
Macroscopic and microscopic investigation of the antiferromagnetic phase of TbB6

M. Amara,1,* R.-M. Galéra,1 I. Aviani,2 and F. Givord3

1Institut Néel, CNRS and Université Joseph-Fourier, BP 166X, F-38042 Grenoble, France
2Institute of Physics, Bijenicka cesta 46, P.O. Box 304, HR-10000 Zagreb, Croatia

3CEA-Grenoble, INAC/SPSMS/MDN, F-38054 Grenoble, France
�Received 21 April 2010; revised manuscript received 8 November 2010; published 10 December 2010�

The antiferromagnetic state of TbB6 has been investigated by means of magnetic susceptibility, magneto-
striction, and x-ray diffraction measurements on a single crystal. The anisotropy of the magnetic susceptibility
and the magnetostriction data point to a tetragonal symmetry in the antiferromagnetic state. Below TN, the
x-ray diffraction investigation shows the emergence of charge reflections related to wave vectors of the � 1

200�
and � 1

2
1
20� types, similar to those observed in GdB6. The � 1

200�-type reflections clearly result from the forma-
tion of static atomic displacement waves. The stabilization of atomic displacement waves is described as a
compromise between the exchange coupling and a single-ion elastic energy. This mechanism is shown to be
responsible for the recurrence of the � 1

4
1
4

1
2 � magnetic wave vectors in rare-earth hexaborides. A combined

analysis of experimental and theoretical data points to only two stable tetragonal models for TbB6 antiferro-
magnetic structure. This study confirms the influence of exchange displacements in rare-earth hexaborides and
highlights the need for a systematic investigation of the magnetic anisotropy of antiferromagnets.
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I. INTRODUCTION

Due to indirect exchange interactions of the Ruderman-
Kittel-Kasuya-Yoshida �RKKY� �Ref. 1� type, most rare-
earth �RE� intermetallic compounds are magnetically ordered
at low temperature. This order is frequently of the antiferro-
magnetic kind and can take complex forms,2 well beyond the
simple collinear antiphase archetype. This variety of antifer-
romagnetic �AF� structures is related to the high level of
degeneracy that can be expected for the AF state, if only
isotropic exchange interactions are taken into consideration.
The actual structure then results from a delicate balance be-
tween various additional couplings. The first coupling that
has to be considered is that of the 4f orbitals with the crystal
field. The crystal field is the main contributor to the magnetic
anisotropy and drastically reduces the AF-state degeneracy.
However, for systems with multiaxial symmetry, particularly
the cubic one, taking into account the crystal field and bilin-
ear exchange interactions does not point to a unique antifer-
romagnetic model. In particular, to explain the energy differ-
ence between a collinear and a multiaxial magnetic structure,
additional pair interaction terms are needed. For this pur-
pose, an orbital mechanism is usually invoked, namely the
quadrupolar couplings between the 4f ions or between the
ions and a lattice striction mode �i.e., the magnetoelastic cou-
pling�. These orbital couplings have been shown to deter-
mine not only the multiaxial nature of the magnetic struc-
tures but also to induce sizable magnetostriction phenomena
and, as well as the crystal field, to influence the magnetic
transitions in their type �first or second order�, critical field
and temperature.3 They are thus central in the understanding
of the features of the antiferromagnetic range of cubic 4f
systems. However, they cannot be invoked when complex
antiferromagnetic properties are observed in systems where
the 4f ions lack an orbital degeneracy. In the case of GdB6, it
has been established that the exchange driven displacements
of the Gd ions are responsible for the peculiarities of the

antiferromagnetic order:4,5 the first-order magnetic transition
at TN and the succession in temperature of two spontaneous
AF phases, that would have been otherwise ascribed to or-
bital effects. The signature of this alternative mechanism is
the development, below TN, of static atomic displacement
waves that were characterized using single crystal x-ray
diffraction.5,6

In principle, the influence of the exchange displacements
should not restrict to L4f =0 compounds and can be consid-
ered for any system with a favorable crystallographic struc-
ture. This is the case of the rare-earth hexaboride series,

where the CaB6-type structure �space group Pm3̄m� leaves
some latitude of movement for the rare-earth ion inside its
boron cage. To check the relevance of the exchange displace-
ment mechanism for other elements within this series, we
have turned our attention to the TbB6 compound. Extrapo-
lated according to the de Gennes law, the effects of the dis-
placements in TbB6 should be comparable to those in GdB6.
In this regard, one can expect a first-order transition at TN,
without need of invoking a crystal-field effect.

There are indeed experimental indications, via specific
heat,7 magnetic,8 elastic9 measurements, and powder neutron
diffraction,10 of a first-order magnetic transition in TbB6 at
TN=19.5 K �this temperature seems to be strongly sample
dependent, the values in the literature8,11 ranging from 17.4
to 21 K�. The powder neutron-diffraction patterns can be
indexed considering � 1

4
1
4

1
2 � magnetic wave vectors,10 as in

GdB6, but, unlike this latter, a single AF phase is stable down
to the lowest temperatures in TbB6. Due to the intrinsic
ambiguities13 of powder neutron diffraction, the actual mag-
netic structure cannot be derived from these experiments. It
could be determined from additional neutron scattering ex-
periments on a single crystal, under an applied magnetic
field, but this would require the preparation of a specific
sample using 11B enriched boron. As good quality single
crystals, although not 11B enriched and, alternative, macro-
scopic and microscopic, experimental techniques were avail-
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able, we undertook a extensive investigation of TbB6 AF
state without resorting to single crystal neutron diffraction.

In this paper, we thus present a study of TbB6 antiferro-
magnetic state which combines macroscopic �magnetic sus-
ceptibility, magnetostriction� and microscopic �x-ray diffrac-
tion� techniques applied to a single crystal. The anisotropy of
the antiferromagnetic susceptibility is characteristic of the
macroscopic symmetry and, once determined, is a mean for
controlling the sample’s domain distribution. Thereafter, the
magnetostriction measurements can provide a quantitative
characterization of the antiferromagnetic symmetry lower-
ing. In rare-earth compounds, the magnetostriction phenom-
ena mainly reflects the 4f shell distribution changes at the
zone center. Outside the zone center, x-ray diffraction is well
suited for revealing charge arrangements associated with the
antiferromagnetic state �atomic displacements or multipolar
arrangements�.

The experimental part of this paper divides into three sec-
tions. The first section is devoted to the antiferromagnetic
susceptibility measurements and their analysis based on do-
mains selection. The second section deals with the magneto-
striction measurements and, again, with the delicate point of
domains effects. In the last experimental section, the x-ray
scattering experiments, aimed at the detection of reflections
specific to the AF state, are presented. In the second part of
the paper, a joint analysis of the different experimental and
theoretical data is carried out in order to define consistent
models for TbB6 magnetic structure. The physical relevance
of these structures is checked using a mean-field model
which accounts for the exchange displacements phenomena.

II. EXPERIMENTAL PART

Considering a crystallographic system with a single mag-
netic ion per cell, the transition from the paramagnetic to the
antiferromagnetic state is characterized by the loss of part of
the translation group elements �the antiferromagnetic cell is
bigger than the paramagnetic one� and part of the rotation
group �due to the orientation of the magnetic moment along
a single or a few particular axes of the crystal�. To detect
changes in the translational symmetries a microscopic probe
is needed. Since decades, neutron diffraction has been the
most effective tool for magnetic structure determination. The
alternative x-ray probe is weakly sensitive to magnetism but
is optimal for detecting new charge periodicities in relation
with the magnetic order.

