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Vibrational spectra and thermal properties of a two-dimensional triangular lattice, where first-neighbor atoms
interact with a Lennard-Jones potential, are calculated using both classical molecular dynamics �MD� and
leading-order anharmonic perturbation theory �PT�. The phonon quasiparticle spectra �QPS�, obtained nonper-
turbatively through MD, depend linearly on T at low temperatures and are in good agreement with the QPS
calculated by PT. However, noticeable deviations from the linear T dependence are observed at high T, which
are attributed to higher order anharmonic effects. We find that when the QPS obtained by leading-order PT are
used in the quasiparticle entropy formula, the first-order anharmonic corrections to the thermal properties are
correctly generated. Higher order anharmonic corrections are also described, if one uses the nonperturbative
QPS obtained from MD. The success of quasiparticle theory is somewhat surprising in light of strong devia-
tions of the thermal conductivity from Peierls-Boltzmann theory, as found in the companion paper.
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I. INTRODUCTION

Anharmonic interactions vary a lot in solids. Silicon re-
mains quite harmonic to high T �allowing thermal conduc-
tivity to remain high� �Ref. 1� while CuCl is sufficiently
anharmonic that phonon quasiparticles are destroyed by
room temperature.2 This paper uses high T molecular-
dynamics �MD� modeling �in the regime where quantum ef-
fects are unimportant� to examine the reliability of the qua-
siparticle picture and of anharmonic perturbation theory �PT�
for the vibrational spectrum and the thermodynamics. The
following paper3 does the same for thermal conductivity.
Such examinations have been done before.4–6 There are two
reasons for further work. First, anharmonic interactions are
not “universal.” Their magnitude differs among solids so a
new model is worth examining. Second, the two-dimensional
�2D� model we use is sufficiently simple that many nonper-
turbative calculations can be done quickly and with smaller
numerical noise than has been achieved in three-dimensional
models and compared with accurate perturbative calcula-
tions.

Consider the analogies between electrons in solids and
lattice vibrations. In the case of electrons, the classical Drude
model of noninteracting electrons became much more useful
when quantized by Sommerfeld. Bloch provided the gener-
alization to bands in real crystals and Landau provided the
quasiparticle picture, which showed how to retain a modified
Bloch picture in spite of electron-electron Coulomb interac-
tions. The central idea of the quasiparticle picture is the dis-
tribution function fk, whose evolution is governed by the
Bloch-Boltzmann equation �with Coulomb interactions in-
cluded�. We lack a full understanding of how strong Cou-
lomb interactions destroy quasiparticles. The “pseudogap”
state seems to evolve continuously from Landau quasiparti-
cles while Mott insulators and fractional quantum-Hall states
have no adiabatic connection to Landau quasiparticles.

Lattice vibrations were quantized by Einstein, discovered
to propagate and carry heat by Debye, and given modern
crystalline properties by Born and von Karman. Quantum
mechanics encourages the particle interpretation �and the
name “phonon”� but this interpretation remains useful even
in a purely classical context as used here. The distribution
function nk, evolving according to the Peierls-Boltzmann
equation, is again central. Phonon quasiparticles, when not
destroyed by anharmonicity, are nice analogs of Landau elec-
tron quasiparticles. Anharmonic interactions between
phonons are just as challenging for PT as are Coulomb in-
teractions. Usually no discontinuously different state occurs
although low T helium liquids are exceptions. Theory has the
big advantage in the phonon case that classical theory is
usually adequate at higher T. Classical MD modeling is
much easier than quantum Monte Carlo modeling. This pa-
per and its companion3 �hereafter called II� use MD to ex-
amine strong anharmonic interactions in a regime where they
cause breakdown of low-order PT, the Peierls-Boltzmann
equation, and potentially the quasiparticle picture.

The model studied here is the 2D triangular lattice with a
nearest neighbor only Lennard-Jones �LJ� potential. The re-
striction to nearest neighbor only makes both PT and MD
calculations easier. Our numerical results in II show a factor
of 2 deviation from the perturbative Boltzmann result for
thermal conductivity. The results of the present paper show a
surprisingly mild influence of anharmonicity on the quasipar-
ticle spectrum and thermodynamics.

