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We investigate the high-frequency dynamics of dysprosium and cobalt gratings fabricated at the surface of
a GaAs /Al0.33Ga0.67As heterojunction. We detect the collective and localized spin-wave modes of the grating
by measuring the photovoltage and the photoresistance induced in the two-dimensional electron gas �2DEG�.
The magnetic excitations couple to the 2DEG through their stray magnetic field. We perform a spectroscopy of
dipolar-exchange spin waves as a function of microwave power, temperature, the tilt angle of the applied
magnetic field, and by varying the structural and material parameters to change the strength of dipolar inter-
actions. The data reveal two types of spin waves. Dipolar magnetization waves propagate across the grating
through the magnetostatic interaction between the stripes. We derive an analytical expression of their disper-
sion curve and obtain a good fit of the ferromagnetic resonance broadening from first principles. The second
type is dipolar edge spin waves which manifest through a series of sharp resonances at lower magnetic field.
These waves are confined near the pole surfaces and interact very little with neighboring stripes. We calculate
the eigenfrequencies of the quantized modes and obtain a qualitative explanation of the low-field resonances.
The fit yields a value of the exchange stiffness constant of dysprosium, A=1.5�10−12 J m−1. Our experiments
show that photovoltage measurements in hybrid semiconductor-ferromagnetic structures provide a sensitive
and noninvasive tool for probing the spin waves of small magnets �10–500 nm�.
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I. INTRODUCTION

Dipolar magnetic interactions are increasingly relevant to
controlling the magnetization state of ultrasmall magnetic
elements. Magnetostatic interactions control the nucleation
field of magnetic vortices,1 the magnetization state of
nanowires2,3 and notoriously increase cross-talk between bits
as the size of magnetic memories is scaled down. Magnetic
coupling can be used to a constructive effect in spin torque
oscillators. The synchronization of spin-torque oscillators by
spin waves �SWs� increases the power of microwave
emission.4–6 The study of magnetic dipolar interactions has
recently been facilitated by the use of lithographic tech-
niques to obtain rectangular prism magnets. Such magnets
can be made small enough to have uniform magnetization
and close enough to have strong mutual interactions.7 At mi-
crowave frequencies, the edges of the prism reflect spin
waves which leads to the formation of standing modes. Their
absorption spectrum has been studied by Brillouin light
scattering,8,9 magnetoimpedance measurements,10 and by mi-
crowave transmission through striplines.11 The spectrum of
spin waves is also modified by the presence of magnetic
poles. The dipolar magnetic field creates spin wave quantum
wells which bind dipolar edge SWs �DESWs�.12,13 The con-
finement of spin waves by magnetic quantum wells,9 mag-
netic tunneling barriers,14 periodic arrays,15–17 and in Bose-
Einstein condensates18 has been investigated.

In this paper we demonstrate the formation of dipolar
magnetization waves �DMWs� in one-dimensional �1D� su-

perlattices. These waves propagate the displacement of the
magnetization from one stripe to the next through pure mag-
netostatic interaction. We obtain the energy dispersion curve
of DMWs in a simple form that generalizes the Kittel
formula19 of ferromagnetic resonance �FMR�. In order to
vary the coupling between stripes, we make dysprosium and
cobalt gratings whose pitch we vary between 400 and 300
nm. We irradiate the gratings with microwaves and use a
high mobility two-dimensional electron gas �2DEG� as a
sensor of the stray magnetic field emanating from the grat-
ing. The high-frequency reversal of resonating magnetic di-
poles was picked up in the photoresistance and the photo-
voltage induced across the 2DEG. We observe the formation
of dipolar magnetization waves through the broadening of
the ferromagnetic resonance. We find that the width of the
ferromagnetic resonance �up to 1.5 T� is in quantitative
agreement with the width of the DMW dispersion curve cal-
culated using nominal structural and material parameters. We
also report a series of small resonant dips at lower magnetic
field. These present several of the characteristics expected
from quantized DESWs. The number of DESW modes con-
fined in each stripe yields the spin exchange stiffness con-
stant. The value that we find is consistent with the one de-
rived from the dispersion curve of magnons in bulk
dysprosium.20 We calculate the magnetic field dependence of
the DESW eigenfrequencies and obtain a qualitative agree-
ment with the experiment. We find that resonances are
shifted to lower magnetic field by the magnetocrystalline an-
isotropy of ferromagnetic dysprosium. The height of the pho-
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tovoltage peaks gives the stray magnetic field emanating
from each type of spin wave. This magnetic field couples
magnetic elements, hence from the height of the peak we are
able to verify the localized or extended nature of spin-wave
modes. Hybrid semiconductor-ferromagnetic structures are
particularly well suited for probing ultrasmall magnets �10–
500 nm�. These are magnets which are smaller than the dif-
fraction limit of Brillouin light scattering16 and smaller than
the minimum sample volume required for detecting ferro-
magnetic resonance.21 The present photovoltage technique
allows measuring the high-frequency dynamics of individual
bits stored in magnetic dots tens of nanometers in size. High-
frequency photovoltage measurements are able to detect
changes in the magnetic moment as small as the Bohr mag-
neton. This sensitivity can easily be verified using the Lenz
law and is three orders of magnitude higher than the sensi-
tivity achieved through ballistic Hall magnetometry in the
static regime.22

