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We investigate the decay of artificially created double occupancies in a repulsive Fermi-Hubbard system in
the strongly interacting limit using diagrammatic many-body theory and experiments with ultracold fermions
in optical lattices. The lifetime of the doublons is found to scale exponentially with the ratio of the on-site
repulsion to the bandwidth. We show that the dominant decay process in presence of background holes is the
excitation of a large number of particle-hole pairs to absorb the energy of the doublon. We also show that the
strongly interacting nature of the background state is crucial in obtaining the correct estimate of the doublon
lifetime in these systems. The theoretical estimates and the experimental data are in agreement.
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The nonequilibrium dynamics of a strongly interacting
quantum many-body system is one of the most complex
problems of modern physics. It encompasses various fields
from the cosmology of the early universe' or nonequilibrium
jet production in high-energy heavy-ion collisions” to pump-
probe experiments and operation of solid-state devices under
strong drive’ in condensed-matter physics. There are many
open questions concerning nonequilibrium processes from
both a theoretical and an experimental perspective, espe-
cially in the realm of condensed-matter physics.

The theoretical understanding of interacting quantum
many-body systems in thermal equilibrium is on a much
stronger footing, although strongly interacting systems such
as high-temperature superconductors are not yet completely
understood. This understanding is based on paradigms such
as the quasiparticle excitations in the Fermi-liquid model and
ground states with broken symmetry described in terms of
order parameters and their fluctuations. The crucial point in
all these paradigms is the hierarchy of energy scales of the
quantum states. By working with a restricted set of states,
organized according to their energy, it is possible to obtain a
simplified model of the system. These low-energy descrip-
tions can capture the response of the system under small
perturbations from equilibrium. However, in systems far
from equilibrium, there is no organizing principle as the dy-
namics couples disparate states with widely different ener-
gies and linear-response theory breaks down. This makes it
hard to construct generic paradigms and one needs to solve
the full microscopic Hamiltonian dynamics of an interacting
quantum many-body system.

Some progress has been made for one-dimensional (1D)
systems, where it is often possible to obtain exact solutions
for the eigenstates of the Hamiltonian. The absence of ther-
malization in 1D Bose systems has been predicted*® and
observed® in cold atomic gases. However, these studies are
hard to generalize to higher dimensions

In this context, it is useful to seek answers to concrete and
focused questions involving nonequilibrium dynamics of
specific strongly interacting systems. They have practical im-
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portance and help us gain better understanding of classes of
nonequilibrium processes. Recent advances in controlling ul-
tracold atomic gases with and without optical lattices have
led to their emergence as perfect systems to study such phe-
nomena. These systems, which can simulate strongly inter-
acting model Hamiltonians, are essentially decoupled from
external heat baths and hence the intrinsic nonequilibrium
dynamics of the system can be studied easily. Compared to
condensed-matter systems, the low density in these systems
results in long time scales for dynamics. As a result the sys-
tem can be followed in real time without the use of ultrafast
probes. Further, it is relatively easy to create and characterize
an initial state far from the ground state, which is crucial
since the dynamics depends heavily on the initial state.

In fact, questions of nonequilibrium dynamics and ther-
malization time scales are particularly important for these
artificially engineered strongly correlated systems. Their key
feature is the precise tunability of the Hamiltonian param-
eters which has made these systems ideal for the simulation
of strongly interacting many-body Hamiltonians relevant to
condensed-matter systems. However, an implicit assumption
in this comparison is that the system is in thermal equilib-
rium at low temperatures. In this context it is important to
estimate the thermalization time scales as these systems are
always characterized by a finite sample lifetime. Besides,
several proposed methods to prepare the system in novel
phases explicitly depend on adiabatic tuning of Hamiltonian
parameters, which place stronger constraints on the possible
sweep rates than mere demand of thermalization.

An important class of nonequilibrium problems is the de-
cay of a high-energy excitation into low-energy excitations.
This problem occurs in diverse contexts such as multiphonon
decay of excitons in semiconductors,” pump and probe
experiments,’ and dynamics of nuclear resonances.® In this
paper, we study this problem in the nonequilibrium dynamics
of artificially created double occupancies in the Fermi-
Hubbard model in the strongly interacting regime. Specifi-
cally, we will look at the mechanism of doublon decay in this
system and the relation of the doublon lifetime to the repul-
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sive interaction. We study this dynamics both experimentally
using ultracold fermions in an optical lattice® and theoreti-
cally using a projected fermion model and diagrammatic re-
summations.

The doublon lifetime has practical implications for the
sweep rates of Hamiltonian parameters in cold atom systems
in the following way: the usual access to the strongly inter-
acting regime is to start with a weakly interacting system and
increase the ratio of interaction U to the hopping energy J.
As this ratio increases, the density of doublons in the system
in equilibrium should decrease. Thus the doublon lifetime
provides the dominant equilibration time scale for the sys-
tem. We note here that this problem has structural similarities
with the decay of a deeply bound excitonic state through
multiphonon processes in semiconductors,” but as we shall
see, the strong Hubbard repulsion modifies the situation in an
essential way.

In this paper we build and expand upon our previous
results.® Our main results are (i) the decay of a doublon is a
slow process as the doublon needs to distribute a large en-
ergy (~U) to other excitations in the system which have a
much smaller energy scale. (ii) The primary mode of decay
of the doublon involves creation of particle-hole pairs in the
background system, Fig. 1. (iii) The decay rate scales as I'
~CJ exp(—aU/J) and the decay becomes slower with in-
creasing interaction. We obtain C and « from experiments
and from theoretical calculation. (iv) We find that the inter-
actions between pairs of single fermions, which in our model
are induced by projection, are important and quantitatively
affect the time scale of the decay. Thus the strongly corre-
lated character of the system changes the dynamics in an
essential way.

We present theoretical insights into the problem of non-
equilibrium dynamics of strongly interacting systems with
the main point that strong interactions have to be very care-

FIG. 1. (Color online) Stability of highly excited states in the
single-band Hubbard model. Doubly occupied lattice sites are pro-
tected against decay by the on-site interaction energy U. The aver-
age kinetic energy of a single particle in a periodic potential is half
the bandwidth 6J. Thus the relaxation of a double occupancy (indi-
cated by a pair of atoms in an oval) requires many scattering part-
ners to maintain energy conservation and results in the production
of many particle-hole pairs (indicated by atoms ejected from the
Fermi sea).
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fully accounted for in the doublon lifetime calculation. The
use of noninteracting fermions in calculating the doublon
self-energy and hence its lifetime results in discrepancies of
orders of magnitude. Even the use of a self-consistent Born
approximation to account for fermion-fermion interaction
leads to doublon lifetimes which are longer by orders of
magnitude at the strongest interactions considered here. Thus
vertex corrections in calculating fermion spectral functions
make very important contributions to the doublon lifetime
and the importance of these terms increases with the strength
of the interactions. In this paper, we develop in detail an
approximate method to incorporate these corrections by a
combination of a self-consistent Born approximation and
counting the number of possible diagrams at different orders.
The good agreement of this approximation with the experi-
mental results is due to the fact that for a high-energy pro-
cess such as the doublon decay, the most important factor is
the number of channels available for decay and one can ne-
glect the variations in contributions from different channels.
We also discuss a diagrammatic Monte Carlo method of es-
timating the doublon lifetime and use it to verify the various
approximations that we make in the lifetime calculation.

In addition to the theoretical insights, we present addi-
tional experimental evidence, beyond that of Ref. 9, to sup-
port our picture. In particular, we provide additional support
for the elasticity of the doublon decay by investigating how
the singles density responds to changes in doublon density.
We also present data for different values of both J and U in
order to prove that the doublon lifetime depends on their
combination and not simply on U as would be expected na-
ively. Finally, we comment on the effect of filling on the
doublon lifetime.