II. QUASIPARTICLE THEORY

The quantum numbers k ,s of a phonon quasiparticle will
be denoted for short as k. The symbol nk denotes the number
of phonons in-state k or the distribution function. Entropy
measures the multiplicity of ways of distributing quasiparti-
cles. Using the notion that the number of phonons in-state k
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can be any non-negative integer, an entropy formula
follows:7

SQP = kB�
k

��nk + 1�ln�nk + 1� − nk ln nk� , �1�

Maximizing SQP subject to constant total quasiparticle energy
EQP=�k��knk, the optimum distribution function is the
Bose-Einstein distribution nk= �exp����k�−1�−1, where the
Lagrange multiplier � is interpreted as 1 /kBT. Just as the
distribution function is the central idea of quasiparticle
theory, the entropy plays a special role. If quasiparticle en-
ergy evolves as a function of temperature, the entropy for-
mula, Eq. �1� with temperature-dependent phonon energies
in the Bose-Einstein distribution, is valid to second order in
anharmonic PT �Refs. 8–10� and probably somewhat
beyond.11 Harmonic formulas such as the Helmholtz free en-
ergy

FH =
1

2�
k

��k + kBT�
k

ln�1 − exp�− ��k/kBT�� �2�

are not correct when the T-dependent quasiparticle energy is
included.9,12,13 If, however, the source of T dependence is a
temperature-dependent volume V�T�, so that �k�V�T�� ac-
quires a T dependence only through thermal expansion, then
the harmonic free-energy formula becomes the basis of
quasiharmonic �QHA� theory, which has some successes.14

However, lattice expansion is probably never the dominant
source of temperature dependence of quasiparticle
energies.15,16 One outcome of our work is that we can test
these ideas.

There is an alternative route to the quasiparticle entropy
worth mentioning. Under an applied temperature gradient,
the distribution function is altered by drift and scattering.
Under the assumption that the equation is closed �no two
phonon or higher order distribution functions are needed�,
the evolution equation for the distribution function is a Bolt-
zmann equation �first derived by Peierls17�. This equation has
the beautiful property �quantum generalization of Boltzmann
H-theorem, first announced by Pauli18� that the entropy for-
mula, Eq. �1�, never decreases in time and has a unique sta-
tionary solution, when nk is the Bose-Einstein distribution.

The quasiparticle picture can fail. We will show in II that
the thermal conductivity of our model shows signs of such a
failure. However, the quasiparticle properties discussed in
the present paper turn out to be surprisingly robust.

III. 2D TRIANGULAR LATTICE, HARMONIC LIMIT

We choose a 2D triangular lattice as the model system,
which is illustrated in Fig. 1. The basis vectors a and b have
the same length a= �a� and are 120° from each other. In Car-
tesian coordinates a=a�1 /2,−�3 /2� and b=a�1 /2,�3 /2�. It
is convenient to define also a third vector c=a�−1,0�, which
lies at 120° to a and b. In this lattice, every atom is at a
lattice point. An atom at Ri has six nearest neighbors at po-
sitions R j =Ri�a , �b , �c. This serves as a model crystal
with just enough complexity to serve as a model for real
crystals but sufficient simplicity to enable some simple for-

mulas and rapid computer modeling. To keep things as
simple as possible, consider the atoms as point particles of
mass m, interacting only with six designated nearest neigh-
bors by a central potential ��rij�, where rij, defined as rij
= �ri−r j�, is the distance between two particles i and j. The
total potential energy of the lattice can be written as

� =
1

2�
i

�
j

NN

��rij� . �3�

We choose the potential to be the Lennard-Jones potential

�LJ�r� = ��		

r

12

− 2		

r

6� . �4�

There is no large r cutoff but also no long-range force since
atoms interact only with designated nearest neighbors which
do not stray until kBT
�. The minimum value �min=−� is at
r=	. The variables �m ,	 ,�� can be chosen as the units of
mass, length, and energy. For a pair of Ar atoms, 	
=3.87 Å, �=113.7 K, and the time unit 	�m /� is 2.515
ps.19 We keep the volume fixed and the lattice constant of our
crystal is a=	=1. The classical ground state is a triangular
lattice with atoms at sites Ri=ma+nb. The ground-state en-
ergy is −3N�, where N is the number of particles.

Figure 2 shows the harmonic phonon spectrum and group
velocities, using the formula shown in the Appendix. There
are two branches both acoustic. Symmetry requires the 2D
triangular lattice to be elastically isotropic. Taking the long-
wavelength limit of Eq. �A6�, we find the longitudinal and
transverse sound velocities are independent of the direction
of k with values mvL

2 /	2=9�� /8 and mvT
2 /	2=3�� /8, after

setting ��=0. These numbers are consistent with the elastic
constants determined by differentiating the total potential en-
ergy � with respect to infinitesimal strains.20 Due to symme-
try, there are only two independent nonzero components,
C11=C22=9�� / �4�3� and C12=C66=3�� / �4�3�. When T is
low and anharmonic phonon-phonon interactions are weak,
phonon frequencies should be close to the harmonic ones.
Indeed we find that phonon frequencies obtained from MD at
the lowest temperature we explore, T=0.05, agree very well
with the harmonic frequencies.