The loss of point symmetries at the antiferromagnetic
transition can be tracked via macroscopic experimental tech-
niques. Indeed, according to Neumann’s principle, the aniso-
tropy of a crystal tensorial property is dictated by the point
symmetries of the magnetic cell. The careful investigation of
a physical property should yield valuable data, not only in
terms of a physical quantitative determination but also as a
probe of the system symmetry in the AF state.

A. Macroscopic investigation

With the loss of symmetry below TN, a single crystal in-
evitably divides into areas, the domains, which, despite a

common point group, differ in their singular elements of
symmetry.29 Without the knowledge of these domain distri-
bution, bulk measurements on the crystal yield an extrinsic
average. Thus the determination of any anisotropic physical
property is strongly hampered. In the following, regardless
of spatial continuity, we consider that all the parts of the
sample sharing the same point symmetry elements belong to
the same domain. In the academic case of domains equipar-
tition, the macroscopic average should restore, in appear-
ance, the symmetry of the paramagnetic state. To reveal the
hidden anisotropy, one has to establish a well-defined unbal-
anced domain distribution. This can be achieved by submit-
ting the sample to some anisotropic field. In magnetic sys-
tems, the most obvious candidate is a magnetic field. In
principle, for a given field direction, due to the different
magnetic susceptibilities, the chemical potentials of the vari-
ous domains will develop differently with the field ampli-
tude. Accordingly the domain walls will move until the
sample reaches a single-domain state �in a less ideal case, a
degeneracy can persist between domains of equivalent sym-
metry�. This state will allow an accurate determination of all
the sought anisotropic properties, but to achieve this it re-
quires the prior knowledge of the magnetic-susceptibility an-
isotropy. Thus the investigation of any macroscopic, possibly
anisotropic, property should begin with a careful determina-
tion of the antiferromagnetic susceptibility. In the following
section, this question is addressed by a systematic consider-
ation of the various situations of symmetry lowering, then of
anisotropy of the magnetic susceptibility. This methodology
is applied to the investigation of the AF-state magnetic sus-
ceptibility in TbB6, in order to subsequently determine an-
other tensorial property characteristic of the AF state: the
spontaneous magnetostriction.

The sample used in all the experiments is a single crys-
talline sphere of 3.5 mm diameter. The crystal growth meth-
ods are detailed in Ref. 12.

1. Magnetic susceptibility

a. Methodology. The static magnetic susceptibility is a
real symmetric tensor of rank 2, which means that, along the
principal axes of the system, it can be written as a 3�3
diagonal matrix with up to three distinct elements. This num-
ber of elements reduces to one in the highly symmetric case
of cubic systems in the paramagnetic state, the only systems
we shall here consider.13 Below the Néel point, the symmetry
of the crystal may change in accordance with the new point
symmetries of the magnetic arrangement. AF states that keep
the cubic symmetry of the paramagnetic state are not uncom-
mon in systems with multiaxial antiferromagnetism as, for
instance, DyCu,14 TmGa3,15 or NdZn.16 In such cases the
magnetic susceptibility remains isotropic as well as all the
bulk physical quantities. In AF states with point symmetry
lower than cubic, the induced anisotropy leads to an increase
in the number of independent elements in the susceptibility
tensor. Two different values on the diagonal is the first de-
gree to consider for describing this emerging anisotropy. This
happens for a system with a single n-fold axis with n higher
than two: starting from a cubic symmetry, the relevant situ-
ations are those of tetragonal or trigonal symmetry lowering
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where, respectively, a fourfold or threefold rotation axis is
preserved. If the symmetry is further reduced, the crystal
symmetry belongs to the orthorhombic, triclinic, or mono-
clinic systems, in which cases three distinct values are
needed to describe the system susceptibility. However, such
drastic symmetry reductions are less likely in cubic rare-
earth compounds3 and the analysis is here restricted to the
tetragonal and trigonal cases.

The tetragonal and trigonal crystal systems have two char-
acteristic values for the susceptibility that we denote by ��

and �� for field directions, respectively, parallel and perpen-
dicular to the fourfold and threefold axis. The analysis of the
field selection of domains is based on the contrast between
these two susceptibilities. The first step is to establish the list
of the domains that coexist in the AF state. For the tetragonal
case, three domains are expected which differ in their respec-
tive fourfold axes, parallel to the three fourfold directions of
the cubic paramagnetic phase. Similarly, there are four trigo-
nal domains, each one having its threefold axis along one of
the paramagnetic cubic threefold axis. Once the domains are
listed, according to the hierarchy between �� and ��, one can
predict which domains will be selected for a given field di-
rection: i.e., the domains whose “easy” antiferromagnetic
axis is the closest to the field direction �this approach is
analog to Néel’s “phases rule” for ferromagnets17�. After
completion of the field selection, the sample state is perfectly
defined as regards the domains distribution. At this stage, any
anisotropic property can be, in principle, accurately deter-
mined using the appropriate experimental means. Tables I
summarizes the effect of the domains selection, within the
tetragonal or trigonal hypothesis, for a magnetic field applied
along the cube’s high-symmetry directions and according to
the hierarchy between �� and ��. The selected domains are
listed between braces �� with indices referring to the direc-
tion of their fourfold or threefold axis. As a result of the
analysis, the effective susceptibility �xyz, for a field applied
along �xyz	, is defined as a linear combination of �� and ��.
Characteristic inequalities and equations between the effec-
tive susceptibilities are thus obtained which should allow the
identification of both the symmetry lowering �tetragonal or
trigonal� and inequality between �� and ��.

Conversely, this analysis allows the determination of ��

and �� from susceptibility measurements along the crystal
high-symmetry directions �see the definitions on the last two
lines of Table I�.

b. Measurements. Magnetization measurement were per-
formed at the Institut Néel. The used setup is an extraction-
type magnetometer, with a sensitivity better than 10−5 emu
and an accuracy of about 0.1%. The available field range
goes up to 10.5 T, while the sample can be cooled from 300
K down to 1.5 K in a helium flux cryostat. Two kinds of
measurements were performed:

�i� Constant temperature, with a field excursion from 0 to
8 T, then from 8 to 0 T. The susceptibility was then derived
using the Arrott method18 restricted to the decreasing field
part of the measurements. In this way, the data comes from a
sample where the domains distribution has been imposed by
the applied field.

�ii� Constant field �0H=1 T, for a temperature increasing
from T=2.5 K up to 30 K. Prior to this temperature varia-
tion, the field was swept from 0 to 8 T, then down to 1 T in
order to ensure proper domains selection. It is assumed that
the domain partition is then stable up to TN.

Figure 1 shows the magnetization loops measured along
the three main directions of the cube at T=3 K, for a field
sweep 0–8-0 T. The fourfold axis is the only direction for
which a clear hysteresis is observed, i.e., an irreversible
change in the domains distribution. The initial susceptibility
is very similar for the three field directions, which is indica-
tive of near equipartition of the domains for the sample vir-
gin state. The apparent isotropy disappears at 5.5 T, as the
fourfold axis curve displays a sudden upward jump. There is
no reverse effect as the field is decreased, the sample having
reached a new, apparently stable, domains distribution. This
is in contrast with the threefold axis situation, for which the
magnetization in increasing or decreasing the field is almost
superimposable. Except for a sudden increase of the curve
slope above 7 T, which is due to the proximity of a field
induced phase transition,8 the measurements along the two-
fold direction show no accident and very little hysteresis.