The paper is organized as follows. Section I introduces
the background. Section II reports on the ferromagnetic reso-
nance of individual stripes �Co, Dy�. These data provide a
benchmark for the demonstration of the effects of dipolar
coupling in gratings. Section III investigates the high-
frequency dynamics of ferromagnetic gratings. Section IV
develops the theory used to fit the DMW and DESW reso-
nances. Section V discusses the findings, the approximations
used, and the eventual shortcomings of the theory.

II. INDIVIDUAL FERROMAGNETIC STRIPES

Hybrid ferromagnetic-semiconductor devices were
fabricated from a GaAs /Al0.33Ga0.67As single heterojunction.
The mobility and density of the 2DEG were determined
from quantum transport measurements as �=1.5
�106 cm2 V−1 s−1 and ns=1.6�1011 cm−2. We prepared
Hall bars 8 �m wide and 32 �m long by optical lithogra-
phy. Voltage probes were separated by distances ranging be-
tween 2 and 16 �m. Ferromagnetic gratings and individual
stripes were then fabricated at the center of Hall bars to
modulate the 2DEG located 80 nm below the surface—see
Fig. 1. Magnetic modulations obtained in this way have an
amplitude �0.1 T. The perpendicular component of the
stray magnetic field deflects ballistic trajectories in the
2DEG, coupling the electric properties of the 2DEG to the
magnetic properties of the grating.7 We have studied the four
types of devices listed in Table I.

Samples of type A had a single dysprosium �or cobalt�
stripe shown in Fig. 1�c�. Samples B-D were 1D arrays such
as the one shown in Fig. 1�b�. The use of gratings of different
pitch allows varying dipolar coupling and studying its effect
on the high-frequency dynamics. Dysprosium was used be-
cause it has the highest magnetic moment per atom which
maximizes the coupling between stripes. The tabulated val-
ues of the saturation magnetization at 4 K are �0Ms
=3.67 T �Dy� and �0Ms=1.84 T �Co�. In all devices, the
stripes exceeded the length of the Hall bar by 10 �m at each
end and effectively behaved as stripes of infinite length.
Similarly, the gratings overlapped the active area of the Hall
bar plus 10 �m on each side. The lack of edge effects al-

lowed us to consider the grating as being infinite.
Microwaves were generated by a range of backward wave

oscillators covering the 35 GHz–110 GHz band. An over-
moded circular waveguide carried unpolarized microwaves
down to the sample space at the center of a 15 T supercon-
ducting magnet. The grating was irradiated at normal inci-
dence while being magnetized by the external magnetic field,
Ba—see Fig. 1�a�. By tilting Ba in the plane of the 2DEG we
were able to magnetize the stripes �y or �x to switch the
dipolar magnetic field ON or OFF. When Ba � y, magnetic
poles form on the facets �y and generate a spatially varying
magnetic field. This magnetic field has two components Hd,y
and Hd,z. The Hd,z component transmits high-frequency os-
cillations of the magnetization to the 2DEG by inducing
eddy currents I�f2�. The photovoltage and the photoresis-
tance are measured using a double frequency modulation
technique—see Fig. 1�a�. One lock-in amplifier picks up the
photovoltage V�f2� at frequency f2=870 Hz which is used to
modulate the microwave power. A second lock-in amplifier

FIG. 1. �Color online� �a� Lateral superlattice consisting of an
array of ferromagnetic stripes �Dy or Co� at the surface of a 2DEG.
The grating is irradiated by microwaves at frequency � while being
magnetized in the plane by magnetic field Ba. At resonance, oscil-
lations of the stray magnetic field induce a microwave current, I�f2�,
in the 2DEG. The photovoltage, V�f2� is measured at the frequency
used to modulate the microwave power, f2=870 Hz. The photore-
sistance is measured at frequency f1=30 Hz. �b� Sample B: Dy
grating, a=400 nm, d=200 nm, h=160 nm, and z0=80 nm. �c�
Sample A: Dy stripe, d=200 nm, h=150 nm, and z0=80 nm.

TABLE I. Device parameters. Dimensions are in nanometer.

Sample A B C D

Magnet Dy,Co stripe Dy grating Dy grating Co grating

a 400 300 400

d 200 200 210 200

h 150 160 80 150

z0 80 80 80 80
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detects the longitudinal voltage V�f1� induced by a current
drive I�f1� alternating at frequency f1=30 Hz. The photore-
sistance was calculated as Rxx=V�f1� / I�f1�. We emphasize
that Ba has no direct effect on electron ballistics in the 2DEG
because it lies in the plane. In practice, a small misalignment
is unavoidable. Using Hall voltage measurements, we esti-
mate the residual perpendicular component to be 40 mT
when the total external field is 3 T. This is smaller than the
modulation field.