Figure 3 shows the dispersion of the mode-Grüneisen pa-
rameter �k. We find that �k is in the range of 4.5�5.17 with
a mean value �̄ of 4.9. The Grüneisen parameter �̄ has long
served as a convenient measure of anharmonicity. For crys-
talline Ar, �̄=2.7 at 0 K.21 The large �̄ observed in our 2D
system indicates that it is strongly anharmonic.

It has been known for a long time22–25 that a two-
dimensional crystal has diverging mean-square lattice dis-
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� �
�

�
�

Γ

ΚΜ

(a) (b)

FIG. 1. �Color online� �a� 2D triangular lattice. �b� Brillouin
zone of the 2D triangular lattice.
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placements in the infinite crystal limit. The formula is


u2� = �
k

�

2mN�k
�2nk + 1� → �

k

kBT

Nm�k
2 , �5�

where the last version is the classical high T limit. The sum
goes over discrete wave vectors kmn= �mka+nkb� /�N, where
N is the number of atoms in the sample. The sum diverges as
ln N. This is shown in Fig. 4 for our model. Notice that not
until N�10125 does the rms displacement equal the inter-
atomic distance. Therefore it is not necessary to worry about
this pathology of two dimensions. Most physical properties
are affected more by the fluctuations of neighbor distances,

�u1−u2�2�. This is also shown in Fig. 4. Note that the sec-
ond sum converges rapidly, being within 0.4% of the infinite
limit when N=256. Many physical properties are thus likely
to be well converged when computed by molecular dynamics
on a 256 atom cell.

IV. ANHARMONIC PERTURBATION THEORY

According to many-body theory, each phonon acquires
through anharmonic interactions a temperature-dependent
self-energy ��k ,��=�1�k ,��+ i�2�k ,��.15,26 Assuming that
�1�k ,�� and �2�k ,�� are small relative to �k and show little
frequency dependence, one finds that �1�k ,�k�=
k corre-
sponds to a frequency shift with respect to �k, and �k�=�k
+
k is the phonon quasiparticle frequency. Then −�2�k ,�k�
=�k corresponds to phonon linewidth and �k

QP=1 /2�k is pho-
non quasiparticle relaxation time.4 Leading order PT predicts
that 
k and �k are linear in T in the classical high-T limit.26

These phonon quasiparticles with frequencies �k� and relax-
ation times �k

QP, provide a conceptually simple and intuitive
way to study the anharmonic effects of materials at high T.
Phonon quasiparticle spectra are related to
thermodynamics8–10 and quasiparticle relaxation times are
related to the lattice thermal conductivity,4,6 the subject of
paper II.3

Define the retarded one phonon Green’s function of mode
k as

GR�k,t� =
1

i�

�uk�t�,uk

†�0�����t� , �6�

where the normal-mode coordinates are uk=�� / �2�k��ak
+a−k

† �. From Dyson’s equation, the Fourier transform

GR�k ,�� is represented in terms of phonon self-energy as

GR�k,�� =
1

�2 − �k
2 − 2�k��k,��

. �7�

Up to second order in anharmonicity, ��k ,��=�1+ i�2 is

�1�k,�� = −
9�

4�k
�
k1k2

��3�k,k1,k2��2

�k1
�k2

��n1 + n2 + 1��1/��1 + �2

+ ��p + 1/��1 + �2 − ��p� + �n2 − n1��1/��1 − �2

+ ��p − 1/��2 − �1 + ��p�� +
3�

�k
�
k1

�4�k,− k,k1,

− k1��2n1 + 1�/�k1
,

�2�k,�� = −
9��

4�k
�
k1k2

��3�k,k1,k2��2

�k1
�k2

��n1 + n2 + 1�����1 + �2

− �� − ���1 + �2 + ��� + �n2 − n1�����2 − �1 + ��

− ���1 − �2 + ���� , �8�

where nk=ak
†ak is the number of phonons in mode k. In the

high-temperature limit, nk+1 /2=kBT / ���k�. The principle
values and � functions in Eq. �8� are approximated
using4,15,26
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FIG. 2. �Color online� �a� Phonon dispersion curves computed from Eq. �A6�. The red �light� solid line represents the LA branch, the blue
�dark� solid line represents TA branch, and the dots correspond to phonon frequencies obtained from molecular dynamics at T=0.05. �b�
Phonon density of states. �c� Group velocities vgk computed from �k�k and �d� distribution functions of the group velocities.
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FIG. 3. �Color online� Mode Grüneisen parameter computed
from Eq. �A8�. The red solid line represents the LA branch and the
blue solid line represents TA branch.
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���� =
1

�

�

�2 + �2 , �9�

where the smearing parameter � is set to 0.45���� /m� /	�.

