog in the
Bose limit. Note also that triplet ground-state correlations do
not contribute to this term. Dividing by the normalization
factors SF�q�SF�q��SF�q�� leads to the result in Eq. �4.13�.

To calculate a localized version of the vertex Kph,p�p�h�h�,
Eq. �3.34�, we need

K̃q,q�q� � N2Kq,q�q� =
1

NSF�q�SF�q��SF�q�� �
hh�h�

�Hph,p�p�h�h�
�

− �
p1h1

Hph,p1h1
� Mp1h1,p�p�h�h�

�I� � �B12�

with

Hph,p�h�
� = �q,q���h,h�eph +

1

2N
�eph + ep�h� − 2

t�q�
SF�q���̃dd�q�� .

�B13�

We first separate the contribution that survives in the bo-
son limit. Starting with the identity
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�
h�h�

��p�p�h�h�	

= F��̂q��̂q� − �
h�

ah�+q�+q�
† ah��n̄h�+q� − nh�+q����o	

�B14�

we have

�
hh�h�

Hph,p�p�h�h�
� = 
�o��̂qH��̂q��̂q���o	

− �
hh�

�n̄h�+q� − nh�+q��Hph,h�+qh�.

�B15�

Postulating that three-body correlations have been optimized
we can simplify the first term

1

2N

�o����̂q,H��, �̂q��̂q����o	 = −

�2

2m
q · �q�S�q�� + q�S�q��� .

�B16�

For the form Eq. �B13�, the second term in Eq. �B15� is

−
1

N
�
hh�

Hph,h�+qh��n̄h�+q� − nh�+q��

=
�2

2m
q · �q�SF�q�� + q�SF�q���

+
�2

4m
�̃dd�q��q2SF

�3��q,q�,q��

+ q · �q�SF�q�� + q�SF�q���SF�q�� . �B17�

The remaining term of K̃q,q�q� in Eq. �3.35�,
−�p1h1

Hph,p1h1
� Mp1h1,p�p�h�h�

�I� , contains contributions originat-

ing from the diagonal and the off-diagonal parts of Hph,p1h1
� ,

Eq. �B13�. The off-diagonal part is identical to expression
�B11� whereas the contribution from the diagonal term gives

−
1

N
�

h,h�,h�

ephMph,p�p�h�h�
�I� =

�2

2m
q · �q�SF�q�� + q�SF�q���

�� S�q��S�q��
SF�q��SF�q��

− 1�
−

�2q2

2m
S�q��S�q��ũ3�q,q�,q�� .

�B18�

Collecting the individual contributions we obtain Eq. �4.12�.

4. Four-body coupling matrix element

In Eq. �3.24� we have defined the irreducible four-body
coupling matrix element Mpp�hh�,p�p�h�h�

�I� . Again, “irreduc-
ible” means that in the diagrammatic representation left and
right arguments cannot be separated by cutting a particle and
a hole line. In analogy to the Bose case the “convolution”

�uniform limit� approximation is obtained by retaining the
leading-order diagrams

Mpp�hh�,p�p�h�h�
�I�CA � Mph,p�h�Mp�h�,p�h� + Mph,p�h�Mp�h�,p�h�.

�B19�

This contains all diagrams with up to two correlations. A
consistent improvement of the convolution approximation
involves an infinite resummation. For bosons7 this had only a
marginal effect. We expect a similarly small improvement
for fermions.

The approximation for Kpp�hh�,p�p�h�h� consistent with Eq.
�B19� is to keep all diagrams containing only one correlation
function �dd�r�,

Kpp�hh�,p�p�h�h�
CA � �p,p��h,h�ephMp�h�,p�h�

+ �p�,p��h�,h�ep�h�Mph,p�h�

+ p�h� ↔ p�h�� . �B20�

Note that both Mpp�hh�,p�p�h�h�
�I�CA and Kpp�hh�,p�p�h�h�

CA contain
explicit particle and hole labels. Again, we no longer spell
out the superscript “CA” in the following.