We now focus on the high-frequency dynamics of sample
A. Under microwave irradiation, the magnetoresistance ex-
hibits a single sharp resonance that moves to higher magnetic
field with increasing microwave frequency—see Fig. 2�a�.
The position of the resonant dip depends linearly on the mi-
crowave frequency—see Fig. 2�b�. The frequency depen-
dence of ferromagnetic resonance generally follows the
Kittel19 formula,

� = ��0��Ha
� + �Nx − Ny�Ms��Ha

� + �Nz − Ny�Ms��1/2, �1�

where � is the gyromagnetic ratio. Nx=0, Ny =0.45, Nz
=0.55 are the demagnetization factors of the stripe derived
from Rhodes and Rowlands23,24 in Appendix A. We find that
Eq. �1� must include the crystal-field anisotropy of Dy to fit
the data which appear shifted to lower field. Magnetocrystal-

line anisotropy behaves as an internal magnetic field H̄h that
adds to Ha.19 We therefore define the effective applied mag-

netic field as Ha
�=Ha+ H̄h. The best fit is obtained for �0H̄h

=0.6 T—see Fig. 2�b� �full line�. One obtains the Landé g

factors g=1.81 �Co� and g=1.95 �Dy�. Broad peaks are
known to characterize the ferromagnetic resonance of dys-
prosium crystals.25,26

To demonstrate that the resonance is microwave induced,
we study its power dependence in the inset to Fig. 2�b�. To
demonstrate that the resonance occurs in the ferromagnet—
rather than in the 2DEG—we study its temperature depen-
dence in Fig. 3. The peak amplitude decreases from 20 to 75
K and completely vanishes at 100 K. Since dysprosium is
ferromagnetic up to 85 K, this explains the photoresistance
resonance in this temperature range. Above 85 K, the mag-
netic moments adopt a spiral structure which produces zero
net magnetization. Ferromagnetic resonance then becomes
impossible which is why the resonant structure vanishes
from the 100 K photoresistance curve. We have therefore
demonstrated that the 2DEG is sensitive to the dynamics of
small magnetic elements at its surface. In the case of indi-
vidual stripes, the FMR occurs at a single frequency.

III. 1D FERROMAGNETIC GRATINGS

Magnetic gratings exhibit more complex magnetic excita-
tions than single stripes. This can be seen in Fig. 4 which
studies the photovoltage of sample B at microwave frequen-
cies varying between 35 and 110 GHz. A series of complex
resonances loosely delimited by the dashed lines replaces the
single resonance of individual stripes. To allow for a more
precise comparison with theory, we plot the onset and the
end of the FMR range as the red �gray� and black circles in
Fig. 5�a�. The onset and the cut-off magnetic fields are taken
at the half height of the FMR range—see Fig. 5�b�. The FMR
bandwidth increases with microwave frequency. It starts
from 0.4 T at 35 GHz and increases to 1.8 T at 110 GHz.

FIG. 2. �Color online� �a� Ferromagnetic resonance of sample A
detected through a change in the resistance of the 2DEG �Ba � y�.
Curves are vertically offset for clarity. �b� Frequency dependence of
the resonant field �symbols� fitted with Eq. �1� �full line�. Inset:
microwave power dependence.

FIG. 3. �Color online� Temperature dependence of the photore-
sistance of sample A. The FMR vanishes above the Curie tempera-
ture of dysprosium �85 K�. The magnetic hysteresis of dysprosium
is visible in the curves measured without microwaves. Other curves
are measured by sweeping the magnetic field up.
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Below 60 GHz, the onset oscillates between the trend line
and a higher magnetic field limit before settling on the higher
magnetic field limit at 42 GHz. In comparison, the oscilla-
tions of the cutoff are weaker and remain centered on the
trend line. It is believed that below 60 GHz, the magnetic
field applied at the FMR onset minus the demagnetizing field
becomes smaller than the field needed to saturate the mag-
netization �1 T. This is why below 42 GHz, the FMR only
survives at the higher end of the resonance range where the
magnetization is more likely to be saturated.

Microwaves also induce a series of discrete resonances at
lower magnetic field. These are indicated by the arrows in
Fig. 4 and by the open circles in Fig. 5. The resonances shift
linearly with frequency but at a weaker rate than the FMR.
The narrowness of the dips and their occurrence below the
FMR is suggestive of localized spin waves. There are two
such localized modes in sample B.

Turning now to sample C, the photovoltage curves of Fig.
6 show a broadening of the FMR band, as in sample B. The
FMR band hosts a complex series of subsidiary resonances.
We plot the frequency dependence of the onset and the end
of the FMR in Fig. 7�a�. The width of the FMR increases

from 0.9 T at 35 GHz to 1.4 T at 80 GHz thus qualitatively
reproducing the trend of sample B. Unlike sample B how-
ever, the width of the FMR is more stable, less dependent on
microwave frequency, below 60 GHz. This is one indication
that dipolar interactions are more effective in stabilizing the
magnetization in the direction perpendicular to the stripes.
This allows the full FMR band to be observed at lower mi-
crowave frequencies than in sample B. The stronger coupling
between stripes in sample C is also implied by the broader
FMR, when compared to sample B. At 80 GHz, the FMR
band is 1.4 T wide in sample C and 1.0 T in sample B.