V. GREEN’S FUNCTIONS FROM
MOLECULAR DYNAMICS

The other way to study phonon properties is to analyze
the normal-mode correlation functions obtained by classical
MD. In contrast to PT, MD keeps all orders of the anhar-
monic interactions, and is formally exact in the classical
high-T limit. We use MD results as the reference to check the
validity of PT. In our MD, the boundary condition at the
unit-cell boundary is periodic. Thus the system only contains
phonons with wavelengths commensurate to the simulation
cell. To make comparison meaningful, we carry out the PT
calculation on the same k mesh as sampled by MD.4 Since
our k mesh is finite, the summation over the k space is
always well defined.

In MD simulations, the displacement ui and velocity vi of
each particle are determined at every time step by solving
Newtonian equations. Taking the transform defined in Eq.
�A9� for both ui and vi, one obtains the instantaneous
normal-mode coordinates uk and vk, which satisfy the rela-
tion uk=u−k

� and vk=v−k
� . There are three types of normal-

mode correlation functions, 
uk
��0�uk�t��, 
vk

��0�vk�t��, and

uk

��0�vk�t��. From lattice symmetry and the fact that in equi-
librium the correlation functions are stationary, it can be
proven that the autocorrelations 
uk

��0�uk�t�� and 
vk
��0�vk�t��

are real and even functions while the cross correlation

uk

��0�vk�t�� is a real and odd function. These correlation
functions are closely related.27 Denote their time Fourier
transform as 
uk

�uk��, 
vk
�vk��, and 
uk

�vk��, we have


vk
�vk�� = �2
uk

�uk��,


uk
�vk�� = − i�
uk

�uk��,


vk
�uk�� = − 
uk

�vk��. �10�

Therefore only one such correlation needs to be computed. A
popular choice is 
vk

��0�vk�t��, which is often fitted phenom-

enologically with a function Ak cos��̃k�t�e
−�̃kt.4,28 From the

equipartition theorem one expects the amplitude Ak to have
little k dependence and to roughly equal kBT. The parameters

�̃k� and �̃k correspond to the quasiparticle phonon frequency
and linewidth at T. We use symbols with tildes on top to
emphasize that they are obtained nonperturbatively through
MD and are to be distinguished from �k� and �k determined
by PT.

To connect the results from MD with PT, one needs to
establish a relation between the classical correlation func-
tions and the quantum Green’s functions. Using the Kubo
transform,29 the one-phonon Green’s function can be written
as GR�k , t�=−�
ṽk

†�0�uk�t����t�, where ṽk
†= 1

��0
�d�e�Hvk

†e−�H.
In the classical limit, where �=1 / �kBT� approaches 0,
GR�k , t� becomes its classical counterpart GC

GC�k,t� = − �
vk
��0�uk�t����t� �11�

or in the frequency domain

GC�k,�� = − �
vk
�uk�� =

�

i�

vk

�vk��. �12�

The left-hand side of Eq. �12� can be approximated with PT
using Eqs. �7� and �8�. The right-hand side can be obtained
from MD. Equation �12� enables us to compare the PT and
MD results in the whole frequency range.

When the frequency dependence of ��k ,�� is weak, and
both the frequency shift �1�k ,�k�=
k and phonon linewidth
�2�k ,�k�=−�k are small, Eq. �7� can be simplified as

GC�k,�� � −
1

�k�
� �k�

�k�
2 − �� + i�k�2� , �13�

where �k�=�k+
k is the phonon quasiparticle frequency. The
expression in the bracket is the Fourier transform of the func-
tion sin��k�t�e

−�kt��t�. From Eqs. �11� and �13� we see when
t
0 the classical correlation function


vk
��0�uk�t�� �

kBT

�k�
sin��k�t�e

−�kt. �14�

From Eq. �10� and Eq. �14� we get the approximate expres-
sions for the other two correlations as


vk
��0�vk�t�� � kBT cos��k�t�e

−�kt,


uk
��0�uk�t�� �

kBT

�k�
2 cos��k�t�e

−�kt. �15�

This justifies the phenomenological approach of fitting


vk
��0�vk�t�� with a function Akcos��̃k�t�e

−�̃kt. As we will show
later, this simplified approach works well for phonon modes
whose ��k ,�� is small and shows little frequency depen-
dence near the resonant frequency �k. However, there are
situations where ��k ,�� changes rapidly near �k. For such
cases we resort to Eq. �12� to compare PT and MD.