A word is in order about the symmetry of both quantities.
Equations �B19� and �B20� show that both operators are the
sum of two term that differ from each other merely by the
interchanging p�h�↔p�h��. We have discussed in connec-
tion with Eq. �3.42� that it is legitimate to replace
Mpp�hh�,p�p�h�h�

�I� and Kpp�hh�,p�p�h�h� by their asymmetric
form.

APPENDIX C: PAIR PROPAGATOR

1. Pair-energy matrix

A priori, Epp�hh�,p�p�h�h���� is a function of four-hole and
four-particle momenta as well as the energy. In the uniform
limit approximation we can, however, express the inverse in
terms of two-body quantities. From Eqs. �B19� and �B20� we
obtain the pair-energy matrix

Epp�hh�,p�p�h�h���� = ��� + i��Mph,p�h�Mp�h�,p�h�

− ��p,p��h,h�eph�Mp�h�,p�h�

− Mph,p�h���p�,p��h�,h�ep�h�� . �C1�

To calculate its inverse, write Eq. �C1� as

�
p1h1p2h2

Mph,p1h1

−1 Mp�h�,p2h2

−1 Ep1p2h1h2,p�p�h�h����

= ��� + i���p,p��h,h��p�,p��h,h�

− �Mph,p�h�
−1 ep�h���p�,p��h,h�

− �p,p��h,h��Mp�h�,p�h�
−1 ep�h�� . �C2�

Use now, for two commuting operators A,B
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���� + i�� − A − B�−1

= − �
−	

	 d�����
2�i

����� + i�� − A�−1���� − �� + i�� − B�−1,

�C3�

which can be proved by series expansion. Consequently, we
have

Epp�hh�,p�p�h�h�
−1 ��� = − �

−	

	 d�����
2�i

�ph,p�h�����

��p�h�,p�h��� − ��� �C4�

with

�ph,p�h���� � ���� + i��Mph,p�h� − �pp��hh�eph�−1.

�C5�

For our choice Eq. �4.6� of Mp�h�,ph, we can calculate
�ph,p�h���� analytically,

�ph,p�h���� =
�p,p��h,h�

�� − eph + i�

−
1

�� − eph + i�

���̃dd�q�/N

1 + ���̃dd�q��0�q;��

�
1

�� − ep�h� + i�
, �C6�

where �0�q ;�� has been defined in Eq. �5.5�.
According to Eqs. �3.43� and �4.14�, the dynamic parts of

the interactions are obtained from matrix products of
Epp�hh�,p�p�h�h�

−1 ��� as given in Eq. �C4� with the three-body
vertices in Eqs. �4.12� and �4.13�. The latter being local func-
tions, only sums over the hole states enter VA,B�q ;��.

Ẽ−1�q1,q2;�� �
1

N2 �
h1h2h1�h2�

Ep1p2h1h2,p1�p2�h1�h2�
−1 ���

= − �
−	

	 d�����
2�i

��q1;�����q2;� − ���

�C7�

with

��q;�� �
1

N
�
hh�

�ph,p�h���� =
�0�q;��

1 + ���̃dd�q��0�q;��
.

�C8�

Using Kramers-Kronig relations, we obtain the useful alter-
native representation

Ẽ−1�q1,q2;�� = �
−	

	 d���1�d���2�
�2

Im��q1;�1�Im��q2;�2�
��1 + ��2 − �� − i�

.

�C9�

2. Properties of the pair propagator

a. Properties of �(q ;�)

The structure of ��q ;�� resembles that of ��q ;�� in the
RPA. It features a particle-hole continuum �cont�q ;��, and,
possibly, a “collective mode” with a dispersion relation given
by

1 + �0�q;�c�q����c�q��̃dd�q� = 0. �C10�

We can therefore write

Im��q,�� = z�q������ − ��c�q�� + Im�cont�q;�� ,

z�q� =� �0�q;��

�̃dd�q�
d

d�
��0�q;���

�c�q�

. �C11�

��q ;�� satisfies the following sum rules which we write in
the suggestive way:

S2�q�
SF

2�q��0

	 d����
�

Im��q;�� = − S�q� , �C12�

S2�q�
SF

2�q��0

	 d����
�

��Im��q;�� = − t�q� . �C13�

Equation �C12� is proved by extending the integration to −	,
noting that �0�q ;�� is real on the negative � axis. Since
�0�q ;�� has no poles in the upper complex plane, we can
evaluate the integral along a circle, using the asymptotic ex-
pansion