The paper is organized as follows: in Sec. I we discuss the
various possible decay mechanisms of the doublon in these
systems and give a scaling argument for the decay rate in
each case. In Sec. I we describe the experiments and its
results. In Sec. III we discuss the most relevant decay mecha-
nism in our experiments and develop the theoretical model
for doublon decay. In Sec. IV we outline the diagrammatic
method to compute the doublon lifetime. In Sec. V we dis-
cuss the theoretical results and its comparison with the ex-
periments. We conclude in Sec. VI by discussing the impor-
tance of these results and future directions. The technical
details of the theory and the validity of different approxima-
tions are described in relevant appendices.

I. DECAY MECHANISMS FOR A DOUBLON

The single-band Hubbard model describing the fermions

on an optical lattice is given by'°
Hpg=-J 2, cjgcj0+ U, nihy). (1)

(ijyo i

At large U/J, this model has three main energy scales. There
is the energy of double occupancies, given by the Hubbard
repulsion U, the kinetic energy of the fermions given by the
tunneling J and the superexchange scale J,,=4J2/U, which
governs the spin dynamics in the system. At large U/J, these
scales are well separated from each other, U>J>J,,. As we
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show below, the separation of the energy scale U from the
other energy scales J and J,, leads to a slow decay of dou-
blons in the system.

In order to decay the doublon has to give up its energy
~U to other excitations in the system. Let the typical energy
of a possible excitation be €; where €, can be either ~J or
~J,, depending on the background state in which the dou-
blon is propagating. We assume that €y<<U so that a large
number n~ U/ ¢, of excitations must be created to satisfy
energy constraints. The matrix element for this process can
be calculated by an nth-order perturbation theory and is
given by

J J J
X o0 X

. 2
n X € ( )
The decay rate is ~M? in units of J. Using Stirling’s formula,
and the fact that ne;=U, we find that for large n the decay
rate scales as

I ~ J(J/U)Ye ~ CJ exp[— aUl & log(U/J)], (3)

where C and « are constants which we will extract from
detailed calculations and experimental data.

In order to discuss the specific decay mechanisms of a
doublon, we need to specify the state of the background
system in which the doublon is propagating. If the system
is a homogeneous Mott insulator at half filling, the only pos-
sible candidate for transfer of energies are spin excitations
with bandwidth €,~J,,. This leads to the decay rate scaling
as I'~J exp[-aU?/J* log(U/J)] and is an extremely slow
process. However, if the system is compressible, the domi-
nant energy transfers are to kinetic energy of the fermions
through creation of particle-hole pairs with typical energy
€y~J. This leads to the decay rate scaling as T
~J exp[—aU/J log(U/J)]. This is a much faster decay pro-
cess and will dominate over decay through spin excitations.
We note that compressible states with holes can exist (i) at
the edges of systems with confining traps or (ii) in the bulk
of the system as a result of a large density of doublons cre-
ated by modulation spectroscopy. In a trapped system, there
is another possibility of giving up the energy to the potential
energy of the fermions at the edges. This however involves
transfer of particles from the center to the edges of the trap
and is usually a much slower process for typical shallow
traps used in cold atom experiments.

As we will see in the next section our experimental sys-
tem has a lot of holes and we can eliminate many of the
possible decay mechanisms for our experimental configura-
tion. Therefore, in this paper we shall focus on the dominant
doublon decay channel involving excitation of particle-hole
pairs.

II. EXPERIMENTS

This section describes the experimental steps toward the
observation of doublon relaxation: Initially, a sample of re-
pulsively interacting, ultracold fermions is produced and
loaded into an optical lattice. Starting from this equilibrium
state, we create additional double occupancies via lattice
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modulation. Immediately after this excitation we measure the
time evolution of the double occupancy. We remove the in-
fluence of inelastic loss processes by comparing to a refer-
ence measurement and extract the elastic doublon lifetime
using a simple rate equations model. Finally, this elastic life-
time is normalized to the tunneling time J/h and found to
depend exponentially on U/6J.

The experimental sequence used to produce quantum de-
generate Fermi gases has been described in detail in previous
work.!! In brief, we prepare (50 = 5) X 10° “°K atoms at tem-
peratures below 15% of the Fermi temperature 7% in a bal-
anced mixture of two magnetic sublevels of the F'=9/2 hy-
perfine manifold. The confinement is given by a crossed
beam dipole trap with trapping frequencies o, =2
X (35,23,120) Hz. To access a wide range of repulsive in-
teractions we make use of two magnetic Feshbach reso-
nances. With a mp=(-9/2,-7/2) spin mixture, we realize
scattering lengths of 98a, and 131a,, where a, is the Bohr
radius.'> The (=9/2,-5/2) spin mixture allows us to reach
the strongly repulsive regime with scattering lengths of
374a,, 571a,, and 672a,.'® After adjusting the scattering
length to the desired value, we add a three-dimensional (3D)
optical lattice of simple cubic symmetry. The lattice depth
is increased in 200 ms to final values between 6.5Ep
and 12.5E; in units of the recoil energy Eg=h?/2m\>.
Here h is Planck’s constant, m the atomic mass, and
A=1064 nm the wavelength of the lattice beams. The lattice
beams have Gaussian profiles with 1/¢* radii of w,,.
=(160,180,160) um at the position of the atoms. For a
given scattering length and lattice depth, J and U are inferred
from Wannier functions.'®!! Their statistical and systematic
errors are dominated by the lattice calibration and the
accuracies in width and position of the two Feshbach
resonances.'>!3

Depending on U and J the final states of the system range
from metallic to Mott insulating phases but always with a
double occupancy below 15%. This equilibrium system is
now excited by a sinusoidal modulation of the lattice depth
with a frequency close to U/h. This causes an increase in the
double occupancy between 5% and 20% as compared to the
initial state. The modulation amplitude is 10% on all three
axes while the modulation duration was chosen such that the
amount of doubly occupied lattice sites saturates.!'"'#~17 The
system is now in a highly excited nonequilibrium state with
double occupancies between 15% and 35%.

After free evolution at the initial lattice depth and inter-
action strength for a variable hold time up to 4 s we probe
the remaining double occupancy of the system. This is ac-
complished by a sudden increase in the lattice depth to 30Ep,
which prevents further tunneling. We then measure the
amount of atoms residing on singly (doubly) occupied sites
N, (Ny) by encoding the double occupancy into a previously
unpopulated spin state using radio-frequency spectroscopy.'!
Combining Stern-Gerlach separation and absorption imaging
we obtain the single occupancy n,=N,/N,,, double occu-
pancy ny=N4/N,, and total atom number N, =N+ Nj.

The time evolution of the double and single occupancy
and of the total atom number is shown for two different
parameter sets in the upper row of Fig. 2. In both cases, the
double occupancy decays exponentially within the observa-
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FIG. 2. (Color online) Time evolution of double occupancy, single occupancy, and total atom number for different ratios U/6J. In the
upper row, the system was previously excited via lattice modulation. The bottom row shows the reference measurement for the determination
of the residual dynamics. The round data points were recorded using a mg=(-9/2,-7/2) spin mixture with U/h=1.4 kHz and J/h
=70 Hz, whereas the triangular data points show a (-9/2,-5/2) mixture with U/h=3.2 kHz and J/h=100 Hz. The solid lines are
simultaneous fits of the integrated population equations of Eq. (4). The total atom numbers are scaled to the initial values. Single occupancy
and double occupancy are the fraction of atoms residing on sites of the respective type. Due to different detection efficiencies for hyperfine
states the sum of double and single occupancy can be higher than 1. Error bars denote the statistical error of at least four identical

measurements.

tion time and the single occupancy rises accordingly. The
time evolution of the total atom number, however, exhibits a
remarkable difference between the (mp=—9/2,-7/2) and the
(mg=-9/2,-5/2) spin mixture: While the atom number of
the (-9/2,-7/2) sample remains rather constant, the
(-9/2,-5/2) sample suffers from an atom number reduction
of 50% within 2 s. This behavior can be observed for all
parameter sets and is a consequence of the shorter lifetime of
the (-9/2,-5/2) spin mixture.