We carry out molecular-dynamics simulations using a
NVE ensemble on a rhomboid 16�16 supercell containing
256 particles. The initial velocity and displacement of each
particle is set by a random number generator. Temperature is
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FIG. 4. �Color online� The mean-square displacement 
u2� and
mean-square nearest-neighbor fluctuation 
�u1−u2�2� in units 	2,
computed at kBT=�, plotted against the number of atoms N in the
sample. For N
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defined as the average kinetic energy of the particles and
velocity rescaling is used in the first few steps to let the
system reach the desired temperature. The temperature range
is set from T=0.05 to 0.9. Theoretically the melting point of
a 2D LJ triangular lattice is about 1.4.30 In our model each
particle interacts with only its six designated first neighbors.
When T
1.0 some particles will have sufficient kinetic en-
ergy to climb out of the potential well and the system be-
comes disordered. A velocity-Verlet algorithm31 is used to
integrate the equation of motion. The time step 
t is 0.001.
The system first runs for hundreds of time units to reach
equilibrium, then evolves further �from 5000 time units for
T=0.8 to 40 000 for T=0.05. Using the LJ units of inert gas
Ar, these correspond to 12.6 ns and 100.6 ns, respectively�
for production. In the production stage, the normal-mode co-
ordinates uk and vk are computed at every 10 time steps
using fast Fourier transform. Usually the correlation function


vk
��0�vk�t�� fits well to a function Ak cos��̃k�t�e

−�̃kt. The fit-
ting errors �reduced �2� are typically less than 10−4. We re-
peat the simulation with different initial configurations and
estimate that the error in the fitted phonon quasiparticle fre-
quency �̃k� is less than 1%. The error in the phonon linewidth

�̃k is higher, around 5%.
It is tedious to calculate for each phonon mode its self-

energy ��k ,�� from Eq. �8� and the correlation function

vk

��0�vk�t�� from MD. Redundant work is avoided by notic-
ing that the 2D triangular lattice has a symmetry of C6v. For
our 16�16 supercell, among the 512 modes, only 60 modes
are independent. We study the phonon properties within the
irreducible Brillouin zone, then combine them with appropri-
ate symmetry factors when summing over the whole Bril-
louin zone.

Figure 5�a� shows the correlation function 
vk
��0�vk�t�� of

the longitudinal mode of k= �−3 /16,5 /16� obtained from

MD at T=0.1. This function fits very well to Ak cos��̃k�t�e
�̃kt.

Accordingly, its Fourier transform 
vk
�vk��, shown in Fig.

5�b�, has a nice Lorentzian line shape. We find such
Lorentzian-type fittings work well for most vibrational
modes, especially at higher T when 
vk

��0�vk�t�� decays
faster. In such cases 
vk

�vk�� has a broader line shape, which
tends to smear out detailed features. However, we also en-
counter more complex situations, as shown in Fig. 5�c�. This
correlation function, obtained from MD at T=0.1 for the
longitudinal mode of k= �−8 /16,8 /16� �corresponding to the
M point of the Brillouin zone�, cannot be fitted satisfactorily
in the same way as k= �−3 /16,5 /16�. Its Fourier spectrum,
shown in Fig. 5�d�, contains a “double-peak” feature. There
is no quasiparticle frequency and linewidth for this particular
mode. This is similar to the measured Raman mode of CuCl
at low T.32,33 At high T the CuCl Raman “mode” broadens
and acquires even more substructures. In our system very
few phonons share such complexities. Usually the main char-
acter of a phonon k at T is well captured with two simple

parameters, �̃k� and �̃k.
Anharmonic PT provides valuable insights into the behav-

iors of the correlation functions described above. Figures
5�b� and 5�d� include the imaginary parts of the Green’s
functions in the classical limit Im GC�k ,�� evaluated from
Eqs. �7� and �8�. From Eq. �12� we know −� Im GC�k ,��
and �
vk

�vk�� should be identical, if both are evaluated ex-
actly. Since the phonon self-energy is evaluated only to low-
est order, the two functions differ. The spectral function
−� Im GC�k ,�� for the LA mode of k= �−3 /16,5 /16� has a
Lorentzian line shape and agrees well with the corresponding
�
vk