These low temperature measurements show that TbB6
AF-state susceptibility is anisotropic, with a clear “easy axis”

TABLE I. Effective magnetic susceptibilities �xyz of a cubic crystal undergoing a tetragonal or trigonal symmetry lowering, for a
magnetic field applied along �xyz	. They are obtained from the list of the field selected domains �between ��� as expected from the hierarchy
between the two normal susceptibilities �� and ��, respectively, parallel and perpendicular to the fourfold or threefold axis �see text�. The
characteristic inequalities and equations, between the effective susceptibilities, are, respectively, given in the lines entitled Sequ. and Equ.

Tetragonal Trigonal

�� ��� ����� �� ��� �����

�xyz	 Domains �xyz Domains �xyz Domains �xyz Domains �xyz

�001	 �001� �� �100,010� �� �111,111̄ ,11̄1 , 1̄11� 1
3 ��� +2��� �111,111̄ ,11̄1 , 1̄11� 1

3 ��� +2���

�110	 �100,010� 1
2 ��� +��� �001� �� �111,111̄� 1

3 �2�� +��� �11̄1 , 1̄11� ��

�111	 �100,010,001� 1
3 ��� +2��� �100,010,001� 1

3 ��� +2��� �111� �� �111̄ ,11̄1 , 1̄11� 1
9 ��� +8���

Sequ. �001��110��111 �110=�001��111 �111��110��001 �110��111��001

Equ. �110= 3
4�111+ 1

4�001 �110=�001 �110= 1
2�111+ 1

2�001 �110= 3
2�111− 1

2�001

�� �001 2�001−�110 �111 �001−2�110

��
1
2 �3�111−�001� �110,�001

1
2 �3�001−�111� �110

MACROSCOPIC AND MICROSCOPIC INVESTIGATION OF… PHYSICAL REVIEW B 82, 224411 �2010�

224411-3



character for the �100	 direction. Less contrast is observed
between the �110	 and �111	 directions. However, if one con-
siders more carefully the curves for decreasing fields close to
zero, the magnetization appears to be slightly larger along
the twofold axis than along the threefold one.

From the Arrott determinations of the susceptibilities, this
hierarchy, �001��110��111, generalizes to the whole antifer-
romagnetic range of TbB6 �Fig. 2�. As expected from the
weakening of the anisotropy while increasing the tempera-
ture, the advantage of the fourfold axis over the twofold and
threefold axis decreases as TN is approached. At TN, the first-
order character of the transition from the antiferromagnetic
to the paramagnetic state is evident in the upward jump of
the susceptibility. The magnetization measurements under a
constant field �0H=1 T �connected dots on Fig. 2�, provide
a faithful approximation of the Arrott determination. They

show no discontinuity while heating the sample up to TN,
which attests to the stability of the domains distribution ob-
tained after the initial field sweep. The slight difference with
the Arrott determination results from higher orders suscepti-
bilities which already interfere under a 1 T applied field.

As discussed in the methodology section, Table I, the
dominant fourfold susceptibility, with minimal susceptibility
along the threefold direction, is characteristic of a tetragonal
symmetry with maximum susceptibility along the fourfold
axis. This can be checked up to a quantitative level using the
equation �110= 3

4�111+ 1
4�001 from Table I. The �110 value

thus deduced from �111 and �001 compares very well with the
direct experimental determination. From the relations in
Table I, the two tetragonal susceptibilities, �� and ��, can be
derived from the measurements and their thermal depen-
dence is reported in the inset of Fig. 2.

Beyond this phenomenological analysis, the anisotropy of
the antiferromagnetic susceptibility gives some indication re-
garding the magnetic structure of TbB6. In order to get a
higher susceptibility along the fourfold axis, the magnetic
moments most likely lie perpendicular to this same axis. The
fourfold symmetry implies that, within the plane perpendicu-
lar to the fourfold axis, there are at least two distinct direc-
tions for the magnetic moments: the magnetic structure of
TbB6 is thus necessarily multiaxial.

2. Magnetostriction

a. Methodology The framework used to analyze the mag-
netostriction data is that of the cubic normal strain modes19

��� ,�1
� ,�2

� ,�1
� ,�2

� ,�3
��. In that context, using the definitions of

Ref. 3 and along an axis of direction cosines ��x ,�y ,�z�, the
sample elongation 	= dl

l is related to the normal strain modes
via the equation:

	�x�y�z
=

1

3

�� +
1

6

��3�z
2 − 1��1

� + 
3��x
2 − �y

2��2
�	

+ 
2��x�y�1
� + �y�z�2

� + �z�x�3
�	 . �1�

In the present case of a phase transition with a symmetry
lowering from cubic to tetragonal, choosing the z axis as the
fourfold axis, only two normal modes will contribute to the
sample elongation: �1

�=�� and ��, respectively, describing the
tetragonal and the volume strain modes. In this context, Eq.
�1� reduces to

	�x�y�z
=

1

3

�� +
1

6

�3�z
2 − 1���. �2�

The volume mode �� is needed to account for both the
usual thermal expansion and the specific volume magneto-
striction that should be present, even if small. Determining
the two quantities, �� and ��, requires at least two experi-
mental configurations for the measurement of the sample
elongation. In order to rigorously define these configurations,
one has to consider the results of the antiferromagnetic sus-
ceptibility investigation: the symmetry lowering being iden-
tified as tetragonal and the maximum susceptibility as ��, the
sample direction which should be sensed, as well as the op-
timal field directions for domains selection can be defined.
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FIG. 1. Magnetization loops at T=3 K measured along three
high-symmetry axes of a TbB6 single crystal.
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FIG. 2. �Color online� Magnetic susceptibilities of a TbB6 single
crystal along the three high-symmetry directions. The large full dots
results from the Arrott method, whereas the lines represent the ratio
M /�0H for �0H=1 T. The inset gives the thermal dependence of
the normal susceptibilities, �� and ��, as deduced from the relations
in Table I.
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According to Eq. �1�, for a tetragonal symmetry lowering,
the maximum elongation/contraction of the sample develops
along the �100	, �010	, or �001	 directions. The optimal di-
rection along which to probe the sample’s changes in length
is then a fourfold axis of the initially cubic crystal. In our
experiments, this axis of elongation is referred to as �001	.
The observed changes in length will depend on the domains
distribution, thus on the direction of the applied magnetic
field. The expected domains distributions and sample elon-
gations along �001	 for relevant high-symmetry directions of
the applied field are listed in Table II. In case the selected
domain is not unique, the reported sample elongation is de-
rived by linearly composing the contributions of the present
domains with, if necessary �indicated by the symbol “*” in
Table II�, the additional hypothesis of equipartition.