Sample C exhibits a series of microwave induced dips
below the FMR. The dips are indicated by the arrows in Fig.
6 and by the open circles in Fig. 7�a�. Their frequency de-
pendence is similar to that of the low-field resonances in
sample B. However, there are three resonances in C com-
pared to two in B. The first resonance occurs earlier, at Ba
=0.23 T �C� compared to Ba=0.39 T �B� at 35 GHz. These
data show that spin waves are more tightly confined in
sample B than in C. Lateral confinement by the physical
edges can be ruled out as an explanation, first because h is
twice larger in sample B. The quantization of wave vector
qz= p� /h gives the largest gaps in sample C—the opposite of

FIG. 4. �Color online� Photovoltage spectroscopy of magnetic
excitations in sample B �Ba � y�. The dotted lines are a guide to the
eyes for the magnetic field dependence of the onset and the cutoff
of the FMR range. At lower magnetic field, the arrows indicate a
series of smaller dips induced by microwaves. Curves are vertically
offset for clarity. T=1.3 K.

FIG. 5. �Color online� �a� Frequency dependence of the micro-
wave resonances in the photovoltage of sample B. The fan diagram
shows the FMR onset �red dots�, the FMR cutoff �black dots�, and
the dependence of the small photovoltage dips at low field �blue
open circles�. �b� Details of the fine resonant structure at 35 and 45
GHz. The diameter of the blue circles is proportional to the ampli-
tude of the dips. The onset �red dot� and the end �black dot� of the
FMR range are defined at the midheight of the main resonance.
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what is observed. Second, the nearly identical values of d in
B and C also rules out the quantization of qy. The resonant
dips must therefore arise from �magnetic� confinement in the
y direction. The tighter spin-wave confinement in C is con-
sistent with our earlier report of a stronger dipolar magnetic
field in C.

Figure 8�a� maps the FMR signal detected in the resis-
tance of sample D. The FMR band is 0.75 T wide at 80
GHz—see Fig. 8�b�. This is smaller than in samples
C�1.0 T� or B�1.4 T�. In Appendix B, we calculate the di-
polar magnetic field in the grating and show that it is propor-
tional to the magnetization. Since the magnetization of Co is
half that of Dy, the data demonstrate that the width of the
FMR increases with the strength of the dipolar magnetic
field.

We find that the photoresistance is highly anisotropic
when the magnetic field is rotated in the plane—see Fig. 9.
When the stripes are magnetized along their long axis, the
2DEG effectively decouples from the grating. The magne-
toresistance remains featureless even at the highest micro-
wave power and almost no change is observed when micro-
waves are switched off. An examination of the more
sensitive photovoltage curves reveals a residual FMR signal
and no resonant dips at lower field. Magnetizing the stripes
along x eliminates the magnetic poles. This has three conse-
quences: the stripes decouple from each other, the grating
decouples from the 2DEG and the confinement of surface

spin waves vanishes. The latter explains the absence of reso-
nant dips in the photovoltage curves. Under resonant condi-
tions with Ba �x, the oscillations of magnetization compo-
nents My and Mz induce stray rf magnetic fields at the site of
the 2DEG. The small amplitude of the photovoltage peaks
and the absence of any effect in the photoresistance suggests
that the ferromagnetic resonance cone is very narrow, My,
Mz�Ms. We now develop a theory that incorporates the
above ideas and use it to fit the experiments.

IV. THEORY

We start by calculating the magnetic field emanating from
an infinite array of rectangular stripes whose stripes are as-
sumed to be uniformly magnetized along y. Maxwell’s equa-
tions are solved using Fourier analysis in Appendix B. We
obtain the Hd,y and Hd,z vector components in the analytical
form of Eqs. �B3� and �B4�. We compute their spatial varia-
tion in the case of superlattice C and plot it in Fig. 10. Be-

FIG. 6. �Color online� Photovoltage spectroscopy of magnetic
excitations in sample C �Ba � y�. The broad FMR peak corresponds
to the excitation of DMWs across the grating. The series of dips
highlighted by the arrows indicates resonances with quantized
DESW modes in individual stripes. Curves are vertically offset for
clarity. Inset: dysprosium grating of sample C �detail�.

FIG. 7. �Color online� �a� Frequency dependence of the micro-
wave resonances in the photovoltage of sample C. The fan diagram
shows the FMR onset �red dots�, the FMR cutoff �black dots�, and
the frequency dependence of the small photovoltage dips at low
field �blue circles�. �b� Detail of the 35 GHz curves showing the
resonances with DESW modes and their dependence of microwave
power.