The only relevant process described by the Fermi-
Hubbard model is the decay of a doublon into two single
particles which remain within the system. The time associ-
ated with this process will be called doublon lifetime. In an
experiment, inelastic processes may occur, resulting in atoms
exiting the system. For a valid comparison with theory it is
therefore crucial that these processes do not interfere with
the determination of the doublon lifetime. In the following,
we show how we eliminate the influence of inelastic loss
processes on the observation of the doublon decay.

For every data set on doublon decay after lattice modula-
tion, we record a corresponding reference data set without
lattice modulation, but with the same system parameters.
Two of these reference data sets are presented in the bottom
row of Fig. 2. They show the dynamics of double occupan-
cies and atom number governed by inelastic processes,
which are not taken into account by the Fermi-Hubbard
model.

Combining these two measurements, we can unambigu-
ously extract the doublon lifetime by simultaneously fitting a

system of coupled rate equations. They describe the popula-
tion dynamics in the optical lattice, considering three general
processes,

. 1 1 1
ANd=— <_ + — + _)ANd,

) 7 Tioss

Tin Tioss
. 1 1
Ns=_ANd__NS' (4)
h) Toss

The total number of atoms on doubly occupied sites Ny is
written as the sum of the equilibrium population N, o and the
additional amount of double occupancy ANy created by the
lattice modulation. The three time constants correspond to
three independent local decay processes differing in the type
of site they affect: 7, describes the population flow from
doubly occupied to singly occupied lattice sites visible as a
decay of double occupancy within 0.01-1 s that is accompa-
nied by a rise of the single occupancy. We identify this time
with the lifetime of doublons. The other two times denote
loss time constants, which lead to a reduction in the total
atom number: 7, corresponds to losses affecting both site
types in the same manner, which is only observed in the total
atom number. Additional inelastic losses on doubly occupied
sites are summarized by 7, visible as a simultaneous decay
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FIG. 3. (Color online) Doublon lifetime as a function of U and
J. The round data points show the fit results to data sets as shown in
Fig. 2, obtained with a (-=9/2,-7/2) spin mixture while the trian-
gular points correspond to the (=9/2,-5/2) mixture. Error bars
denote the confidence intervals of the lifetime fits and the statistical
errors in U and J.

of both the total atom number and double occupancy. This
model does not account for changes in the decay times dur-
ing the decay or for higher order terms in the rate equations.

Since the modulation has no influence on the evolution of
the total atom number, this procedure removes the influence
of 7, and 7. A reliable determination of the doublon life-
time 7, is thus possible if it differs significantly from the loss
times. The model and the observation are found to agree very
well within experimental uncertainties, as can be seen
in Fig. 2.

We measure this doublon lifetime for various tunneling
and interaction strengths, covering a parameter range where
J and U each differ by at least a factor of 4. The determined
lifetimes vary over 2 orders of magnitude, as shown in
Fig. 3. Furthermore, the lifetime clearly does not depend on
the tunneling energy or the interaction energy alone.

Since the tunneling time //J is the dominant time scale of
dynamics in an optical lattice, it appears natural to express
the doublon lifetime in units of i/J. After this rescaling, we
found that, to a good extent, the doublon lifetime only de-
pends on the ratio U/6J.

Figure 4 shows the doublon lifetime in units of the tun-
neling time versus U/6J on a logarithmic scale. Remarkably,
over the entire parameter range the data collapses in a corri-
dor and can be described by an exponential function of the
form

2=Cexp(a£). (5)

The scaling exponent « is found to be a=0.82*0.08 with
C=1.6%0.9. This is in reasonable quantitative agreement
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FIG. 4. (Color online) Semilogarithmic plot of doublon lifetime
7 vs U/6J (reproduced from Ref. 9). The lifetime is extracted from
data sets as shown in Fig. 2. Solid and hollow circles denote the
(=9/2,-5/2) and (-9/2,-7/2) spin mixture, respectively, while
the dashed line shows the theoretical result at half filling. The solid
line is a fit of Eq. (5) to the experimental data, yielding «
=0.82+0.08, whereas for the theory curve the asymptotic slope at
large U/6J is a7=0.80. The shaded corridor was obtained by vary-
ing the filling factor in the calculation by 0.3. This has only a weak
effect on the slope. The inset shows the parameters used to realize
the different values of U/6J. Error bars denote the confidence in-
tervals of the lifetime fits and the statistical errors in U/6J. The
systematic errors in U/6J and my="h/J are estimated to be 30% and
25%, respectively.

with the following calculation of the doublon lifetime.

The slight offset between the two spin mixtures in Fig. 4
could be due to the fact that the absolute values for U and
J differ significantly between the (-9/2,-5/2) and the
(=9/2,-7/2) mixture.'® While the ratio between interaction
energy and kinetic energy U/6J, which dominates the dy-
namics, lies in the same range, the absolute values also mat-
ter in an inhomogeneous system. For the (=9/2,-7/2) mix-
ture the higher ratio of chemical potential to on-site
interaction is expected to lead to a higher filling in the trap
center and consequently to a higher equilibrium double oc-
cupancy Ny than for the (-9/2,-5/2) mixture. It is con-
ceivable that this difference modifies the dynamics of dou-
blon creation and doublon relaxation.

In additional measurements we examined the dependence
of the doublon lifetime on the initial double occupancy AN,
and on the total atom number N. In the former case, we
reduced the lattice modulation amplitude from 10% to 5%,
resulting in ANy=9% instead of AN,=18%, while keeping
all other parameters constant with U/6J=4.5. The measured
lifetimes agree within the error bars, they are 7p5q
=(77+25)Xh/J and 7p 199, =(58 £ 10) X h/J, respectively.
In the latter case, we prepared two otherwise identical
samples at U/6J=3.4 with N=(49 +7) X 10° atoms and with
N=(26+4)X10° atoms, respectively, yielding 7p 49000
2(1] iZ)Xh/] and TD’26000=(]9i2)Xh/J.

This shows that, although there is a dependence on the
total density and on the doublon density, these effects are
small compared to the dominant scaling with U/6J. Their
systematic study is beyond the scope of this work.
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III. THEORETICAL MODEL OF DOUBLON DECAY

We consider the decay of an isolated doublon moving in
the homogeneous background of a compressible state of
single fermions. Before constructing a model for doublon
decay, we focus on the dominant mechanism of decay. In the
experiments, lattice modulation creates 15—35 % double oc-
cupancies. Assuming an initial half-filled system, half the
amount of holes were also created in the system. At these
hole densities, the kinetic energy assisted decay scaling as
~exp(=U/J) is much faster than the spin fluctuation or
doublon-doublon collision assisted decay which scale as
~exp(—=U?/J%)."° Further, the population of higher bands can
be excluded since U is always smaller than half the band
gap. We also note that as the difference between U and the
chemical potential is always positive, confinement-assisted
decay of doublons near the edge of the cloud is unlikely, as
the accessible confinement energy is not very large, and the
tunneling rate is very small. Finally, a homogeneous com-
pressible background is justified since most of the doublons
are created in the central region of the trap, where the filling
is highest, and decay at most within a few sites of where they
are produced The estimated travel distance for a random
walk during the decay process is not more than 7pJ/h
= 10 sites, which is less than the cloud radius.

In our experiments, the doublons and holes are created at
finite density by driving the system with optical lattice
modulations. The relaxation of the system to equilibrium in-
volves two very different time scales. The first time scale is
associated with the relaxation of holes and doublons to a
state of quasiequilibrium without the decay of doublons. The
second time scale, which is the focus of this paper, is asso-
ciated with the decay of doublons into singles. We expect
that the second time scale is much slower than the first.
Moreover, we expect that nonlinear effects due to doublon-
doublon scattering can be neglected as the doublon band
width ~J?/U is small. Thus in this paper we consider the
problem of the decay of a single doublon in the background
of equilibrated fermions.