�vk��. The quantitative agreement between the two func-
tions is less impressive for k= �−8 /16,8 /16�. However,
−� Im GC�k ,�� also contains the double-peak feature ob-
served in �
vk

�vk��. The origin of this feature can be under-
stood from the phonon self-energy spectra. As shown in Fig.
6, ��k ,�� for the LA mode of k= �−3 /16,5 /16� is quite flat
near its resonant frequency, which enables us to ignore the
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T=0.1. �b� Fourier spectrum

vk

�vk�� of the correlation function
shown in �a�, compared with the
Green’s function computed by PT.
�c� Correlation functions

vk

��0�vk�t�� obtained from MD for
the longitudinal mode of k=
�−8 /16,8 /16� at T=0.1. �d� Fou-
rier spectrum of the correlation
function shown in �c�, compared
with the Green’s function com-
puted by PT.
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frequency dependence of ��k ,�� and approximate GC�k ,��
with a Lorentzian function. In contrast, the LA mode of k
= �−8 /16,8 /16� has a ��k ,�� varying abruptly near the reso-
nant frequency. The frequency dependence of ��k ,�� can no
longer be ignored and the double-peak feature appears in

vk

�vk��.
Figure 7 shows the phonon quasiparticle frequency shifts

and line widths determined by MD and by PT. At T=0.1 they
agree very well. This observation is consistent with previous
studies on similar systems.4,6

Figure 8 shows the temperature dependence of �̃k� and �̃k
for the representative mode k= �−3 /16,5 /16�. At low T both

�̃k� and �̃k show good linear T dependence, in agreement
with the lowest order PT. However, noticeable deviations,
roughly quadratic in T, are observed at high T. Similar qua-
dratic deviations are observed for other modes. Since �̃k� and

�̃k are evaluated nonperturbatively, deviations from linear in
T correspond to higher order anharmonic effects. In the next
section we discuss how the T dependence of the phonon
quasiparticle spectra affects the thermal properties of the sys-
tem.

VI. THERMAL PROPERTIES

A. Mean-square displacement

We first consider the mean-square displacement �MSD�. It
is related to the Debye-Waller factor in diffraction experi-
ments and often serves as an indicator of the solid-liquid
phase transition.34 In MD simulations, it is evaluated by av-
eraging over the displacements of all particles at every time
step, 
u2�t��= �1 /N��iui

2�t�, then taking the time average.

Harmonic �HA� theory predicts that MSD is linear in T, as
shown in Eq. �5�. Anharmonicity causes deviations from this
linear T dependence. The lowest order anharmonic correc-
tion is proportional to phonon frequency shifts35


u2� =
kBT

Nm
�

k

1

�k
2	1 − 2


k

�k

 . �16�

Since 
k is linear in T to the first order, the leading-order
anharmonic correction to 
u2� is quadratic in T.

Figure 9 compares MSD obtained from direct MD simu-
lations, from harmonic phonon spectra using Eq. �5� and
from the lowest order anharmonic perturbation theory using
Eqs. �8� and �16�. We find that exact MD results are not far
from the linear T relation predicted by harmonic theory and
the lowest order anharmonic correction from Eq. �16� is suf-
ficient to account for most of the differences between the
exact MD results and HA results. Anharmonic PT works sur-
prisingly well in predicting the MSD of our system.

B. Thermal pressure

Thermal pressure is a fundamental thermal property of
materials. Accurate determination of thermal pressure is cru-
cial to establish reliable pressure scales used in high-T
high-P experiments,36 and to determine phase-transition
boundaries precisely.16 A comparison of P�T� obtained from
MD, from QHA, and from anharmonic PT is particularly
important. There are standard formulas to calculate thermal
pressure in MD simulations. For our 2D system consisting of
particles interacting with pair-wise potential ��rij� �Ref. 31�
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PA = NkBT −
1

2� 1

2�
i

�
j

rij���rij�� , �17�

where the term in the 
 . . . � is the virial function. In QHA,
P�T� is related to the quasiparticle entropy through the Max-
well relation ��P /�T�V= ��S /�V�T, from which P�T� is repre-
sented in term of the mode-Grüneisen parameters as

PQH�T� =
kBT

A
�

k

�k. �18�

The leading correction given by anharmonic PT is9

P�T� =
kBT

A
�

k
	�k −

A

2�k

�
k

�A

 , �19�

where �
k /�A corresponds to the volume dependence of the
frequency shift. We calculate 
k using Eq. �8� for both the
original cell and a slightly expanded �0.2%� cell, then com-
pute �
k /�A by finite difference. Similar to MSD, the
leading-order anharmonic correction to P�T� is also qua-
dratic in T.