DIPOLAR SPIN WAVES OF LATERAL MAGNETIC… PHYSICAL REVIEW B 82, 224417 �2010�

224417-5



tween −d /2 and +d /2, Hd,y is the demagnetizing magnetic
field of the stripe. This field is strongly inhomogeneous de-
creasing from −0.4 T at the center to −1.4 T near the poles.
By contrast, Hd,y varies smoothly in the z direction away
from the z=0 plane. Note that the magnetic well at 	d /2
extends vertically right up to the physical edge of the stripe
at z=h /2, making magnetic confinement undistinguishable
from physical confinement in this direction. In panel �b�, Hd,z
diverges at the corners of the stripe. This is where the mag-
netic flux flips by 180°. Hd,z decays exponentially away from
the stripes, giving a sinusoidal modulation of amplitude 0.24
T as it passes through the plane of the 2DEG.

Prior to modeling dipolar spin waves in confined geom-
etries, it is necessary to recall the properties of bulk spin
waves in ferromagnetic dysprosium. When Ha is along the
magnetic easy axis—a axis—the energy dispersion curve is
given by27


��q� = ��2S�J�0� − J�q�� + 3K2S−1 + 
��0Ha��2S�J�0�

− J�q�� + 36K6
6S−1 + 
��0Ha��1/2, �2�

where S=15 /2 is the angular momentum on each Dy ion,
J�q� is the Fourier transform of the exchange interaction.
The energy width of the magnon dispersion curve relates to
the exchange energy of dysprosium �Eexch	7 meV.20 K2
=87�106 J m−3 and K6

6=−1.1�106 J m−1 are the axial and
hexagonal energies of magnetocrystalline anisotropy28 which
measure the energy cost of aligning the magnetization along

the c- and b-hard magnetic axes. The anisotropy terms in Eq.
�2� behave as two effective magnetic fields: �0Hc
=3K2 / �SMs� �12 T� and �0Hh=36K6

6 / �SMs� �1.8 T� which
add to Ha.19 Given the large value of the Hc field, magneto-
crystalline anisotropy reduces to the effects of Hh: the FMR
lines are shifted to lower magnetic field by −Hh and there is
a finite resonance frequency at zero magnetic field. Since our
Dy stripes are polycrystalline,29 the magnetic field assumes
random orientations with respect to the a axis. We estimate
the effective anisotropy of the polycrystal by averaging the
sin2 � dependence of the magnetocrystalline energy over the

solid angle of 4� radian. We obtain H̄h=Hh /3 �0.6 T� which
is the offset magnetic field observed in our dysprosium de-
vices.

A. Dipolar edge spin waves

We now calculate the frequencies of spin waves quantized
by magnetic wells at 	d /2 in Fig. 10�a�. The calculation
follows the method of Bayer et al.8 The frequency dispersion
of dipolar-exchange spin waves in a thin film30 is


 �

�M
� = �
�H

�M
+ 
q2�
�H

�M
+ 
q2 +

1 − exp�− qh�
qh

��1/2

,

�3�

where �M =��0M, �H�y�=��0�Ha+ H̄h+Hd,y�y��, and 

=2�A /�0Ms

2 is the exchange constant expressed as a func-
tion of A, the exchange stiffness constant. The wave vector
q=qxex+qyey+qzez has two quantized components qy and qz

FIG. 8. �Color online� �a� Photoresistance of sample D mapped
as a function of microwave frequency and magnetic field �Ba � y�.
The bandwidth of the resonance with DMWs is delimited by the
dashed-dotted lines. �b� Microwave power dependence.

FIG. 9. �Color online� Comparison of the photoresistance ob-
tained in a transverse magnetic field �Ba � y� and a longitudinal mag-
netic field �Ba �x� for sample B. When Ba �x, the dipolar magnetic
field is zero. Resonant absorption is recovered by aligning Ba � y.
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and one free component qx. Wave vector qz= p� /h, p
=1,2 ,3 , . . . is quantized by the finite thickness of the film.
Wave vector qy is confined by the spatial variation of the
internal magnetic field. When the Larmor frequency of the
internal magnetic field is smaller than the microwave fre-
quency, �H��, Eq. �3� admits real solutions in q which
correspond to propagating waves. If the solutions are imagi-
nary, spin waves are evanescent. Dipolar surface spin waves
thus propagate near the poles where the internal magnetic
field is the lowest. With the magnetic field profile behaving
as a quantum well, the momentum qy takes discrete values
given by the Wentzel-Kramers-Brillouin quantization,12

�
yl

yr

qy�Hd�y�,��dy = m� . �4�

yl and yr are the left and right turning points shown in Fig.
11. For the magnetic well centered at +d /2, yl is the point
where spin waves become evanescent and yr is where �H
=0.