To construct our model Hamiltonian, we explicitly treat
the doublon as a separate entity from the background fermi-
ons. This approximation is justified in the strongly interact-
ing limit due to the separation of doublon and background
fermion time scales. We split the complete Hamiltonian of
the system into three parts

H=Hf+Hd+Hfd’ (6)

where H, describes the background fermion subsystem—
which we model as the projected Fermi sea, H; describes the
on-site interaction of the pair of fermions that make up a
doublon, and Hy; describes the fermion-doublon interaction.
The details of how to separate the Fermi-Hubbard Hamil-
tonian into the above three parts via projection operators are
discussed in Appendix A. The projection operators induce
interactions in the fermion subsystem as well as between the
fermions and the doublons. The fermion doublon interactions
are responsible for the doublon decay and the fermion-
fermion interactions modify the lifetime substantially.
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As mentioned above, we expect hole density in these sys-
tems to be ~15%. At such high hole densities the projected
Fermi sea is a good approximation for the background state.
Further the temperature of the system is high enough (T
~J) to prevent formation of more ordered states such as
superfluids.

Except for the single doublon that is undergoing a decay,
the large energy cost of double occupancies is taken into
account by projecting out configurations with double occu-
pancies from a simple Fermi sea. In the projected subspace,
the fermions can only hop in the presence of empty sites
(holes) and are governed by the effective Hamiltonian

Hf= - J(E): (1 - ni&)cjacja(l - nj&) - /‘LE Cj'—O'Cio" (7)
ij).o io

where ¢!

!, creates a fermion with spin o, n;, is the corre-
sponding number operator, and u is the chemical potential.

Expanding out the Hamiltonian one gets H f=I-I_(;-+Hp, with

H? ==J 2 Cja-cj - /‘LE Cj'o-cia’ (8)
(ij),o io
Hp = Jl E niﬁcz‘ocjtr'i- Cjocjonjﬁ" (9)

(ij).o

where we have replaced J by J; in the second term. J; will
be treated as a perturbation parameter to organize the calcu-
lation but we will set J;=J at the end of the calculation. H,
coming from the projection operators can thus be interpreted
as a fermion-fermion scattering term which leads to the cre-
ation of particle-hole pairs. We thus see that projection in-
duces interaction between the fermions.

We note that the scattering is always between fermions of
opposite spins. Since we will be interested in calculating
Feynman diagrams, we note that the interaction vertex for
the fermion-fermion scattering can be written as J;(y
+ Yk—q)» Where k and k—q are momenta of the incoming and
outgoing fermion with the same spin and yk=2Ef)=lcos k; in
D dimensions. This is depicted in the first row of Table I.

Throughout our treatment, we leave out terms such as
—Jni(—,c:fgcj,,n iz in Eq. (7) involving six or more fermion
creation/annihilation operators. Intuitively such terms are
rare because they involve collisions of multiple particles.

We now consider the decay of a single doublon in this
background state. The doublon (d) and fermion-doublon (fd)
Hamiltonians can be written as

H,=UY,dd, (10)

Hy=J 2 (dld;+dd;+dd)cl,cip+ diocl,clo(1-n;,)

J io-jo
(ij)o

+H.c., (11)

where H.c. stands for the Hermitian conjugate of the preced-
ing term. The doublon interacts with the fermions in two
different ways: (i) it can scatter off a fermion leading to the
hopping of doublons with backflow of fermions; (ii) it can
decay by creating a singlet particle-particle pair.
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TABLE 1. Interaction vertices for different processes in the
model for doublon decay. The single lines are fermion propagators
while the double lines are doublon propagators. The top entry in the
right-most column is the corresponding vertex function, while the
bottom entry is the “momentum-averaged” vertex function that we
use in our resummation technique. The first row corresponds to H,
[Eq. (9)] while the next two rows correspond to the two terms that
make up Hy, [Eq. (11)]. Here y,=2[cos(k,)+cos(k,)+cos(k.)] and z
is the coordination number, z=6 for 3D cubic lattice.

Vertex
Interaction Diagram [momentum avg. vertex ]
Fermion-fermion scattering ko J( Vi, + sz)
o Ptk — ko
e [/322]

I Vp-qt Y%t 7y

[1z]

Doublon-fermion scattering R

J(Vc+ Yp-i)

bS]

Doublon decay _
[/v2z]

p—k |

The interaction vertices of the doublon with the fermions
are given in the second and third rows of Table I. The vertex
for scattering off particle-hole pairs is J(Vp_q+ Y+ %>
where p is the momentum of the incoming doublon, q is the
momentum of the outgoing fermion and k the momentum of
the outgoing hole. The corresponding vertex for decay
through singlet creation is given by J(y,+ ¥p_x) Where k and
p—k are the momenta of the fermions created.

We assume that we are looking at the decay of a single
doublon, i.e., while the doublon is affected by the presence
of the background fermions, the fermions are unaffected by
the presence of the doublon. The motivation for this assump-
tion is that the experimentally observed decay rate depends
only weakly on the doublon density.

IV. DIAGRAMMATIC COMPUTATION
OF DOUBLON LIFETIME

Our strategy for finding the lifetime of a doublon is to
calculate the doublon Green’s function

Gow)=[w-U=-34w)]", (12)

where 2., is the self-energy arising from interaction with fer-
mions. The imaginary part of the self-energy at w=U then
gives the decay rate I" and its inverse is the required lifetime
7. Since we are interested in the high-frequency response, the
momentum dependence of the self-energy should be negli-
gible in this limit.

We perform the calculation at 7=0, where the relation
between imaginary part of the self-energy and decay rate is
exact. At finite temperatures Im X (w) has an extra contribu-
tion due to scattering on particle-hole pairs created by ther-
mal fluctuations. Thus, we must compute the scattering rate
separately and subtract it from Im 2(w) to obtain the decay
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FIG. 5. (Color online) A typical doublon self-energy diagram.
The double lines are bare doublon propagators while the single lines
are bare fermion propagators. The dashed line cuts the diagram in
half and shows the final products of the process represented by this
diagram.

rate. However, since we are looking at frequencies ~U, ig-
noring thermal fluctuations is justified for 7<< U, which is the
regime of interest.

Physically, there are two important processes for the dou-
blon decay. A doublon can lose its energy either by creating
a large number of particle-hole pairs, each with an energy
~J, or by creating a few high-energy particle-hole pairs,
each of which is unstable and creates a shower of particle-
hole pairs of low energies. The first process is a high-order
diagram in the doublon self-energy while the second process
comes from high-order diagrams in the fermion self-energy.
We find that combinations of both processes give important
contributions to the doublon decay rate.

The typical doublon self-energy diagram (Fig. 5) depicts a
process of creation of a number of particle and hole excita-
tions. Since we are interested in the imaginary part of the
self-energy at w=U, the fermion lines crossing the dashed
line which cuts the diagram in half should be on shell and
their energies must add up to U. The leading order contribu-
tions to the decay rate thus come from the diagrams which
maximize the number of fermions that cross the dashed line
while minimizing the number of interaction vertices.

Our approach for obtaining the doublon self-energy con-
sists of (1) obtaining the projected Fermi sea Green’s func-
tion and (2) using it to obtain the doublon self-energy. We
make the dilute doublon approximation and assume that the
fermion Green’s function is independent of the doublon
Green’s function. We proceed by formulating a diagrammatic
resummation technique for the doublon self-energy in Sec.
IV A. In doing so, we relate the doublon self-energy to the
fermion Green’s function, which we calculate in Secs. IV B
and IV C.

A. Doublon self-energy

For large U/J, the doublon decays into a large number of
particle-hole pairs and therefore one needs to compute high-
order diagrams to obtain the doublon self-energy (for cre-
ation of n pairs, one needs to compute ~2n! diagrams). It is
then much preferable to resum a class of diagrams, rather
than evaluate an exponentially increasing number of them.
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FIG. 6. Self-consistency equation for the doublon propagator
(top) and some typical diagrams that make up the full propagator
(bottom). Thin double lines indicate the bare doublon propagator,
the double lines with a squiggle the full (resummed) doublon propa-
gator, and thick single lines the full (resummed) fermion
propagator.

We use a self-consistent noncrossing approximation to
achieve this resummation. The diagrammatic technique is
similar to that of Ref. 20. The propagator diagrams are
shown in Fig. 6, where the doublon lines with squiggles
represent the full doublon Green’s function to be obtained
self-consistently and the thick single lines are the fermion
propagators.