Figure 10 shows P�T� evaluated by the three methods. At
T�0.3, the exact P�T� obtained from MD is close to linear
in T and agrees with the QHA prediction. Considerable de-
viations from the linear T relation are observed at high T,

which are largely accounted for by the leading-order anhar-
monic correction defined in Eq. �19�. Thus thermal pressure
P�T� of our system is well described by anharmonic PT.

C. Free energy, entropy, and heat capacity

Unlike MSD and P�T�, thermal properties such as free
energy and entropy are not directly accessible in NVE
molecular-dynamics simulations. However, one can choose
the harmonic system as a reference and use thermodynamic
integration31 to obtain the exact anharmonic free energy
FA�T�=F�T�−FH�T�,

FA�T�
N

= − kBT�
0

T dT�

T�
� �E�T�� − E0� − �EH�T�� − E0�

NkBT�
�

= − kBT�
0

T dT�

T�
�E�T�� − E0

NkBT�
− 2� , �20�

where E�T�� is the total energy of the system, fixed in a NVE
molecular-dynamics run so that the system’s average tem-
perature is T�. EH�T�� is the total energy of the harmonic
system, E0=−3N� is the ground-state energy. For our 2D
model, EH�T��−E0 equals 2NkBT�. We use a fourth-order
polynomial of T� to fit �E�T��−E0� / �NkBT��, then integrate it
to get FA�T�.5 The anharmonic part of the entropy S−SH
=SA is calculated from SA=−�FA /�T. The heat capacity CV
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FIG. 8. �Color online� Temperature dependence of the phonon quasiparticle frequency �̃k� and linewidth �̃k obtained nonperturbatively
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is from CV /N=2kB− �T /N��SA /�T. Another way to evaluate
CV is from the fluctuation of the kinetic energy.37 Denote the
average total kinetic energy of the system as K, its variance
as �K, for our 2D system we have CV /N=kB�1
−N��K�2 / 
K�2�−1. The CV obtained by the two methods
agree within a few percent.

From the quasiparticle entropy formula Eq. �1� one finds
that SA is represented in terms of phonon quasiparticle fre-
quencies as

SA

N
= −

kB

N
�

k

ln
�k�

�k
� −

kB

N
�

k


k

�k
. �21�

The leading anharmonic correction to SA is linear in T, one
power less than the corrections to MSD and P�T�. The cor-
responding formula for heat capacity CV is

CV

N
=

kB

N
�

k
	1 −

T

�k

�
k

�T

 . �22�

The leading anharmonic correction to CV is also linear in T.
Figure 11 shows SA and CV computed by direct MD simu-

lations and those predicted by quasiparticle theory. With qua-
siparticle spectra �QPS� determined by the lowest order PT
using Eq. �8�, the formula for quasiparticle entropy correctly
gives the leading anharmonic correction to SA and CV, which
agree well with the exact MD data at low T. However, in-
cluding only the leading anharmonic corrections become in-
adequate at higher T, especially for CV. Because CV is de-
fined as T�S /�T and if S is a polynomial of T, then a Tn term
in S is enhanced by a factor of n in CV. Thus CV is more
sensitive to higher order effects.

We try to capture some higher order anharmonic effects
by substituting the nonperturbative phonon frequencies �̃k�
into Eq. �21�. The results are shown in Fig. 11 with the label
“QPS�MD�.” Comparing to the results obtained from PT �la-
beled as “QPS�PT�”� via Eqs. �8�, �21�, and �22�, using non-
perturbative phonon frequencies improves the agreements
with the exact MD data considerably. From previous discus-
sions we know that �̃k� is nearly linear in T and agrees well
with PT at low T. At T
0.3, �̃k� shows an extra quadratic T

dependence due to higher order anharmonic interactions. Ac-
cordingly, using the nonperturbative phonon frequencies in
the quasiparticle entropy formula yields the same leading
anharmonic correction at low T. Further more, it captures a
large portion of higher order anharmonic effects at high T.
Quasiparticle theory, not limited to the lowest order, works
quite well in predicting the thermal properties of our model
system. This is in contrast with the study of thermal conduc-
tivity of the same system in paper II,3 where quasiparticle
theory fails to predict the correct thermal conductivity, even
with the exact phonon relaxation times.