�0�q;� → 	� =
SF�q�
��

+
t�q�
�2�2 + O����−3. �C14�

The proof of Eq. �C13� proceeds along the same line, sub-
tracting the asymptotic expansion of ��q ;�� beforehand.
From Eqs. �C12� and �C13� it is clear that the analytic prop-
erties of S2�q���q ;�� /SF

2�q� are similar to those of the
density-density response function �RPA�q ;��. For bosons,

the two functions coincide exactly: Identifying �̃dd�q�=S�q�
−1 and SF�q�=1, �0�q ;�� consists of a single mode so that

�0�q;�� =
1

�� + i� − t�q�
,

��q;�� =
1

S�q�
1

�� + i� − 
�q�
. �C15�

Figure 13 further confirms this similarity for 3He at satu-
ration density. Expectedly, a solution of Eq. �C10� is found to
lie within a few percent of the RPA zero sound mode.

b. Properties of Ẽ−1(q ,q� ;�)

Equations �C12� and �C13� lead to the sum rules for the
pair propagator,

�
−	

	 d����
�

ImE−1�q,q�;�� = −
SF

2�q�
S�q�

SF
2�q��

S�q��
, �C16�
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�
−	

	 d����
�

��ImE−1�q,q�;��

= −
SF

2�q�
S�q�

SF
2�q��

S�q��
�
�q� + 
�q��� . �C17�

The proof of Eq. �C16� is best carried out starting from the
representation Eq. �C9�,

�
0

	 d����
�

ImE−1�q1,q2;�� = − �
0

	 d���1�
�

Im��q1;�1�

� �
0

	 d����
�

Im��q2;� − �1� .

�C18�

The �� integral in the last term can be extended to −	 since
Im��q ;�� is real on the negative � axis.

If Eq. �C10� has a solution, the pair propagator has a
collective mode. From Eq. �C11� we obtain

ImẼ−1�q1,q2;�� = �z�q1�z�q2�����c�q1� + ��c�q2� − ��� .

�C19�

This is the origin of two-phonon excitations or the double
plasmon in charged systems.

The two-particle-two-hole band consists of three parts
which may overlap. The first one is the continuum-
continuum �c-c� coupling, where the contribution of each
��q ;�� in Eq. �C7� comes from its particle-hole band. This
defines the two-particle-two-hole “tube” in �q ,q� ;�� space.
Its boundaries are

emin�q� + emin�q�� � �� � emax�q� + emax�q�� , �C20�

where emin and emax denote the upper and lower borders of
each single-particle-hole band, respectively.

The other two parts of E−1�q ,q� ;�� arise from
continuum-mode �c-m� coupling, they are identical apart
from interchanging q and q�. Their boundaries are

emin�q� + ��c-m�q�� � �� � emax�q� + ��c-m�q�� .

�C21�

Finally, we consider three limits of the pair propagator.

First, in the noninteracting case, �̃dd�q�=0, we simply obtain
a sum over two-pair-energy denominators

ẼF
−1�q,q�;�� = −� d�����

2�i
�0�q�;� − ����0�q;���

=
1

N2�
hh�

1

�� + i� − eph − ep�h�
, �C22�

i.e., the two-particle energy denominator appropriate for per-
turbation theory in a weakly interacting Fermi system.

Second, Eq. �C15� reproduces the energy denominator ap-
pearing in the boson theory,

Ẽbos
−1 �q,q�;�� =

1

S�q�S�q��
1

�� + i� − 
�q� − 
�q��
.

�C23�

Finally, we consider the collective or uniform limit ap-
proximation. Following Eq. �A6� we replace �0�q ;�� by that
single-pole approximation which ensures its correct �0 and
�1 sum rules. This gives

�0
CA�q;�� =

SF�q�
�� + i� − t�q�/SF�q�

, �C24�

�CA�q;�� =
SF

2�q�
S�q�

1

�� + i� − 
�q�
, �C25�

and

ECA
−1 �q,q�;�� =

SF
2�q�

S�q�
SF

2�q��
S�q��

1

�� + i� − 
�q� − 
�q��
.