At this point, we make an additional approximation and
replace the k-dependent vertex functions Ay, by momentum
averaged vertex functions V(Aj) listed in Table I. The basis
of this approximation is that within our resummation scheme
the vertex functions always occur in pairs with identical and
largely arbitrary momentum indices, as can be seen from the
self-consistent equation represented in Fig. 6. The self-
consistent equation, therefore, contains the product of this
pair of vertex functions and we replace this product by its
momentum averaged value.

Having replaced the momentum-dependent vertex func-
tions by momentum-independent ones, we can replace the
Green’s function and the self-energies by their momentum-
averaged counterparts. With this modification, the doublon
self-energy is given by

w d !
Sw) = 2*C"(w) - 2zJ2f %S"(w')gg((u —w'),
0

(13)
! 2 2 0 dw, " ’
S(w)=z°C"(w) = 22J 75'(w’)gd(w—w’)
5 “do' ,
220 f 49 o )S (0= ), (14)
O W

where 2, C, and S are the retarded doublon self-energy,
fermionic particle-particle and particle-hole propagators,
respectively,?! and the primes ' and ” denote the real and
imaginary parts, respectively. The particle-particle and
particle-hole propagators are given by

a)d !
§'(w) = - f GG - ). (15)

0
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FIG. 7. Typical diagrams for the doublon Green’s function that
are not accounted for in the resummation procedure as they contain
crossing fermion lines. Here, double lines stand for bare doublon
propagators and thick single lines for the full (resummed) fermion
propagator. For reasons explained in the main text, these crossing
diagrams do not contribute to the doublon decay, as the vertex fac-
tors are not paired and thus average to zero upon momentum inte-
gration. To see this, the momenta and a pair of vertices in the first,
pretzel like, diagram are labeled. Notice that the y vertex factors
have different momentum labels, these would have been identical
for the case of a noncrossed diagram.

0 dw, " ’ ! ’ ! ’
S'(w) =- f 7gf(w )[gf(w - w)+ Qf(w + w)],

—o0

(16)
wdw, " ! " !
C”(w)=—f —Gi0")Gj(0- o), (17)

0 7T
! 0 dw, " ! ! !
C'(w)= 79_;«((» )G (@ - ')
“ do'
- f GG + @) |, (8)
0 o

where G{w)=2Gkw) is the momentum-averaged fermion
Green’s function and the primes ' and " denote the real and
imaginary parts. These equations, together with the equation
for the doublon Green’s function, Eq. (12), define a system
of self-consistent equations for the doublon self-energy.

In this section we have made two approximations: (1) we
replaced the momentum-dependent vertex functions by mo-
mentum independent ones and (2) we have left out a large
number of diagrams with crossing fermion lines (see Fig. 7
for some typical examples). To verify these approximations,
we have explicitly computed all diagrams up to sixth order in
a Fermi golden rule calculation, which is free of these ap-
proximations (see Appendix B for details). We find that the
decay rate computed via Fermi golden rule matches very
well with the resummation result. Further, within Fermi
golden rule calculation we empirically verify that the contri-
bution of crossed diagrams to the doublon self-energy is in-
deed negligible. Intuitively, the reason for this seems to be
that the fermion-doublon interaction vertex contains the fac-
tor ¥p_q+ Y+ Yq Which changes sign as we sample momen-
tum space. The noncrossing diagrams involve squares of this
vertex function and do not change sign as we integrate over
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FIG. 8. Self-consistency equation for the fermion propagator
(top) and some typical diagrams that make up the full propagator
(bottom). Thin lines indicate the bare propagator and thick lines the
full (resummed) propagator.

momentum coordinates. On the other hand, the crossing dia-
grams involve products of the vertices at different momenta
and hence give a negligible contribution upon integrating
over momentum coordinates.

B. Fermion self-energy

We now come back to the question of evaluating the fer-
mion Green’s function

Gk =2 [w- -3 )], (19)
k

where €,=—Jy—u is the bare dispersion and % w) is the
fermion self-energy that arises due to the interaction with
other fermions. To make progress, we begin by considering
the noncrossing approximation. As before, for the case of the
doublon self-energy, we are interested in the high-frequency
part of the Green’s function, and therefore (in the noncross-
ing approximation) we are justified in replacing the vertices
by their momentum-averaged counterparts as listed in the
first row of Table I, and then working with momentum-
averaged Green’s function and self-energies. In the noncross-
ing approximation, the fermion self-consistency equation is
depicted diagrammatically in Fig. 8, where the thick fermion
lines represent fully dressed fermion Green’s functions that
are being determined self-consistently. The fermion self-
energy equations are given by

3 (w) =~ ZzﬁJ d%S”(w’)G"(w -w'), (20)
0

0 d i
SH(@) =227 f 9 5016w )

—o0

“do'
+21J%f 7 }(w’)S’(w—w’). (21)
0

Combining these self-energy equations with the definition
of the Green’s function, Eq. (19), we obtain a set of self-
consistent equations for the fermion Green’s function.
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e e

FIG. 9. Typical crossed fermion diagrams that are missed by the
resummation method. These types of diagrams are expected to
strongly contribute to the fermion self-energy at high frequencies
and therefore to the doublon decay rate.

C. Corrections due to diagrams left out

In the resummation formalism we have missed three im-
portant classes of diagrams: type I diagrams, which corre-
spond to doublon self-energy diagrams with crossing fer-
mion lines (examples depicted in Fig. 7); type II diagrams,
which are fermion self-energy diagrams with crossing fer-
mion lines (examples depicted in Fig. 9); and type III dia-
grams, which are doublon self-energy diagrams which are
left out and are neither type I nor type II (examples depicted
in Fig. 10).

As mentioned earlier, we have empirically checked that
type I diagrams do not contribute to the doublon self-energy
due to the lack of pairing of the fermion-doublon vertex
factors. However, there are no similar arguments for exclud-
ing type II or type III diagrams. We suppose that when a
doublon emits a particle-hole pair, the particle and hole are
not coherent with each other, and therefore, we make the
approximation of dropping type III diagrams. However, each
fermion in the emitted pair still interacts with the Fermi sea,
resulting in both noncrossing fermion self-energy diagrams,
that have already been taken care of, and type II diagrams
which we shall try to estimate.

Since we cannot evaluate all the type II diagrams explic-
itly, we proceed to approximate their effect on the fermion
self-energy in the following way: (a) we assume that at a
given frequency w, the leading contribution to the imaginary
part of self-energy Im 2 (w) comes from diagrams of a defi-
nite order ng(w), as diagrams of lower order do not have
enough particle-hole pairs to absorb w and diagrams of
higher order are suppressed by additional powers of J/ w. We
expect ny(w) to scale linearly with @ as the main contribu-
tion to the spectral function at w comes from exciting ~w/ €,
particle-hole pairs, where ¢, is the typical energy of particle-
hole pairs.

- -

FIG. 10. Typical type III diagrams that are missed by the resum-
mation method. As explained in the main text, these diagrams are
expected to give some contribution to the doublon self-energy, but
their effect is not taken into account.
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FIG. 11. (Color online) Order with largest contribution to the
fermion self-energy ng(w) as a function of the frequency w. The
solid line represents the best linear fit for the high-frequency data.

(b) To determine ny(w), we keep the fermion-fermion ver-
tex energy scale J; as a free parameter and calculate ny(w)
from the logarithmic derivative

n(w)-lM (22)
"7 dlog U, J=t

This relation is exact if only one order of diagrams contrib-
utes at a given energy; for the case of different orders con-
tributing to self-energy, this gives a number close to the or-
der with leading contribution. ny(w), obtained from the
resummed self-energy, is plotted in Fig. 11. The best fit for
this graph is ny(w)=w/(5.85J)—1/2.

(c) We then compute the ratio of the total number of pos-
sible nth-order fermion self-energy diagrams to the number
of nth-order diagrams included in the resummation scheme,
R(n). R(n) can then be interpolated to form a function of the
continuous variable n. See Appendix C for details of com-
puting this ratio.