From Table II, it appears that the most reliable determi-
nations of the sample elongation along �001	 are obtained for
a magnetic field directed along �001	, �100	, and �110	. For
the H//�001	 and H//�100	 configurations, the sample reaches
a single domain state, whereas for H//�110	, the two selected
domains equally contribute to the elongation. The configura-
tion with parallel magnetic field and measured elongation
yields 	//=

1

3

��+ 2

6

��, parallel to the fourfold axis of the
single domain. The other two configurations result in the
elongation perpendicular to the fourfold axis of the tetrago-
nal AF structure: 	�= 1


3
��− 1


6
��. Combining these two elon-

gations yields the sought normal strain modes as

�� =
1

3

�	// + 2	�� ,

�� = �1
� =
2

3
�	// − 	�� . �3�

b. Experiments The spontaneous magnetostriction in the
antiferromagnetic state of TbB6 has been investigated using
the magnetostriction apparatus of the “Institut Néel.” This
setup uses the capacitance method for dilatometric measure-
ments in the temperature range 2.5–300 K and in magnetic
fields up to 6.5 T. The CuBe capacitance cell, which is sen-
sitive to sample length changes along a horizontal direction,
can be rotated around the vertical axis of the cryostat. As the

magnetic field, provided by a superconducting split-coil, is
also horizontal, it is possible to adjust, from 0 to 360°, the
angle 
 between the probed axis of the sample and the field
direction. Typical resolution is about 1 Å, which, for usual
millimetric sample dimensions, represents a sensitivity better
than 10−7. The spherical sample was glued so as to have two
fourfold axes, �100	 and �001	, within the horizontal plane,
the elongation being measured along �001	 axis �see inset of
Fig. 3�. With a single gluing of the sample, this geometry
gives access to the configurations listed in the first two lines
of Table II. This means that, provided domain selection is
achieved, 	// can be measured for 
=0°, whereas 
=90°
yields 	�.

Cooling down the sample under zero magnetic field does
reveal a small anomaly in the sample length as TN is crossed.
The amplitude of this anomaly is minute in comparison with
what develops as the magnetic field is increased for 
=0°
below TN. Figure 3 illustrates the drastic changes in length
that occur at T=17 K, starting from a virgin state of the
sample and successively applying the magnetic field along
�001	 �
=0°� and �100	 �
=90°�. Between 3.5 and 4 T, a
step of relative amplitude larger than 10−4 is observed. In the
first field sweep, for 
=0°, one observes that after the up-
ward jump, no further anomaly can be detected while in-
creasing or decreasing the field. The sample has evidently
reached a stable domains distribution. To destabilize this dis-
tribution, the field has to be applied along another direction;
proceeding with a field direction along �100	 �
=90°�, a
downward jump in the relative elongation is obtained at the
same field amplitude, close to 3.8 T. The sample state that is
reached in that way is also stable with respect to any further
field variation. For both stable domains distributions, the
only field effect is a smooth quadratic evolution. This can be
interpreted as the forced magnetostriction that accompanies
the progressive field distortion of the antiferromagnetic
structure. This observed stability of the domain distribution

TABLE II. Domains selection, according to the magnetic field
direction, and deduced elongation along the �001	 crystal direction
in case of a tetragonal symmetry lowering with maximum magnetic
susceptibility along the preserved fourfold axis. The selected do-
mains are named after the indices of their respective fourfold axis.
The star �*� indicates that equipartition is assumed for defining the
sample’s elongation.

Field direction Selected domains 	 / / �001	

�001	 �001� 1

3

��+ 2

6

��

�100	 �100� 1

3

��− 1

6

��

�110	 �100,010� 1

3

��− 1

6

��

�011	 �010,001�* 1

3

��+ 1

6

��

�111	 �100,010,001�* 1

3

��

FIG. 3. Loops of relative elongation of a TbB6 single crystal
along the �001	 direction showing the two single domain states
accessible for the chosen sample configuration �as schematized in
the inset which represents the capacitance cell of the dilatometer�.
The sample is initially virgin with reference length taken at H=0
and 
=0°. The field direction is successively rotated in zero field in
the sequence 0° –90°−0°.
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is consistent with the single domain character expected from
the analysis of the magnetic susceptibility: applying the field
along a fourfold direction of the initially cubic crystal results
in the selection of a single tetragonal domain below TN.

Measuring the sample length, as a function of the angle 

for constant field and temperature, provides even more spec-
tacular evidence for the switching between two single do-
main states of the sample. As shown in Fig. 4, for low field
amplitudes ��0H=3.7 T�, the only effect is a slight undula-
tion of the sample length, while for a high enough amplitude
��0H=6 T�, the sample periodically switches between the
two states. There is some delay in the switching which re-
sults in the observed hysteretical behavior, but the critical
angles are about 45°, 135°, and 225°, exactly at midpoints
between the two fourfold directions in the plane. From the
analysis of the antiferromagnetic susceptibility, the single do-
main obtained for 
=0° �or 
=180°� has its fourfold axis
and maximum susceptibility along the probed sample length.
For 
=90° �or 
=270°�, the probed sample length is perpen-
dicular to the single domain fourfold axis. Consequently,
during the rotation, 	// and 	� are the successive elongations
that the capacitance cell detects, with a 180° period.

The observed stability of the single domain state is par-
ticularly valuable in the quantitative determination of the te-
tragonal striction mode. Indeed, once the single domain state
is reached, the field can be removed and the subsequent mea-
surement of the temperature dependent elongation, 	//�T� or
	��T�, reflects the spontaneous magnetostriction �in addition
to the normal thermal expansion�. Despite the absence of a
demagnetizing field effect and its a priori minimal elastic
energy, a single domain state in zero magnetic field is rather
uncommon. In most cases, internal stresses or other defects
will help restoring the minority domains as the field is de-
creased; to maintain the single domain state requires the con-
stant application of a magnetic field of non-negligible ampli-
tude. In those circumstances, the measured elongation
includes a forced magnetostriction in addition to the sponta-
neous phenomena �see, for instance, the case of NdMg in

Ref. 20�. This unusual stability of the single domain state is
a feature of TbB6 and/or a testimony to the quality of the
used single crystal.

Figure 5 shows the temperature dependence of the two
strain modes, as deduced, using Eq. �3�, from the measure-
ment of 	//�T� and 	��T� on the single domain states. The
reference length is chosen just above TN, at T=21 K. Al-
though unspectacular, for a Tb based cubic compound, with a
maximum amplitude of 1.5�10−4 at low temperature, the
tetragonal symmetry lowering is very well characterized. Be-
low TN, the system elongates along its fourfold axis and con-
tracts along a perpendicular direction. At TN, the tetragonal
strain cancels abruptly, which is an additional proof for the
first-order character of the magnetic transition.

In the thermal dependence of the volume mode ��, after a
peak that may be ascribed to domains rearrangement close to
TN, a negative discontinuity is also observed, with a small
magnitude of about 3�10−6. Such a negative thermal expan-
sion at TN, i.e., an antiferromagnetic state with larger volume
than the paramagnetic one, has been also observed in
GdB6,21 with similar amplitude. This similar effect in sys-
tems with and without 4f orbital degeneracy indicates that it
doesn’t derive from the crystal field, but most likely results
from the volume dependence of the exchange energy. Indeed,
due to the complex dependence of the RKKY coupling on
the distance between the magnetic ions, a negative expansion
is not unlikely. In all cases, this volume effect remains quite
small in comparison to the tetragonal strain: this is a regular
feature in rare-earth cubic intermetallics where the 4f qua-
drupoles, responsible for the main magnetostrictive effects,
are not coupled with the volume, but with the symmetry
lowering strain modes.3