VII. CONCLUSIONS

We use MD to assess the validity of phonon quasiparticles
and anharmonic PT on a 2D triangular model system. The
phonon quasiparticle spectra were obtained both by leading-
order PT and nonperturbatively by MD. Good agreement be-
tween the two is observed at low T while noticeable devia-
tions show up at high T due to higher order anharmonic
interactions. Substituting the quasiparticle frequencies ob-
tained by leading-order PT into the quasiparticle entropy for-
mula correctly produces the first-order anharmonic correc-
tions to the thermal properties. If one uses the quasiparticle
frequencies obtained nonperturbatively by MD, then higher
order anharmonic corrections are also described. In contrast
to thermal conductivity discussed in II,3 quasiparticle theory
is surprisingly successful in predicting the thermodynamics
of our model system.
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APPENDIX: POTENTIAL EXPANSIONS

At r−	 less than the radius of convergence �r−	�=	, the
interparticle potential �LJ�r� can be expanded around r=	 in
a power series of the relative displacements, uij =rij −Rij.

38

��rij� = ��Rij� + ��1� + ��2� + ��3� + ��4� + ¯ , �A1�

where

��1� = �
�

��

�ri�
uij�,

��2� =
1

2!���

�2�

�ri� � ri�
uij�uij�,

��3� =
1

3! �
���

�3�

�ri� � ri� � ri�
uij�uij�uij�,

��4� =
1

4! �
���	

�4�

�ri� � ri� � ri� � ri	
uij�uij�uij�uij	. �A2�

The potential derivatives are defined as �� /�ri�
= ��� /Rij�Rij�, �2� /�ri��ri�= ���−�� /Rij��Rij�Rij� /Rij

2 �
+ ��� /Rij����, etc.15 Accordingly, the total potential � is ex-
panded as

� = ��0� + ��2� + ��3� + ��4� + ¯ , �A3�

where ��0� is the classical ground-state energy −3N�. The
linear term in the displacements ��1� is zero for the equilib-
rium lattice. The second-order term

��2� =
1

2�
i

�
j

��2��rij� =
1

4�
i

�
j

�
��

�2�

�ri� � ri�
uij�uij�

�A4�

determines the harmonic phonon spectrum. For the 2D trian-
gular lattice model, where each atom interacts only with six
nearest atoms, the dynamical matrix

D���k� = 4 �
R=a,b,c

�	�� −
��

R

R�R�

R2 +
��

R
����sin2	k · R

2

 .

�A5�

The vibrational normal modes are determined by the
eigenvectors of D���k�, denoted as êk. The eigenvalues of
D��, which are squared frequencies ��=m��

2 �k�, can be
written in the symmetric form

�� = 2	�� +
��

R

�sa + sb + sc� � 2	�� −

��

R



��sa
2 + sb

2 + sc
2 − sasb − sbsc − scsa, �A6�

where sa=sin2�k ·a /2�, and similarly for sb and sc. Even

though ��=0 in our constant volume calculations, still we
keep the full expression because it will be used for the cal-
culation of the mode-Grüneisen parameter.

The mode-Grüneisen parameter is defined as

�k = − 	 � ln �k

� ln V



T

. �A7�

For our 2D model, V is replaced by area A

�k = −
� ln �k

� ln A
= −

A

2�k
2

d�k
2

dA
=

1

4
	��

��
R − 1


−
1

2

sa + sb + sc

�sa + sb + sc� � �sa
2 + sb

2 + sc
2 − sasb − sbsc − scsa

.

�A8�

The anharmonic phonon-phonon interactions are deter-
mined by normal-mode transform

ui =
1

�Nm
�

k

ukêke
ik·Ri �A9�

such that

��3� =
1

2�
i

�
j

��3��rij� = �
k1k2k3

�3�k1k2k3�uk1
uk2

uk3
,

��4� =
1

2�
i

�
j

��4��rij� = �
k1k2k3k4

�4�k1k2k3k4�uk1
uk2

uk3
uk4

,

�A10�

where

�3�k1k2k3� =
1

12

1
�Nm3�

j
�
���

�3�

�ri� � ri� � ri�

�ê��k1�ê��k2�ê��k3��1 − e−ik1·Rij��1 − e−ik2·Rij�

��1 − e−ik3·Rij��G�k1 + k2 + k3� ,

�4�k1k2k3k4� =
1

48

1

Nm2�
j

�
���	

�
�4�

�ri� � ri� � ri� � ri	
ê��k1�ê��k2�ê��k3�ê	�k4�

��1 − e−ik1·Rij��1 − e−ik2·Rij��1 − e−ik3·Rij��1

− e−ik4·Rij��G�k1 + k2 + k3 + k4� . �A11�

The subscript G on �G�k� indicates that the argument must
equal a reciprocal-lattice vector.
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