(d) In the final step, we rescale the imaginary part of the
fermion self-energy by R[ng(w)] to obtain a better approxi-
mation including effects of missed diagrams

S/(0) — S(@)Rlno(w)]. (23)

Here, we are making an assumption: the amplitude of the
fermion self-energy diagram only depends on its order in
perturbation theory and not on the details of the structure of
the diagram. Modulo the contribution of the type III dia-
grams, this approximation should overestimate the decay rate
as the crossing diagrams usually contribute less than the non-
crossing diagrams due to the momentum sums involved.

To complete the calculation of the doublon self-energy,
we use the fermion Green’s function to construct the particle-
particle and particle-hole propagators, Egs. (15)—(18), which
appear in the self-energy equations for the doublon Egs. (13)
and (14).
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V. THEORETICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

In this section we look at the theoretical results of the
doublon lifetime calculation and compare them with experi-
mental results. We start by summarizing the method of cal-
culation, which will help in establishing different approxima-
tion schemes. We then discuss the results from different
schemes and their comparison with experiments.

The calculation of the decay rate via the resummation
technique has two important steps. The first one is the evalu-
ation of the fermion Green’s function which is used to com-
pute the particle-particle and particle-hole propagators. The
second one is the evaluation of the doublon self-energy,
which uses these propagators. As mentioned before, a non-
crossing approximation for the doublon self-energy yields
good results. The crossing diagrams give negligible contri-
bution as the vertex functions which oscillate with momenta
kill the momentum averages. We also note that there is a set
of doublon self-energy diagrams (the type III diagrams)
which we neglect in our calculation.

Our approximations are then related to different ways of
evaluating the fermion propagators. We consider three differ-
ent approximations: (i) noninteracting fermions; in this case
we use the free fermion propagators with a band dispersion.
One way of looking at this approximation is to set J;=0. (ii)
Noncrossing approximation for interacting fermions; in this
case we set J;=J but use only noncrossing diagrams to
evaluate the fermion propagators. (iii) Modified self-energy
for interacting fermions; in this case we modify the self-
energy of the interacting fermions obtained by the noncross-
ing approximation to take into account fermion self-energy
diagrams missed in the resummation. The modification pro-
cedure is detailed in the previous section.

We plot the spectral function of the fermions, A(w)
=—(1/m)Im G{w), for the three approximations in Fig. 12.
In the noninteracting case, this is simply the density of states
in a cubic lattice and the spectral weight is zero outside the
band. In the noncrossing approximation, we see that there is
a transfer of spectral weight from low energies to an expo-
nential tail at high energies, which reflects the fact that inter-
action induced by projection leads to the possibility of cre-
ating a high-energy fermion, which can reduce its energy by
creating particle-hole pairs. This is an important qualitative
change that affects the physics of doublon decay in a funda-
mental way. The interacting fermion approximation allows
two distinct decay processes: (a) creation of several low-
energy (w~2zJ) particle-hole pairs and (b) creation of a
high-energy particle-hole pair which then decays into a
shower of low-energy particle-hole pairs. The second process
is forbidden for noninteracting fermions. Finally, in the
modified self-energy approximation, we include more pro-
cesses to create particle-hole pairs and hence there is a larger
shift of spectral weight to higher energies, as evidenced by
the slower decay of the tail. This enhances the importance of
the (b) channel for decay.

In the second step we use the fermion propagator obtained
in step one to self-consistently compute the doublon self-
energy. The imaginary part of the doublon self-energy for
various U/6J ratios is depicted in Fig. 13. The main features
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FIG. 12. (Color online) Fermion spectral functions in different
approximations: the free fermion spectral function [A©)(w)]; the
projected fermion spectral function obtained as the result of the
resummation procedure [A(w)]; the projected fermion spectral func-
tion including corrections for missing diagrams in the resummation
procedure [corrected A(w)]. The linear slope at high energies on a
semilogarithmic scale shows the exponential transfer of spectral
weight due to projection-induced interactions.

are a pair of peaks, one occurring at small frequencies, and
another at high frequencies. As there are no excitations in the
Fermi system in the initial state, for frequencies w=U a
nonzero value of Im 2 ,(w) corresponds directly to the rate of
doublon decay. At low frequencies, the doublon is far from
its mass shell and rapidly decays into a pair of particles. As
the frequency increases more and more particle-hole pairs
are required to absorb the doublon energy resulting in the
exponential decrease in Im 2 (w). As o surpasses U, a new
contribution to the imaginary part of the doublon self-energy
arises from processes where the doublon can scatter into a
lower energy state closer to the mass shell by releasing the
excess energy in the form of a few particle-hole excitations.
This scattering process is responsible for the high-frequency
peak in Im 3, (w), that starts growing at w=U. As we are
interested in the decay of a doublon on the mass shell, we
read it from Im 2 ,(U), which corresponds to the smallest
value of Im 3 ;(w) between the two peaks.

1005'"'I""I""I""I""l""-

— U/6I=2 |
U/61=3 |
U/61=4 |
U/6J=5 §
- Ul6I=6 |
- U/6I=T ||

Im £ (@)/(6])

FIG. 13. (Color online) Doublon self-energy (in the modified
fermion self-energy approximation) for various values of U/6J.

PHYSICAL REVIEW B 82, 224302 (2010)

10"

| — — Non-interacting | / /.’ 3

[| - —- Interacting L, ]

10°H — Modified a E

F 7/ / ]

. / , ]

— - / . 4

’ ——

%/ 1025‘ / — -§

101:- M ]

E o+ 3

i / 1

i , 1

0L vV, M BT R
107777 3 4 5 6

u/el

FIG. 14. (Color online) Doublon decay time as a function of
U/6J. The blue circles are the experimental data (cf. Fig. 4). The
lines represent theoretical results from resummation with different
levels of sophistication from noninteracting fermions (red dashed
line) to the noncrossing approximation with interacting fermions
(green dotted-dashed line) to the modified self-energy approxima-
tion (purple solid line).

In Fig. 14, we plot the experimentally obtained decay
time together with the theoretical estimates from the three
different approximations mentioned earlier. We proceed in
the order of sophistication, starting from the noninteracting
fermion case. We see that the decay time obtained with non-
interacting fermions (J;=0) via resummation of doublon
self-energy diagrams is much longer than the experimentally
obtained one. Setting J;=J, and using noncrossing diagrams
for fermion self-energy, we obtain a decay time that is a
closer match to the experimental data, but is still too long.
Next, we take care of the corrections to the imaginary part of
the fermion self-energy from crossing diagrams and find a
reasonable match with experiments.

Finally, we want to comment on the remaining free pa-
rameters in our calculation. The chemical potential of the
fermions, which determine the hole density, is a free param-
eter, which can, in principle, be determined from an equilib-
rium theory of a strongly interacting doped Hubbard model.
Since there is no consensus about the theory of the doped
Hubbard model, we prefer to keep it as a free parameter. We
vary it within the plausible range of 0.25J to (-0.3J) to see
how sensitive our results are to the choice of this parameter.
The dispersion in the lifetime is then plotted as the shaded
region in Fig. 4. We see that we find good quantitative agree-
ment with the experiments in the slope of the lifetime curve,
i.e., for the coefficient « in the exponent of the scaling func-
tion. The agreement in the prefactor C is also fair but this
quantity is sensitive to the choice of the free parameter in our
calculation.

VI. CONCLUDING REMARKS

We have studied the decay of artificially created double
occupancies in the repulsive Fermi-Hubbard model in the
presence of a background compressible state. The situation is
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experimentally realized by creating double occupancies and
corresponding holes on top of a half-filled system via optical
lattice modulation. Experimentally it is found that the decay
time of the doublons scales exponentially with U/J. We can
understand the observed scaling in terms of the fact that in
order to decay the doublon has to distribute its energy
(~U) among ~U/J particle-hole excitations. We have de-
veloped a detailed theoretical description of this process us-
ing diagrammatic resummation techniques. Although the
scaling form can be understood from a simple energy con-
servation argument, we find that the coefficient in the expo-
nent depends substantially on the strong interaction between
the background fermions. After taking into account the ef-
fects of these strong interactions, we find quantitatively fair
agreement between theory and experimental results.