B. X-ray diffraction investigation

The x-ray experiments were performed at the ESRF, on
the ID10A beamline. A photons wavelength, 	=0.6632 Å,
was selected from the �111� reflection on a diamond mono-
chromator. The use of the diamond �111� reflection ensures
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negligible higher harmonics contamination of the incident
beam, which reduces the risk of confusion of displacement
reflections with 	 /2 lattice scattering. Short wavelengths are
required in order to reach reflections with large Q, where
larger scattering intensities are expected in case of diffraction
by atomic displacements5 or rare-earth multipoles waves.22

Another advantage of high-energy photons is a larger pen-
etration depth, thus a larger scattering volume with less sur-
face related effects. One effect that can be thus mitigated is
the reduction of the intensity of part of the reflections as
result of the magnetoelastic segregation of domains by the
surface. Such an effect is observed in NdMg,22 a system also
undergoing a tetragonal symmetry lowering below TN. In
addition, the high energy of the incident beam is far enough
from the absorption edges of both Tb and B, which ensures
minimal incoherent scattering contribution to the measured
reflections. In order to obtain a small flat surface, perpen-
dicular to the �001	 axis, the TbB6 sphere had been slightly
altered by grinding. The sample was mounted inside the
ID10A closed-cycle refrigerator, in such a way that, for zero
tilting angle of the cryostat, the horizontal scattering plane
was in coincidence with the sample’s �100� plane. The goni-
ometer being set for scattering inside the horizontal plane,
specular reflections �i.e., Bragg reflections from crystal
planes parallel to the sample surface� from the flat sample
face of the �00l� type were accessible. At T=7.5 K, the base
temperature of the closed-cycle refrigerator, an extended col-
lection of � scans was performed for Q vectors in relation
with the expected wave vectors for charge phenomena �i.e.,
quadratically related to the magnetic structure of wave vec-
tors � 1

4
1
4

1
2 ��: � 1

200�, � 1
2

1
20�, � 1

4
1
4

1
2 �, and � 1

4
1
40�.

In this collection, the only sizable intensities were ob-
tained for Q vectors in relation with � 1

200� and � 1
2

1
20� wave

vectors. The intensities of the reflections were determined by
integrating the rocking curve scans. Corrected from the Lor-
entz and polarization factors, they were normalized using 14
main Bragg reflections of the CaB6 structure in order to ob-
tain an experimental structure factor in equivalent Thomson
electrons. Note that the experimental structure factors of the
� 1

2
1
20�-type reflections are one order of magnitude smaller

than those of the � 1
200�-type, but are still larger than the

maximum expected in case of Thomson multipolar scattering
by the Tb3+ ions.22,23 Nonetheless, as shown in Fig. 6, the
normalized structure factors for the �0013

2 � and �0 1
2

13
2 � repre-

sentative reflections have, within the error bars, an identical
thermal dependence between 7.5 and 25 K. Both of the
monitored reflections vanish abruptly at TN, which confirms
their link with the antiferromagnetic state and the first-order
character of the magnetic transition.

The hypothesis of displacement waves resulting in the
observed reflections can be tested via the Q dependence of
the scattering factor. Figure 7 shows the experimental struc-
ture factor for all the specular �00 l

2 � reflections. Considering
an antiphase displacement wave, with q wave vector and �q
Fourier component, neglecting all crystallographic effects
except the displacement of the Tb3+ ion, the real structure
factor for a scattering vector Q=H�q �where H belongs to
the reciprocal lattice� reads as

F�Q� = fTb�Q�sin�Q . �q� , �4�

where fTb�Q� is the Thomson scattering factor for Tb3+. Ex-
change displacement waves propagated by �001

2 � vectors are
predicted to be longitudinal,5 which means there are no al-
ternatives for the �q Fourier component direction. Consider-
ing that q is small, in comparison with the lattice parameter,
assuming domains equipartition and an equal amplitude for
all the Nq Fourier components, the practical scattering factor
reads as

F�Q� =
Nq

3
fTb�Q��Q . �q� . �5�

Using this formula, the Q dependence reported in Fig. 7 is
fairly well reproduced for 
Nq /3�q /a�=2.6�10−3, where a
is TbB6 lattice parameter. Considering the high symmetry,
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constant amplitude, single-q, double-q, and triple-q displace-
ments models, this value yields a total relative displacement
of Tb3+ ion:  /a=4.5�10−3 at T=7.5 K. This magnitude of
the displacement compares well with the value,  /a=3.9
�10−3, determined in the high-temperature phase of GdB6.5

The discrepancies observed at low Q, which are reminiscent
of the GdB6 case, could results from the screening of the
Tb3+ displacement by the conduction electrons. Except for
this slight deviation at small angles, the Q dependence of the
�00 l

2 � scattering factor appears consistent with the hypothesis
of the displacement waves.

Unfortunately such a clear Q dependence could not be
evidenced for the off-specular reflections of both the � 1

200�
and � 1

2
1
20� families. One observes quite a large dispersion of

the experimental structure factors for equivalent reflections,
even after correction of the absorption effects. At this point,
in absence of reliable quantitative data the origin of the
�0 1

2
1
2 � reflections remains unclear.

III. ANTIFERROMAGNETIC MODELS FOR TbB6

Here, our aim is not a computational description of TbB6
order properties but rather to define its most probable mag-
netic structure from theoretical and experimental arguments.
The models describing the ordering properties of rare-earth
intermetallic compounds are usually based on a Hamiltonian
including the exchange interactions and the crystal electric
field term. In cubic compounds, additional interactions are
often necessary, in particular the quadrupolar3 ones. In the
case of TbB6, as for GdB6, it appears that one essential in-
gredient is the exchange and elastic corrections introduced
by the atomic displacements. Criteria reflecting the minimi-
zation the exchange and displacement energies should be ef-
fective in extracting, from a set of possible magnetic struc-
tures, the most probable one. The starting point is here to
define these criteria thanks to a mean-field description of the
exchange displacements. Using the experimental data to de-
fine the set of viable models, a few or even a single magnetic
structure should emerge from this analysis.

A. Mean-field description of exchange displacements

The model describing the exchange induced atomic dis-
placements was introduced in the paper devoted to the GdB6
case.5 It accounts for the RKKY interaction dependence on
the distance between the rare-earth ions, which are supposed
to sit in a harmonic well. In this context, for a large set of N
interacting ions, the simplest corrective Hamiltonian term
reads as

Hd = − �
i�j

�gij · �d j − di�	Ji · J j + �
i=1

N

A�di
2. �6�

In this expression, the individual displacements d, with re-
spect to the paramagnetic equilibrium position, are treated as
parameters and the first sum is over all the �ij� pairs of ions
of respective total momentum Ji and J j. The vector gij is the
gradient, with respect to the position of ion j, i being fixed,
of the isotropic exchange coupling constant �gij =−g ji�. The

strength of the “restoring force” is described in the last term
by the constant A�.

In the mean-field approximation, for a given site i, the
exchange-displacements corrective term is translated into a
single-ion Hamiltonian as

Hdi
= − dHi

mJi + A�di
2, �7�

where the mean-field correction identifies with

dHi
m = �

j,j�i

�gij · �d j − di�	�J j� . �8�

Minimizing the associated internal energy correction with
respect to di, one gets the displacement equilibrium value:

di = −
1

2A� �
j,j�i

��J j� · �Ji��gij . �9�

According to this relation, a displacements scheme can be, in
principle, derived for any magnetic structure. In doing this,
the difficulty comes from the unknown gij, but it can be
solved or alleviated taking advantage of the system symme-
tries, both in direct and reciprocal spaces.