We proceed with the calculation by finding the wave vec-
tor qm where the dispersion curve, Eq. �3�, goes through its
minimum. qm depends only on the microwave frequency. By
inserting qm into Eq. �3� we find the internal magnetic field at
the left turning point. The spatial variation in the dipolar
magnetic field being known, we obtain yl by solving Eq.
�B3� numerically. The right turning point is obtained in a
similar way by solving �H�yr�=0. Once yl and yr are known,
the frequencies of the quantized DESWs m=1,2 ,3 , . . . are
calculated using Eq. �4�. These modes are shown in Fig. 11.
Their magnetic field dependence is plotted in Fig. 12.

We now comment on the theoretical magnetic field depen-
dence of the DESW frequencies in Fig. 12. The theory agrees
with the experiment on the following points. First, the
DESW fan structure starts from a lower magnetic field in
sample C than in sample B. This is because the demagnetiz-
ing field is stronger inside stripe C—see Fig. 11. As a result,
the magnetic field �B needed to create a spin wave well is
smaller in C than in B. Second, the theory obtains the correct
number of trapped modes using A=1.5�10−12 J m−1 as the
spin exchange stiffness constant of dysprosium.20 The ex-

FIG. 10. �Color online� Spatial variation in the �a� in-plane and
�b� perpendicular dipolar magnetic field in one stripe of superlattice
C. The superlattice is assumed to be magnetized to saturation along
y. The edges of the stripe are indicated by the full lines in the �y ,z�
plane. The magnetic field that couples the grating to the 2DEG is
the sine wave at the fore of panel �b�.

FIG. 11. �Color online� Internal magnetic field across one stripe

at height z=0. The magnetic bias is Ba+ B̄h=1 T. �B is the bias
threshold where the internal magnetic field becomes positive at the
center of the stripes and starts squeezing spin waves against the
edges. The quantized DESW modes m=1, 2, and 3 �p=1� are
shown together with their frequencies. yl and yr are the left and
right turning points of the m=3 DESW mode.
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change constant calculated from 
=2�A /�0Ms
2 gave 


=0.5 nm2. Third, the theory predicts one more branch in the
theoretical fan of C than in the fan of B. This is consistent
with the observation of an additional branch in the experi-
mental fan of sample C. This difference is explained by the
deeper spin wave well of sample C—see Fig. 11. Fourth, the
theory correctly locates the DESW resonances below the
FMR. Fifth, the frequency splitting of the p=1 and p=2
subbands induced by the vertical confinement is negligible
compared to magnetic confinement along y.

The nonlinearity of the theoretical branches however pre-
vents making a quantitative fit. The bend in the m=1 curve
of panel �b� occurs when the right turning point of the first
DESW mode collides with the pole surface. At this point, the
tighter confinement results in an upward shift of the m=1
mode. The drift of this mode toward the pole surface is
shown in the inset to Fig. 11. Possible ameliorations to this
picture are discussed in Sec. V.

B. Dipolar magnetization waves

We now consider an infinite array of rectangular magnetic
stripes and calculate the frequency dispersion curve of the
DMWs, ��qy�. The dephasing of the magnetization from one
stripe to the next makes the coupling between stripes depen-

dent on wave vector qy. As a result, the grating becomes a
dispersive medium for the magnetization waves that propa-
gate through it. The DMW modes enter resonance over a
finite range of frequencies which explains the FMR band-
width. Since the FMR occurs in magnetic fields over 1 T, we
consider the magnetization of Dy stripes to be saturated.

Consider one stripe labeled n=0. Its magnetization M�0�

experiences a torque from Ba as well as from the spatially
varying magnetic field emanating from all stripes. With our
assumption of a homogeneous magnetization, the overall
torque applied to stripe n=0 is the torque exerted by the stray

magnetic field averaged over the stripe �B̄�. Under constant
microwave irradiation, the magnetization obeys a gyroscopic
equation of the form

dM�0�

dt
= �M�0� ∧ B̄�t� , �5�

where

B�y,t� = �0�0

Hd,y�y,t� + Ha
�

Hd,z�y,t� ,
� �6�

Hd is obtained from elementary magnetostatics24,31 as the
sum of the dipolar field from each stripe. The magnetization
of stripe n, M�n��t�, generates a dipolar magnetic field
Hd,y

�n��y , t�=−Ny
�n��y�My

�n��t� and Hd,z
�n��y , t�=−Nz

�n��y�Mz
�n��t� at

the locus of stripe 0. The coefficients N�n� are calculated at
z=0 by neglecting the variation in the internal magnetic field
in the z direction. This approximation is suggested by an
examination of Fig. 10�a� and will be verified below. One
obtains

Ny
�n��y� =

1

�
�arctan

1

�n
+ − arctan

1

�n
−� , �7�

Nz
�n��y� =

1

�
�arctan �n

+ − arctan �n
−� , �8�

where �n
	= �2y−2na	d� /h. Nx

�n��y�=0. The coupling coeffi-
cients are averaged to give the torque on stripe 0,

N̄

�n� =

1

d
�

−d/2

+d/2

dyN

�n��y� 
 � �y,z� . �9�

If n=0, Eq. �9� gives the demagnetization coefficients of the
semi-infinite prism. These satisfy the well-known sum rule