�C26�

The boson limit as well as the collective approximation
demonstrate the effect of correlations. The single-particle en-
ergies get shifted and form a band around the “Feynman-
spectrum.” Note that the collective approximation satisfies
the sum rules in Eqs. �C16� and �C17� exactly.

3. Pair propagator for charged systems

For charged systems, the dispersion of the solution of Eq.
�C10� has, unlike the plasmon, a term that is linear in the
wave number

��c�q� = �p +
tF

6

q

kF
−

9tF
2

4��p
� q

kF
�2

+ O�q3� . �C27�

For the strength of this mode we obtain

0 5 10 15 20 25

q (nm−1 )

0.0

1.0

2.0

3.0

4.0

5.0

h̄ω
(m

eV
)

ρ = 0.0166Å−3

0.1

0 5 10 15 20 25

q (nm−1 )

0.0

1.0

2.0

3.0

4.0

5.0

h̄ω
(m

eV
)

ρ = 0.0166Å−3

0.1

FIG. 13. �Color online� Imaginary part of the
scaled propagator S2�q���q ,�� /SF

2�q� �left� and
of �RPA�q ,�� �right� at the density �
=0.0166 Å−3. The black squares show, for refer-
ence, the Feynman dispersion relation 
�q�.
Dashed lines are equidistant contours at
0.1,0.2, . . . ,1.0tF

−1.
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z�q� =
9��p

16tF
−

3

32

q

kF
. �C28�

Hence, to leading order, for the pole of E−1�q1 ,q2 ;�� in Eq.
�C19� we obtain

ImẼ−1�q�,q�;�� = − �� 9

16

��p

tF
−

3

32

q�

kF
�2

����� − 2��p −
tF

3

q�

kF
� as q� → 0.

�C29�

Note that the location of double-plasmon pole contains, in
leading order in the momentum transfer, no information on
many-body correlations.

APPENDIX D: LARGE MOMENTUM LIMIT

For large momenta, S�q�−1 falls off at least as q−4. The
vertices in Eqs. �4.12� and �4.13� fall off as q−1 and q−2,
respectively, hence we have

K̃q,q�q� �
S�q��S�q��

SF�q��SF�q��
�2

2m
�q · q�X̃dd�q�� + q · q�X̃dd�q��� ,

K̃q�q�,0
�q� � 0. �D1�

As a consequence, W̃B�q ;0� is negligible for large momenta,

and only the first term in Eq. �4.17� contributes to W̃A�q ;0�.
For large q either q� or q� �or both� must be large �let

q��q�, the symmetry in q�↔q� just yielding a factor of 2�.
Since X̃dd�q� falls off for large q, the dominant contribution
of Eq. �D1� then arises from small q� and we can write

W̃A�q → 	;0� = � �2

2m
�2 1

N
�q� � S�q��

SF�q��
�2

�q · q�X̃dd�q���2

� Ẽ−1�q�,q�;0�

=
t�q�

3

1

N
�
q�

t�q��� S�q��
SF�q��

X̃dd�q���2

Ẽ−1�q�,q;0� .

�D2�

We now use the representation Eq. �C7� for the pair
propagator

Ẽ−1�q�,q;0� = − �
−	

	 d���

�
Re��q�;���Im��q;− ��� .

�D3�

Since �0�q�kF ;��=1 / ���− t�q�+ i�� we have

��q → 	;�� =
1

S�q�
1

�� − 
�q� + i�
. �D4�

Consequently,

Ẽ−1�q�,q → 	;0� =
1

S�q�
Re��q�,−

1

�

�q��

=−
1

t�q�
SF

2�q��
S�q��

, �D5�

where the last equality follows from the high-frequency limit
�0�q� ;��→SF�q�� /�. Insertion into Eq. �D2�. yields

W̃A�q → 	,0� = −
1

3N
�
q�

t�q��S�q���X̃dd�q���2, �D6�

which together with Eq. �A10� gives the result in Eq. �5.15�.