B. Use of Fourier analysis

1. Magnetic and displacive Fourier series

As the magnetic moments, the atomic displacements have
well-defined periodicities revealed by x-ray diffraction. Fou-
rier analysis can be thus used in the treatment of Eq. �7�
mean-field Hamiltonian, replacing the magnetic moments
and the displacements with their Fourier series expansions.
The magnetic Fourier series defining the magnetic moment
at site i, located at Ri, consist of the components mk and
wave vectors k defining the magnetic structure:

mi = �Ji� = �
k

mk exp�jk · Ri	 , �10�

where j2=−1 and the sum is over all members of the mag-
netic wave-vector star. Then, introducing the vector �k de-
fining the Fourier transform of the couplings gradient gij:

�k = �
j,j�i

gij exp�− jk · �R j − Ri�	 , �11�

one may rewrite Eq. �9� as

di =
1

2A� �
k,k�

�mk · mk���k exp�j�k + k�� · Ri	 , �12�

which shows that the displacement wave vectors q are all of
the form q=k+k� where k and k� are magnetic wave vectors.
Moreover, the polarization of the displacement waves de-
pends entirely on the �k vectors, which directions can be
specified from symmetry arguments only. In case of the mag-
netic wave vector star � 1

4
1
4

1
2 � and for the representative mag-

netic wave vector � 1
4

1
4

1
2 	, it can be shown5 that: �� 1

4
1
4

1
2

	

= � j G

2 �110	, where G is the amplitude of �k. The longitu-

dinal character of the � 1
200� displacements waves results

from this alignment of the �k vectors along twofold axes.
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2. Displacive correction of the periodic mean field

Introducing the magnetic and displacive Fourier series in
the definition of the mean-field correction and using defini-
tion �11� of �k, Eq. �8� becomes

dHi
m =

1

2A� �
k,k�,k�

��k� · ��k − �k+k�+k��	

��mk� · mk��mk exp�j�k + k� + k�� · Ri	 , �13�

where each sum is over all members of the magnetic wave
vector star. To ensure the stability of the magnetic structure,
the mean-field correction in Eq. �13� has to display the same
periodicities as the magnetic moments. It is then necessary
�but not sufficient� that the wave vectors resulting from the
sum k+k�+k� belong to the set of wave vectors describing
the magnetic structure. The minimal set of wave vectors for
describing a real magnetic structure is A= �k ,−k� which im-
plies that the vectors k+k�+k� belong to the set: B= �k ,
−k ,3k ,−3k�. A and B need to be identical which requires the
equivalencies: 3k�k or 3k�−k. This, respectively, trans-
lates into the equations:

2k = H or 4k = H ,

where H is a node of the paramagnetic reciprocal lattice.
Within the first Brillouin zone, the first equation is consistent
with magnetic wave vectors belonging to the � 1

2
1
2

1
2 �, � 1

2
1
20�,

and � 1
200� stars. Magnetic structures based on such wave

vectors are centrosymmetric and cannot result in the forma-
tion of displacement waves. Displacement waves and the as-
sociated exchange correction can only emerge for wave vec-
tors obeying the equation k=H /4, i.e., in the first Brillouin
zone: � 1

4
1
4

1
4 �, � 1

4
1
4

1
2 �, � 1

4
1
40�, � 1

4
1
2

1
2 �, � 1

4
1
20�, and � 1

400�.
If one considers the antiferromagnetic elements in R-B6

series, a striking data is the recurrence10,24–26 of one of the
above listed wave vector stars: � 1

4
1
4

1
2 �. The only exception is

NdB6 which orders in a simple � 1
200� collinear structure.27 It

is unlikely that, for most elements in this series, the maxi-
mum of the exchange coupling coincides with � 1

4
1
4

1
2 �. This

particular wave vector is selected because, with help of the
atomic displacements, a lower antiferromagnetic free energy
is achieved. In the R-B6 series, the atomic displacements
waves are then active in the locking of the magnetic wave
vector at the commensurate � 1

4
1
4

1
2 �.

The energy gain results from a reinforced mean field as
described by Eq. �13�. The implications of this correction can
be more easily analyzed in the context of a minimalist anti-
ferromagnetic structure ��k ,mk� , �−k ,m−k��. In absence of
atomic displacements, for an antiferromagnet with wave vec-
tors belonging to a unique star �k�, the isotropic exchange
mean field acting at site i can be factorized into the form:

Hi
m0 = J0�k�mi, �14�

where J0�k� is the Fourier transform of the exchange cou-
pling for a representative magnetic wave vector k. Equation
�14� shows that, in the mean-field description of isotropic
exchange, a unique site is representative of the whole sys-
tem. Consequently, all the magnetic sites have in common
the amplitudes of their mean field and magnetic moment. A

favorable displacement scheme should uniformly reinforce
the mean field, which implies a corrective mean field in the
same form as Eq. �14�. Expanding Eq. �13� for the elemen-
tary antiferromagnetic structure, with a wave vector such that
k=H /4, the mean-field correction can be brought to the form

dHi
m =

G2

A� m2mi, �15�

where m is the constant amplitude of the magnetic moment.
This form requires the real and imaginary parts of mk �re-
spectively, m−k� to be parallel and of equal amplitudes.
Within these conditions, the elementary magnetic structure is
necessarily collinear �i.e., an helical configuration is ruled
out� and the mean field is uniformly reinforced. This rein-
forcement can be strong enough to determine a first-order
magnetic transition at TN, as observed in the GdB6 case.5

C. Antiferromagnetic models

The macroscopic experimental data point to a model with
a tetragonal symmetry. More precisely, from magnetic sus-
ceptibility and magnetostriction measurements �Secs. II A 1
and II A 2�, one can infer that a multiaxial magnetic arrange-
ment is stabilized in the plane perpendicular to the fourfold
axis of the tetragonal structure. Moreover, as the antiferro-
magnetic state of TbB6 involves a single magnetic wave-
vector star and is stable down to the minimum temperature,
the magnetic moments amplitude should be the same on all
sites.

From the powder neutron-diffraction patterns, it was de-
duced that the Fourier component propagated by � 1

4
1
4

1
2 	 is

along the �001	 direction.10 The possible directions for the
magnetic Fourier components are then the three fourfold
axes of the cubic system. To build a planar, multiaxial struc-
ture, one has to associate two of these directions. In case of
equal amplitude for the two respective components, the total
magnetic moment lies along a twofold axis. This is not in
conflict with the crystal-field anisotropy expected for an ini-
tially cubic system: twofold axes are among the possible
favored directions, provided the transition at TN is first-order,
which is precisely the case in TbB6. At this point, the re-
quired characteristics of the magnetic structure of TbB6 are:
tetragonal, multiaxial, and planar �in the plane perpendicular
to the fourfold axis� with magnetic moments along twofold
axes.

In addition, using the exchange displacements model, one
can check the consistency of any candidate magnetic struc-
ture with the observed x-ray satellites. This same model also
provides physical criteria which are helpful for defining re-
alistic magnetic structures.