The exponentially large lifetime of the doublons has seri-
ous implications for use of cold atom systems to simulate the
equilibrium properties of the Hubbard model at large values
of U/J. Typically, in cold atom experiments, the strong in-
teraction regime of the Hubbard model is accessed by cool-
ing the atoms in a weakly interacting state and then tuning
either the optical potential or the magnetic field to change
U/J. The lifetime of the doublons constrains the maximum
sweep rate of these Hamiltonian parameters under which
thermal equilibrium is maintained. As one goes toward larger
U/J, the sweep rates need to be exponentially slow to main-
tain thermodynamic adiabaticity. Given intrinsic constraints
like lifetime of a sample, this would restrict the values of
U/J for which the simulation of Hubbard model in thermal
equilibrium can be achieved.

However, this also opens up the possibility of studying
nonequilibrium dynamics of the Hubbard model, which may
contain interesting and distinct physics. In addition, the long
lifetime of the doublons also leads to the possibility of ob-
serving metastable states with finite density of doublons. An
intriguing scenario is observing #» pairing of doublons and
holes.?

Finally, we point out that similar phenomena may be rel-
evant to the issues of equilibration in the bosonic Hubbard
model. In a recent paper?® Chin’s group observed the equili-
bration of the density distribution of bosonic atoms in a two-
dimensional optical lattice after the lattice potential was
ramped up. As the system relaxed toward equilibrium, the
center of the trap heated up, which required the increase in
the number of doublons. The slow relaxation time scale ob-
served in the experiments may be a reflection of the “dual”
problem to the one we discussed in this paper: slow rate of
formation of doublons from a state containing only singly
occupied sites and holes.
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APPENDIX A: MODEL

In this appendix we derive the model we use to describe
doublon decay in the background of a projected Fermi sea.
We begin with the Fermi-Hubbard model
(A1)

HFHz_‘]E Cza' ]0’+U2 ntTnll’
({ij)o

where the first term describes the hopping of fermions and
the second term the on-site repulsive interaction. We are in-
terested in the case U>J, where we expect doublons to be
metastable particles. Therefore, our goal is to decouple the
doublon sector from the sector of singles. We do this by
projecting out double occupancies from the singles sector,
and introducing doublon creation and annihilation operators
le and d; to take their place. We proceed in two steps, first
we use projection operators to separate the terms in the
Fermi-Hubbard Hamiltonian that preserve the number of
doublons from those that change it,

Heyy=Hy+H, +H_j, (A2)

where H,, preserves the number of doublons

=_JE (1 nto‘)cza jO'(l n]o‘) JE nw’ Cw' j(T(nj(T
(ij)o (ijyo

+ UE ngn;| (A3)
and H. | increases/decreases it by 1
H, = —JE (ns C,g ](7(1 nj(?)s (A4)
(ij)o
1==J 2 (1=ng)chcinlnig), (A5)

(ipo

where n; —cT ,Cio and o indicates spin opposite to o. In the
second step, we replace double occupancies by the corre-
sponding doublon operators. Thus we have

Hy=-72 (1-n5)(1 =nd)el,c;p(1=nh(1 = nz)

(ijyo
—J 2 didicicly+ UE n (A6)

(ijyo

and
H, =72 odi(cjzci)(1-n;5), (A7)
(ipo

L==T 2 ol = ng)(cleld;, (A8)

(ij)o

where n?=d!d;. Thus far, we have obtained an expression for
the Fermi-Hubbard Hamiltonian that incorporates doublon
operators. This Hamiltonian was specifically derived in such
a way as to avoid creation of spurious states (e.g., a doublon
and a single fermion on the same site) by the use of projec-
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tion operators. As a result, we do not need to supplement it
with a constraint equation.

Now we can separate the terms in the Hamiltonian based
on which sectors they connect. The fermion-fermion term
arises from terms in H,, that connect the projected sector and
is given by

Hf=_~]<% (1 _niﬁ)c;—acjo(l —Njz).
ij)o

(A9)
Likewise, the doublon repulsion term also arises from H,, and
is given by

The remaining terms connect the fermion and doublon sec-
tors and are

Hfd=H+l+H—l+‘]2 N (All)
(ij)o
[(1- ”i&)n;l +n{(1-n;z) + dj-di]clrcjm (A12)

where we have dropped the term that is nonzero in the pres-
ence of a pair of doublons as we are assuming that there is at
most one doublon. To complete the model, we drop terms
that result in Feynman vertices with more than two incoming
and two outgoing propagators. We have verified, numeri-
cally, that these diagrams do not significantly contribute to
the doublon decay rate.

APPENDIX B: CHECKS ON APPROXIMATIONS
THROUGH FERMI GOLDEN RULE CALCULATION

In this appendix, we compute the doublon decay rate for
the case of noninteracting fermions [i.e., we disregard H,
part of Hamiltonian (8)]. We treat H0=H(;-+Hd as the base
Hamiltonian, and Hy, as the peﬂurbation'Hamiltonian, and
evaluate the decay rate, via the golden rule, to very high
order in Hy,; using Monte Carlo integration. The objective of
this appendix is to test the approximations made in the re-
summation technique of Sec. IV on a simplified Hamiltonian.
In particular, we empirically verify that (1) we may ignore
the crossing diagrams in the doublon self-energy and (2) we
can use momentum-averaged Green’s function to compute
the decay rates. We begin by laying out the formalism and
then list the results of the Monte Carlo integration of the
decay rates.

1. Formalism

Our goal is to compute the transition rate from the starting
configuration composed of a single doublon in a Fermi sea at
finite temperature to the final configuration composed of the
initial Fermi sea with the doublon converted into a pair of
single particles and a number of particle-hole excitations.
The Fermi golden rule states that the decay rate is given by

M) =273 [GTHPoE - E), (B1)
f

where the matrix element can be expressed in ordinary per-
turbation theory via

PHYSICAL REVIEW B 82, 224302 (2010)

s 1H 481X o1 H pal$,0-0) * =+ (51| H gl 0)
(Ei - Esl)(Ei - Esz) T (El - Esﬂf )

{(ATliy=

S1280s0 -+ 1

(B2)

Here, the sum goes over all intermediate states s;, with
energy E, and n is the order of perturbation theory. In this
perturbation theory, the action of Hy, (except for the final
matrix element (f|H,|s,_;)) is to create particle-hole
pairs. In principle, we may be able to connect the initial
state to the final state via other processes, e.g., doublon
— particle-particle — doublon, however, these process lead to
decay at higher order in perturbation theory, and thus we
ignore them.

We label the initial state by the momentum of the doublon

p;

liy=

-p) = dj[FS). (B3)

Likewise, we label the final state via a set of momenta for the
up (down) spin particles k;;(}y and the up (down) spin holes

qir(l)

kl,T”'knT+l,T kl,i”'knl+l,l

1= (B4)
fh,T'"an,T ql,i'”qnl,i
oo (6 (e
_ckn7+1,Tckny+l,l Cknl,lcqnl,L) (Ckl,LCqL,L)
i RON
X (cknﬂcqnm) (Ckl,chl,1)|FS>’ (B5)

where n;(;) counts the number of spin-up (down) particle-
hole pairs created (ny+n +1=n).