N̄x
�0�+ N̄y

�0�+ N̄z
�0�=1. If n�0, the N̄


�n� may be loosely viewed
as generalized demagnetization coefficients arising from the

coupling to other stripes. However N̄y
�n� is negative whereas

N̄z
�n� is positive. These coefficients obey a new sum rule:

N̄x
�n�+ N̄y

�n�+ N̄z
�n�=0 �n�0�. One calculates Hd by summing

the contribution from all stripes. The result is inserted into
Eqs. �5� and �6�. We solve Eq. �5� by seeking solutions of the
form M�n��t�=M�0�ei�qyna−�t�. Using the symmetry property

N̄

�n�= N̄


�−n�, one finds the dispersion curve of DMWs,

FIG. 12. �Color online� Theoretical frequency dependence of the
DESW modes �m=1,2 ,3 , . . . , p=1,2� in samples �a� C and �b� B.
The theoretical frequency dependence of the onset and cut-off mag-
netic fields of the DMW band is plotted as the red and black curves.
Inset: left and right turning points of the m=1 DESW mode. This
mode drifts toward the edge of the stripe as the magnetic field
increases.
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�2 = ���0�2�Ha
� + �

n=0

�

cn�N̄z
�n� − N̄y

�n��cos�qyna�Ms�
��Ha

� − �
n=0

�

cnN̄y
�n� cos�qyna�Ms� , �10�

where c0=1 and cn=2 for n�0. Equation �10� generalizes
the Kittel formula of Eq. �1�.19 It makes clear that dispersive
terms arise from the demagnetization coefficients of higher
order n�0. The effects of long range dipolar coupling are
particularly noticeable at long wavelengths where the fre-
quency depends linearly on the wave vector—see Fig. 13.
The group velocity of DMWs is negative because the Ny

�n� are
negative. At long wavelengths, the in-plane dipolar field re-
inforces the applied magnetic field. As a result the Larmor
frequency is maximum at qy =0. For comparison, we have
also calculated the volume spin-wave modes30 of the unpat-
terned Dy film which has the same thickness as sample
C—see Fig. 13. The frequency offset between these modes
and DMW modes at q=0 is due to the demagnetizing field in
the patterned film.

Returning to the experimental data, the DMWs of wave
vector qy =0 are the first to enter resonance since they require
the lowest magnetic field to oscillate at frequency �. The
DMW modes at qy =0 �qy =� /a� are excited at the onset
�cutoff� of the FMR range. The theoretical dependence of the
FMR onset �red �gray� line� and the FMR cutoff �black line�
is plotted in Fig. 12. The use of the nominal parameters of
samples B and C gives a FMR linewidth and position in very
good agreement with the experiment �dots�. This demon-
strates the formation of DMWs in superlattices.

V. DISCUSSION

Our results demonstrate the coexistence of two types of
spin waves in magnetic superlattices. Dipolar magnetization

waves are plane waves that travel across the superlattice.
Dipolar edge spin waves, by contrast, are two-dimensional
waves quantized by spin-wave quantum wells near pole sur-
faces. There is no experimental evidence suggesting the hy-
bridization of DESWs across the superlattice. Judging the
strength of the dipolar interaction by the height of the reso-
nances, the coupling between DESWs in different stripes
must be at least ten times smaller than the magnetostatic
coupling between stripes. The experiment does not permit to
ascertain whether DESWs trapped at opposite edges of the
same stripe hybridize or not. Intrastripe coupling is predicted
to be negligible at the high magnetic fields that we apply.8

This seems to be confirmed by the absence of splitting of the
dips at higher m values. The magnetic field dependence of
these dips is more fanlike than the theory predicts.32 This
discrepancy comes from the assumption of a uniform mag-
netization which we made to calculate Hd. This assumption
has the effect of giving a strong demagnetization field be-
tween yr and +d /2 which tends to create a magnetic domain.
As a result, the magnetization and dipolar field must be com-
puted self-consistently with the result that both the magneti-
zation and the dipolar field decay smoothly to zero at +d /2.
This correction to the model would make yr�d /2 and elimi-
nate the bend in the m=1 branch of Fig. 12�b�.