In order to build the magnetic models, the fourfold axis is
here arbitrarily chosen along the �001	 direction. Then, the
two components, which result in a total magnetic moment
along twofold axes, are parallel to the �100	 and �010	 direc-
tions. In a first step, it is convenient to treat them separately
and the discussion is here focused on the magnetic compo-
nent parallel to �100	. For this particular direction, the pos-
sibly involved wave vectors belong to the

set:�� 1
2

1
4

1
4 	 , � 1

2
1̄
4

1̄
4 	 , � 1

2
1̄
4

1
4 	 , � 1

2
1
4

1̄
4 	�. Another simplification is
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achieved if one considers this partial, collinear, structure in
terms of its real �cosine� and imaginary �sine� components.
Then, the above set of wave vectors reduces to

�� 1
2

1
4

1
4 	 , � 1

2
1̄
4

1
4 	� and, in any Tb plane parallel to �100�, the sine

and cosine waves cancel at alternate sites. In such a plane,
the sites with nonzero cosine, respectively, sine, component
are organized in a square lattice �see Fig. 8, where the open
and full circles refer to the sites of nonzero cosine, respec-
tively, sine, components�. To ensure a constant amplitude of
the magnetic moment for both the sine and cosine lattices, a
single sine, respectively, cosine, component must be active.
Building the partial collinear structure with moments along
�100	 then consists in selecting two components, one for
each, sine and cosine, network. These two components may

share or not the same wave vector which, in fine, defines
only two solutions, a and b, represented on Fig. 8 �symmetry
equivalent solutions may be obtained, for instance, via a shift
of the origin, or, for a, via a �

2 rotation about the �100	
direction�.

In Table III the magnetic Fourier components of models a
and b are listed, as well as their displacements counterparts
derived from Eq. �12�. Models a� and b� are the correspond-
ing solutions, obtained via a � /2 rotation about �001	, for a
magnetic component along �010	. From Eq. �13�, one can
check that all the collinear magnetic models of Table III
result in the same mean-field correction of Eq. �15�. Type a
and b are thus degenerate solutions in terms of exchange-
displacements corrections.

Finally, the total magnetic model is built by associating
two of these collinear solutions, one for each of the magnetic
components directions: �100	 and �010	. Although solutions
a and b are, separately, consistent models with respect to the
mean-field correction, the multiaxial association does not
need to. Cross-terms can emerge in the sum of Eq. �13� and
may destabilize the magnetic structure. This will occur in
case the additional terms do not equally reinforce all of the
Fourier components or if they introduce extra wave vectors
in the mean-field correction. Therefore, for each multiaxial
model, one has to define the cross-terms in Eq. �13� in order
to check its stability under the effect of the mean-field cor-
rection. Subsequently, if more than one model is found
stable, they can be compared to identify the one with the
most favorable mean-field correction �i.e., with the lowest
energy when considering the exchange displacement phe-
nomenon�.

1. Tetragonal models

According to the macroscopic measurements, TbB6 anti-
ferromagnetic state shows a tetragonal symmetry. To respect
this requirement, a model with a fourfold axis along the z
direction �001	 can be built by associating two collinear so-
lutions of the same kind, one transforming into the other
through a �� /2 rotation about �001	 �plus a possible trans-
lation that has no consequence at the macroscopic level�.
Starting with the components of models a and b in Table III,

b)

Cosine Sine

[000]

[010]

[001]

a)

FIG. 8. Planar representations for the two kinds of magnetic
fourfold components which serve as basis for TbB6 multiaxial mag-
netic models. �a� Sine and cosine components sharing the same
� 1

2
1
4

1
4 	 wave vector. �b� Sine and cosine components with, respec-

tively, � 1
2

1
4

1
4 	 and � 1

2
1̄
4

1
4 	 wave vectors. Open and full circles distin-

guish between the nonzero cosine or sine sites.

TABLE III. Wave vectors �k ,q� and Fourier components �mk ,dq� describing the magnetic �upper rows� and displacements �lower rows�
parts of the partial, fourfold models a, a�, b, and b�. Models a� and b� are, respectively, derived from a and b through a rotation of +� /2
about the �0 0 1	 axis. m is the amplitude of the magnetic moment. The magnetic Fourier components are given here in terms of cosine �mk

c�
and sine �mk

s� components. This set of models is not exhaustive as there exist symmetry equivalents. It is, however, representative, starting
from an arbitrary choice of the first �left� cosine magnetic component. There are subsequent�alternatives for the associated sine component
as well as for the deduced displacements.

a a� b b�

k mk
c mk

s k mk
c mk

s k mk
c mk

s k mk
c mk

s

� 1
2

1
4

1
4 	 �m00	 ��m00	 � 1̄

4
1
2

1
4 	 �0m0	 ��0m0	 � 1

2
1
4

1
4 	 �m00	 � 1̄

4
1
2

1
4 	 �0m0	

� 1
2

1̄
4

1
4 	 � 1

4
1
2

1
4 	 � 1

2
1̄
4

1
4 	 ��m00	 � 1

4
1
2

1
4 	 ��0m0	

q dq q dq q dq q dq

�0 1
2

1
2 	 �

G2

2
2A� m2�011	 � 1
20 1

2 	 �
G2

2
2A� m2�1̄01	 �0 1
20	 �

G2

2
2A� m2�01̄0	 � 1
200	 �

G2

2
2A� m2�100	
�001

2 	 �
G2

2
2A� m2�001	 �001
2 	 �

G2

2
2A� m2�001	
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one first derives their rotated equivalents a� and b�, before
combining them. The tetragonal model thus obtained must be
stable with respect to its mean-field correction, which is
checked using Eq. �13�.

All models based on �aa�� associations appear to be un-
stable with respect to their mean-field correction: from the
cross-terms in Eq. �13�, additional mean-field exchange
terms emerge with � 1

4
1
40� wave vectors. The only associa-

tions which resist the stability test are of the form �bb��,
which, including a �� � alternative, consists in two models.
These tetragonal stable models are described in Table IV. In
the last row, the mean-field correction for these models show
they bring less benefit, as regards the exchange and displace-
ment energy, than the basic collinear models of Table III.
Obviously, to explain the stabilization of a multiaxial mag-
netic structure, one should also consider pair interactions be-
yond the isotropic exchange, the most commonly invoked
ones being the quadrupolar couplings.3 With respect to the
exchange displacements correction, the most favorable mul-
tiaxial mode, b+ � b+�, is represented on Fig. 9. It corresponds
to the maximum amplitude for the Tb displacements, which
are directed along �112� axes. As the displacement elastic
energy is here restricted to a quadratic term �see Eq. �6�	, it is
isotropic and displacements along such a low-symmetry di-
rection cannot be ruled out. Accounting for the displacement
anisotropy could favor the alternative tetragonal model b+
� b−�, which, although penalized by its reduced mean-field
correction, results in displacements along the higher symme-
try �110� axes.

From the displacements point of view, the two stable te-
tragonal models are associated with multi-q � 1

200� structures.
Such wave vectors are indeed observed in the x-ray diffrac-
tion experiments. However, their are not exclusive since less
intense satellites, related to the � 1

2
1
20� wave vectors, are as

well detected. One could ascribe them, as in the case of
GdB6 high-temperature phase, to a second-order scattering
phenomena arising from the multi-q � 1

200� displacements.
However, the second-order scattering amplitude being qua-

dratically related to the first-order one, this hypothesis is in
contradiction with the parallel thermal dependences of the
two kind of satellites �Fig. 6�.