APPENDIX E: SUM RULES

For bosons, the �0 and �1 sum rules in Eqs. �1.4� and
�1.5� are satisfied exactly16 in the sense that the result of the
frequency integration is independent of the level at which
pair fluctuations are treated. This feature provides an unam-
biguous method to determine the static particle-hole interac-

tion Ṽp-h�q� through the sum rule Eq. �1.4� from the static
structure function.

The proof of the m1 sum rule is identical to the one for
bosons. Due to the symmetry

��q;�� = ���q;− ��

we can write

m1 = −
1

2�
Im�

−	

	

d��������q;�� . �E1�

All poles of ��q ;�� are in the lower half plane, allowing to
close the integral in the upper half plane. For large � we
have, however,

�0�q;�� − �RPA�q;�� � �−4, �E2�

�0�q;�� − ��q;�� � �−4 �E3�

since

ṼA,B�q;�� = Ṽp-h�q� +
const

�
as � → 	 . �E4�

We have therefore

Im�
−	

	

d��������q;�� = Im�
−	

	

d�������RPA�q;��

= Im�
−	

	

d��������q;�� . �E5�

For fermions, the frequency integration in Eq. �1.4� must
be carried out numerically, which is best done by Wick rota-
tion along the imaginary axis. The result of the integration is
no longer rigorously independent of the approximation used
for the response function.

Figure 14 compares the m0 sum rule calculated within the
RPA and the pair-excitation theory. Evidently, the discrep-
ancy is very small. One can understand by comparing with
the boson theory: If we restricted the fluctuation operators
�uph

�1��t� and �upp�hh�
�2� �t� to be functions of momentum trans-

BÖHM et al. PHYSICAL REVIEW B 82, 224505 �2010�

224505-26



fers q=p−h and q�=p�−h�, we would end up with a
density-density response function that is formally identical to
that of bosons and would, hence, lead to an S�q� that is
independent of the treatment of the pair fluctuations. The
expectation that the inclusion of the particle-hole structure of
the two-pair-energy denominator makes only a small differ-
ence is verified in Fig. 14. Thus, it is also legitimate in the
pair-excitation theory to obtain the static particle-hole inter-

action Ṽp-h�q� from the static structure function S�q� through
Eqs. �1.4� and �1.7�.

APPENDIX F: IMPLEMENTATION RECIPE

This section provides, for the convenience of the reader
and easy further reference, a compilation of all necessary
ingredients to implement the theory. Mostly a summary of
Secs. IV and V A, we deliberately refrain from any explana-
tion to avoid redundancy and keep it as compact as possible.

We have shown in our applications to 3He and the elec-
tron liquid that for practical purposes, only one of the local
three-body vertices is necessary:

K̃q,q�q� =
�2

2m

S�q��S�q��
SF�q�SF�q��SF�q��

�q · q�X̃dd�q�� + q · q�X̃dd�q��

− q2ũ3�q,q�,q��� , �F1�

where u3�q ,q� ,q�� is the three-body ground-state

correlation.28 The effective interaction W̃A�q ,�� is then

W̃A�q;�� =
1

2N
�
q�q�

�K̃q,q�q��
2Ẽ−1�q�,q�;�� �F2�

whereas W̃B�q ,�� vanishes. Consequently, the components
of the �energy-dependent� interaction matrix Vp-h��� are

ṼA�q;�� = Ṽp-h�q� + ��q
+�2W̃A�q;�� + ��q

−�2W̃A
� �q;− �� ,

�F3�

ṼB�q;�� = Ṽp-h�q� + �q
+�q

−�W̃A�q;�� + W̃A
� �q;− ���

�F4�

with �q
���SF�q��S�q�� /2S�q�.

Finally we need the pair propagator

Ẽ−1�q1,q2;�� = − �
−	

	 d�����
2�i

��q1;�����q2;� − ��� ,

�F5�

��q;�� =
�0�q;��

1 + ���̃dd�q��0�q;��
�F6�

with the partial Lindhard function

�0�q;�� �
1

N
�

h

n̄pnh

�� − eph + i�
�F7�

The simplifications of the interactions do not significantly
simplify the form Eq. �5.7� of the density-density response
function.
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