The intermediate states are composed of a doublon and
1,2,3,...,n—1 fermion-hole pairs. Using H;, we can write
the matrix element as

=—8 U/6]J=1.9
c—o U/6J=30
o—o U/6]=3.7
=—am U/6)J=4.5
—o U/6]=5.0

U/6J=5.7

Decay Rate (J/h

1 2 3 4 5
Perturbation theory order

FIG. 15. (Color online) Decay rate as a function of the order of
the perturbation theory computed using Fermi’s golden rule. The
largest decay rate corresponds to the most important order.
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kipee knT+l,T ki knl+l,l
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(ATliy = ;|11 5p (B6)
Qm"‘an,T CIl,l.“qnl,l
_ E sig(perm) <f|H1|(5'1,];13571), 7(&n—19En—lsq~n—l);ﬁn—l>"'<(&I’El”q~]);ﬁl|Hl|p> (B7)
permutations (5121 + ot 5’:,1-1 - gijl - 5(7"_1) Tt (§I:1 + 51:2 - §¢71 - 5672)(&:1 - gijl) '

where l;,-, cj,-, D, stand for the particle, hole, and doublon
momenta, respectively, and &; indicates the spin of the ith
particle-hole pair. The sum runs over all intermediate states
that lead to the final state | /). That is, we must sum over all

permutations of assigned values to (&i,lzi,cjj) from the list
{kl,T""’knTH}’ {kl,i’-"’knlﬂ}’ {ql,T’“"an}s and
a1, ,qnl}. Within this labeling scheme, the doublon mo-
menta in the intermediate states p,, and the hole momenta in
the final state, are chosen automatically by momentum con-
servation. We take care of the fermionic anticommutation
relations with sig(perm), which stands for the signature of

2

the permutation and is *1 for even/odd permutations of mo-
menta.

To obtain the decay rate, we trace over the final states,
order by order in perturbation theory,

T(p)=2T"(p). (B8)
n=0

At each order we trace over the number of up- and down-
spin particle-hole pairs, and the corresponding momenta of
particles and holes that make up the final state. The decay
rate at nth order is then given by the expression

[dkm T dknT+1,T][dk1,¢ t dknl+l,i][dQI,T t dan,T][dCh,l t dqnl,i]

IMp)=— 2

h nT+nl+1:n

><5(U—Ef)§(p—zk+2q)

where @k stands for  f(k)d’k/(2m)3, dg for
[1-f(q)]d®q/(27)3, and f(k) is the Fermi function. The de-
W
@—® Fermion-Crossed 7
OG—O Boson-Crossed
| 3—8 Non-Crossed E
10°H —— Resummation 3
=
= ; 3
10° .
10° .
2 3 4 5 6

u/eJ

FIG. 16. (Color online) Comparison of the resummation method
and various golden rule approximations for calculating the depen-
dence of the doublon decay time on the interaction strength U/6J
(with noninteracting fermions).

kl,T e knT+1,T’ kl,l e knl+1,l7
qi1,1°°" anm

VAR A (B9)

q1,| ”'in,i

nominator in the integral takes care of the fact that inter-
changing a pair of momentum labels does not change the
final state, E,;=&(k; 1) +-- '+§(knT+1,T)+§(kl,i)+ o '+§(knl+1,¢)
—&q1) = =&qn 1) = &q1, )= ~Elg, )] is the final-state
energy, and the second 6 function takes care of momentum
conservation.

We explicitly evaluate the 3*"-dimensional integral in Eq.
(B9) numerically via Monte Carlo integration. To perform
this integration, we replace the & function of energy, which
defines a hypersurface in momentum space—a volume of
measure zero—by the top hat function. We also use impor-
tant sampling to speed up integration by biasing our selection
so that we pick particle-hole pairs with holes in the Fermi
sea and particles outside of it. The main numerical constraint

n=1 n=2

FIG. 17. All distinct tree diagrams with one vertex (left) and
two vertices (right).
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FIG. 18. (Color online) Dependence of the number of distinct
tree diagrams on the number of nodes in the tree.

on the speed of integration comes from evaluating the
(ny+1)!(n;+1)!n;!n|! permutations over the intermediate
states, which becomes rather expensive for n>6.

2. Results

We begin by verifying that the perturbation theory in Hy,
does indeed converge. That is, for fixed U/6J, does I'™(p)
decrease sufficiently fast as n increases? We know that for
n=U/12J, I'(p)=0, as not enough particle-hole pairs are
formed to carry away the energy of a doublon. When n
~U/12J, in order to satisfy energy conservation, particles
created in the decay must have momentum in vicinity of the
band maximum near (7, 77, 7) and holes in the vicinity of the
band minimum at (0,0,0). Therefore, for n~ U/12J the vol-
ume of the momentum space being integrated is very small
but this volume increases quickly as n grows. As a result, we
expect that the I'(p) will increase with n for small n. On
the other hand, at high orders the decay rate is suppressed by
a high power of the small parameter J/U. Thus, we expect
'™ (p) to have a maximum for some intermediate value of n
close to, but somewhat larger than U/12J.

In Fig. 15 we plot I'™(p) as a function of n for various
values of U/6J. In all cases, computations have been per-
formed at T=0 and w=0 (corresponding to one particle per
two sites). As expected, in all cases, we see a clear peak in
' (p) at n~U/12J+2.

Having verified the convergence of the high-order pertur-
bation expansion, we move on to empirically verify whether
we can ignore crossing diagrams, at least for the case of free
fermions. In order to perform this comparison we compute
the total decay rate as a function of U/6¢ using both Monte
Carlo integration of Eq. (B9) (incorporates all possible dia-
grams), as well as the resummation of the noncrossing dia-
grams given by Eq. (14) with bare fermion Green’s function
used to compute C(w) and S(w). We perform two additional
tests using Monte Carlo integration: (1) we calculate the de-
cay rate with bosonic instead of fermionic signs for closed
fermion loops; (2) we keep only the diagonal terms, i.e., we
replace |Gperm’ **|*— Operm|* **|% Which corresponds to the
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5

® Computed Ratio
4[| — Extrapolated Fit

Q,,(nY/Q, (n)

(17 R TR R R RS S T NS S S S RS T T
0 1 2 3 4 5 6
n=Number Vertices/2

FIG. 19. (Color online) Correction ratio as a function of the
order of the diagram.

order-by-order summation of noncrossing diagrams, but
without momentum averaging of the resummation approach.
The results of these four types of calculations are plotted in
Fig. 16, for T=0 and w=0. There is very good agreement
between all four cases, confirming that crossing diagrams
may indeed be dropped as explained in Sec. IV A.

APPENDIX C: DIAGRAM COUNTING

In this appendix we describe the procedure for counting
the total number of distinct, spin-labeled fermion self-energy
diagrams at a given order Q,;(n) and the number of non-
crossed spin-labeled fermion self-energy diagrams Q,.(n).
We remind the reader that Q,;(n) and Q,.(n) correspond to
diagrams with 2n vertices. For high w, 2}(0)) is dominated
by diagrams with maximal number of particle and hole lines
in the middle, as these maximize the energy that is being
transferred to the particle-hole pairs being created. In fact,
the range in @ over which Z/(w) is nonzero is proportional
to the number of particle and hole lines in the middle of the
diagram. Therefore, to simplify the counting, we only count
diagrams that have the maximal number (2n+1) of particle
and hole lines going across the middle of the diagram.

To count the number of diagrams at given n, we first
construct all distinct tree diagrams (without spin labels) that
have a single particle going in, n+1 particles and n holes
going out and n vertices of the type given in the first row of
Table 1. In Fig. 17, we show all such tree diagrams for
n=1 and n=2. In Fig. 18 we show how the number of dis-
tinct trees scales with n.

Next, we construct the set of all the possible self-energy
diagrams by taking a pair of tree diagrams, reversing all the
arrows in one of them, and gluing them together. When we
count the total number of diagrams, we glue together
particle-particle lines and hole-hole lines in all pairs of trees
at the given order, in all possible ways. On the other hand,
when counting the number of diagrams produced by the non-
crossing approximation, we only glue together trees with
their mirror image. Finally, we spin label the resulting
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diagrams, and remove all duplicate diagrams, to obtain

Qall(n) and an(n)-
We assume that the ratio Quu(n)/Q,.(n) scales like
~e“. We use this assumption to extrapolate the ratio for

PHYSICAL REVIEW B 82, 224302 (2010)

noninteger values of n and for large values of n>4. We
plot the ratio of Q. (n)/Q,.(n), along with the extrapolated
curve that we use in rescaling the fermion self-energy, in
Fig. 19.
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