An alternative explanation for the extra x-ray reflections
could be multipolar 4f scattering, the first relevant order be-
ing the quadrupolar one. The quadrupolar arrangements con-
sistent with the magnetic structure can be derived in the as-
sumption that the quadrupoles develop under the action of
the exchange mean field �see Ref. 28, for instance�. Consid-
ering the above tetragonal models, with magnetic moments
along twofold axes perpendicular to the fourfold, z axis, the
only ordered quadrupolar components are O2

0 and Pxy. Their
relations to the exchange mean field, thus to the magnetic
components at site i read as �O2

0�i=C��3mzi−mi
2� and �Pxy�i

=C�mximyi. Where the C� and C� constants are, at a given
temperature, common to all sites. As there is no magnetic
component along the z axis, �O2

0� is constant from site to site,
i.e., it represents a ferroquadrupolar component which, via
the magnetoelastic coupling,3 is the main contributor to the
observed magnetostriction phenomenon. From Table IV, the
products resulting in the �Pxy� quadrupolar components can
only yield wave vectors in the � 1

4
1
40� star for b+ � b+� and in

the � 1
4

1
4

1
2 � star for b+ � b−�. Therefore, for the considered te-

tragonal models, quadrupolar x-ray scattering cannot be re-
sponsible for the observed � 1

2
1
20� reflections.

2. Lower symmetry models

From Eq. �12�, it is clear that perpendicular magnetic
Fourier components cannot bring a specific contribution to
the atomic displacements. Therefore, associating two perpen-
dicular models from Table III�, in order to build a multiaxial
magnetic structure, does not result in new displacements

TABLE IV. Fourier description of the stable tetragonal models,
b+ � b+� and b+ � b−�, obtained by associating two fourfold models
from Table III. Below the displacements Fourier components
�q ,dq�, the last row gives the mean-field correction at site i.
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FIG. 9. �Color online� Magnetic �upper part� and displacive
�lower part� arrangements which correspond to the stable tetragonal
models for TbB6 antiferromagnetic state. Models b+ � b+� and b+

� b−� in Table IV. In model b+ � b+�, the magnetic planes are stacked
in a �++−−� sequence along the perpendicular fourfold axis,
whereas in b+ � b−� the moments from two successive planes are
rotated through a � /2 angle. The b+ � b+� displacement vectors are
out of plane and directed along �112� directions.
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Fourier components. The only possible displacements wave
vectors are those already present in the two collinear models.
Now, if one ascribes both the � 1

200� and � 1
2

1
20� charge satel-

lites to atomic displacements waves, a multiaxial magnetic
structure can be proposed which combines a type a collinear
model, which yields the � 1

2
1
20� wave vectors, with a perpen-

dicular type b, which results in � 1
200� displacements. Obvi-

ously, since the perpendicular magnetic contributions are not
related by a � /2 rotation, the resulting magnetic structure
cannot be of tetragonal symmetry. However, if the two mag-
netic contributions are of close enough amplitude, from mac-
roscopic investigation techniques the resulting multiaxial
structure might be confused with a tetragonal one.

Unfortunately, all such low-symmetry associations fail the
stability test based on Eq. �13�: additional exchange mean-
field terms appear for � 1

4
1
40� wave vectors, as well as for

initially inactive � 1
4

1
4

1
2 � nodes. The effective model, that

could be iteratively derived from such combinations, would
be then of a very low symmetry. This can be already ex-
pected by considering the combined displacements, with
� 1

2
1
20� and � 1

200� wave vectors, which cannot result in an
equal displacement amplitude on all sites. At this point, it is
extremely difficult to imagine an interplay of interactions
which could stabilize such a low-symmetry arrangement
other the whole antiferromagnetic range of TbB6. As regard
the quadrupolar counterpart of these low-symmetry struc-
tures, in addition to the ferroquadrupolar �O2

0� component, at
order 0, the �Pxy� components develop according to a mix-
ture of � 1

4
1
40� and � 1

4
1
4

1
2 � wave vectors. As for the tetragonal

models, quadrupolar scattering cannot contribute to the
� 1

2
1
20� charge reflections.

IV. CONCLUSIONS

From the magnetic-susceptibility investigation, the ob-
served anisotropy in the antiferromagnetic phase of TbB6 is
characteristic of a tetragonal symmetry. This susceptibility is
found maximum along the fourfold axis, which is evidence
of the multiaxial character of the magnetic structure. This
determination of the antiferromagnetic susceptibility aniso-
tropy is essential for any subsequent experimental determi-
nation in the antiferromagnetic range. Indeed, applying a
magnetic field along well chosen directions of the single
crystal completely removes the domains distribution ambigu-
ity. The investigation of TbB6 antiferromagnetic magneto-
striction illustrates the effectiveness of the field selection of
domains: large steps in the sample length are observed as the
sample switches from a single domain state to another. In the
case of the used TbB6 single crystal, once established, the
single domain state is stable down to zero field. In these
conditions, the spontaneous magnetostriction has been deter-
mined with unprecedented accuracy. All the observed mag-
netostriction behaviors are consistent with the symmetry
conclusions derived from the magnetic susceptibility analy-
sis: from all macroscopic aspects, the symmetry of TbB6
antiferromagnetic state is tetragonal.

Below TN, the x-ray diffraction experiments show rather
intense � 1

200�-type reflections with a Q dependence charac-
teristic of displacement waves. The GdB6 case is then not
singular among rare-earth hexaborides. In both compounds,
the phenomena are of comparable amplitude, with a relative
displacement of the rare-earth in the 10−3 range, and can
account for the first-order transition at TN. One of the pro-
posed displacements scheme for TbB6, biaxial with two
� 1

200� wave vectors, is identical to the one retained for GdB6
high-temperature AF phase. However, the two magnetic
structures differ, as GdB6 is collinear, whereas TbB6 is
clearly multiaxial also on the magnetic side. This multiaxial
character of TbB6 magnetic structure cannot be accounted
for considering the exchange displacements model, but could
result from quadrupolar pair couplings which are absent in
the L=0 gadolinium case. Other less intense charge reflec-
tions are also observed in TbB6 AF state, in relation with
� 1

2
1
20� wave vectors. Unfortunately, because of the experi-

ment’s geometry, the origin of these reflections couldn’t be
identified.

From a theoretical point of view, the observation of dis-
placement waves in TbB6 antiferromagnetic state gives a
second opportunity to test and improve the exchange dis-
placements model. Within the mean-field approximation, this
model shows that the recurrence of the � 1

4
1
4

1
2 � magnetic wave

vectors in the R-B6 series is not fortuitous. This particular
wave vector is among the few which can decrease the AF-
state energy via the exchange displacement mechanism. As
such, its recurrence in the rare-earth hexaborides series is the
signature of the systematic development of exchange dis-
placements waves.

Searching for tetragonal models consistent with the pow-
der neutron diffraction, the macroscopic measurements and
the exchange displacements stability criteria results in only
two multiaxial solutions. These two models are associated
with the formation of � 1

200� displacements waves and are
thus consistent with the main x-ray extra-reflections. How-
ever, they cannot account for the observation of the weaker
� 1

2
1
20� reflections, except as result of second-order scattering

by the multi-q displacement waves. This second order hy-
pothesis is difficult to conciliate with the parallel thermal
dependence of the two kinds of reflections. An alternative
explanation, involving the scattering by 4f multipoles, can-
not be retained: these reflections are too intense to be as-
cribed to off-resonant multipolar scattering and, moreover,
the quadrupolar wave vectors deduced from the magnetic
multiaxial models are not of the � 1

2
1
20� type. Further x-ray

investigations are thus needed to clarify the origin of the
� 1

2
1
20� reflections in TbB6.
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