Microwaves excite spin waves of finite momentum
through two-magnon scattering. A priori, this process can
excite either volume spin waves propagating in the direction
of the magnetization �q � y� or DMWs. Both modes have
similar dispersion curves with negative group velocity. The
wave vector of backward volume modes will however be
quantized by the edge of the stripes. The smallest allowed
momentum qy =� /d is outside the Brillouin zone of the su-
perlattice. We believe that the superlattice couples micro-
waves more efficiently to DMW modes than to volume
modes because magnons at the lowest frequencies in the
DMW spectrum can be excited with a much smaller momen-
tum. The grating behaves as a two-dimensional coupler of
magnons to microwaves in a similar way as at infrared
frequencies.33,34 Concerning volume modes propagating
along the wire, Fig. 13 shows that their dispersion curve has
a width of only 5 GHz which is too narrow to explain the
observed FMR band. It also seems unlikely that these vol-
ume modes are excited together with DMW modes because
no gap appears in the FMR spectrum. Therefore it can be
argued that microwaves couple predominantly to DMW
modes. From a pure experimental point of view, we believe
that the FMR broadening is mainly due to dipolar coupling
for the following reasons. First, samples B �Dy� and D �Co�
have the same dimensions, yet the FMR of B is 1.4 times
broader than that of D. Second, if one compares the reso-
nance of individual Dy stripes �A� with those of a grating
made of the very same stripes �B�, one notices that A has a
single resonant peak whereas B shows a “square” band in-
corporating a weaker substructure. If scattering by volume
modes occurred in the grating, a resonant band would also be
seen in the single stripes. Although the shape of resonances
varies from sample to sample, the differences in resonance
width is a constant feature that distinguishes the stripes from
the arrays. We can therefore say with confidence that the
broadening of the resonance in superlattices arises from in-

FIG. 13. �Color online� Frequency dispersion curve of dipolar
magnetization waves in superlattice C at Ba=5 T. The volume
spin-wave modes of a 80-nm-thick dysprosium film are also shown
for the two directions of propagation, parallel �q � y� and perpen-
dicular �q �x� to the magnetization.
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teractions between stripes. To be complete, we verify the
assumption of the constancy of the internal field along z
which we made when calculating the demagnetization coef-

ficients N̄

�n�. Considering one stripe of sample B, the demag-

netization factors calculated from Eq. �9� are N̄y
�0�=0.49 and

N̄z
�0�=0.51. The exact demagnetization factors calculated

from Eqs. �A1� and �A2� are Ny =0.45 and Nz=0.55. The
small differences in these numbers show that Eq. �10� re-
mains a good approximation of the dispersion curve even for
relatively thick stripes.

In conclusion we have shown that photovoltage measure-
ments in hybrid structures provide a highly sensitive and
noninvasive probe of the magnetization dynamics. By sam-
pling the stray magnetic field emanating from individual spin
waves, we were able to demonstrate the formation of ex-
tended dipolar magnetization waves and localized edge spin
waves in arrays of ferromagnetic stripes. Our technique
complements established techniques by resolving the magne-
tization dynamics of ultrasmall magnets using micron size
Hall junctions.
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APPENDIX A: DEMAGNETIZATION FACTORS OF
INFINITE STRIPES

Given a rectangular stripe of cross-sectional aspect ratio
k=h /d, the demagnetization factors23 are

Ny =
1

�k
ln
 1

�1 + k2� +
k

�
ln
�1 + k2

k � + 1 −
2

�
arctan

1

k
,

�A1�

Nz =
k

�
ln
 k

�1 + k2� +
1

�k
ln��1 + k2� + 1 −

2

�
arctan k .

�A2�

APPENDIX B: DIPOLAR MAGNETIC FIELD OF A 1D
SUPERLATTICE

We obtain the magnetic field H emanating from the grat-
ing by solving the Maxwell’s equations of magnetostatics
� ·H=−� ·M and �∧H=0. Consider one stripe centered on
the origin whose magnetization My is homogeneous. The
magnetization function defined across one period of the grat-
ing is

M = �
0

My
�
z −
h

2
� − �
z +

h

2
��
�
y −

d

2
� − �
y +

d

2
��

0
� ,

where � is the Heaviside step function. The magnetization
function is step and repeated across the grating hence lending
itself to Fourier analysis. The symmetry of the system and its
invariance by translation along x imply that H=Hy�y ,z�ey
+Hz�y ,z�ez. The two Maxwell’s equations are easily solved
in Fourier space after making the transformation,

H�y,z� = �
n=−�

+�

H�qn,z�e−iqny , �B1�

H�qn,z� =
1

a
�

−a/2

+a/2

dyH�y,z�e+iqny , �B2�

where qn=2�n /a. We first obtain the Fourier coefficients
H�qn ,z� then compute the stray magnetic field in real space
using Eq. �B1�. The in-plane vector component is

Hy�y,z� = − My
hd

a �
n=1

+�

qnFy�qn,z�cos�qny� , �B3�

where the form factor is

Fy�qn,z� =�
sin
qnd

2
�

qnd

2

sinh
qnh

2
�

qnh

2

e−qn�z� �z� �
h

2

sin
qnd

2
�

qnd

2

1 − e−qnh/2 cosh�qnz�
qnh

2

�z� �
h

2
� .

The perpendicular vector component is

Hz�y,z� = + My
hd

a �
n=1

+�

qnFz�qn,z�sin�qny� �B4�

with form factor

Fz�qn,z� =�
sin
qnd

2
�

qnd

2

sinh
qnh

2
�

qnh

2

sgn�z�e−qn�z� �z� �
h

2

sin
qnd

2
�

qnd

2

sinh�qnz�
qnh

2

e−qnh/2 �z� �
h

2
� ,

where

sgn�z� = �+ 1 z � 0

− 1 z � 0
� .
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