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We systematically study the phase diagram of S=2 spin chain by means of density-matrix renormalization
group and exact diagonalization. We confirm the presence of a dimer phase in the Affleck-Kennedy-Lieb-
Tasaki �AKLT� and Scalapino-Zhang-Hanke �SZH� model and find that the whole phase boundary between
dimer and SZH phases, including the multicritical point, is a critical line with central charge c=5 /2. Finally,
we propose and confirm that this line corresponds to SO�5�1 Wess-Zumino-Witten conformal field theory.
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I. INTRODUCTION

In recent years, investigations of topological phases and
phase transitions has attracted great attention in condensed-
matter physics1 and quantum-information theory.2 Topologi-
cal phases are characterized by a bulk gap separating excita-
tions from the ground state and by the presence of gapless
edge modes. A topological phase cannot be deformed con-
tinuously into a conventional, topologically trivial phase
without going through a phase transition, in which the gap
closes and the edge modes merge with the bulk. The
quantum-Hall �QH� state3 and the recently discovered topo-
logical insulators1 are examples of topological states of
quantum matter.

Topological phases even appear in one-dimensional sys-
tems. The Haldane phase4 of integer quantum spin chains is
an example of a symmetry protected topological phase.5,6 In
1987, Affleck, Kennedy, Lieb, and Tasaki �AKLT� intro-
duced a family of exactly solvable integer spin models7 with
valence bond solid �VBS� ground state and proved that VBS
states share the key features of Haldane gap liquids for inte-
ger spin chains. The ground state of AKLT model can be
exactly formulated in terms of Schwinger bosons,8 ��AKLT�
=��ij��ai

†bj
†−bi

†aj
†�S�0�, where S is the local spin. The VBS

states are unique ground states of the AKLT Hamiltonian for
periodic boundary condition �PBC�; for open boundary con-
ditions �OBCs�, however, the ground state is �S+1�2-fold
degenerate with edge spins S /2. The parent Hamiltonian for
the VBS states ��AKLT�, here for S=2, is conveniently de-
fined in terms of projection operators7

HAKLT = �
�ij�

K3P3�i, j� + K4P4�i, j� , �1�

where K3 , K4�0 and P3 and P4 project onto the spin 3 and
spin 4 subspaces at the bond �i , j�, respectively. The edge
spin is bosonlike S=1 and the square of the time-reversal
operator T satisfies T2=1.

In 1998, SZH introduced an SO�5� symmetric superspin
model9 with an exact VBS ground state. The local spin in
the SZH model transform under the five-dimensional vector
representation of SO�5�. SZH presented an exact ground-
state wave-function expressed as a matrix product state of

Dirac � matrices and showed that the ground state is 16-fold
degenerate for OBC. This model can be naturally mapped
onto a spin 2 chain with fermionlike S=3 /2 edge spin10 and
T2=−1. Following SZHs work, more VBS states with higher
symmetry groups have been constructed.11,12

The ground state of SZH model is given by ��SZH�
=��mi	

Tr��m1�m2
¯�mN��m1 , . . . ,mN�, where the �m fulfill

�a�b=2�ab+2i�ab and mi is a vector label of the SO�5�
group, which can also be interpreted as the mi=−2,
−1,0 ,1 ,2 quantum numbers of spin 2. The corresponding
Hamiltonian is given by

HSZH = �
�ij�

J2P2�i, j� + J4P4�i, j� , �2�

where J2 , J4�0 and P2 and P4 again are the SU�2� bond
projection operators onto spin 2 and 4, respectively. The
ground state is unchanged up to an SO�5� rotation.

Like for topological insulators, the bulk topology is re-
lated to the edge states of an open chain. Consequently,
AKLT and SZH models describe different topological
phases. As recently pointed out,13 odd integer spin AKLT
models are protected by a couple of symmetries, e.g., time
reversal, while even integer spin AKLT models are solely
protected by global SU�2� symmetry. Since the first case is
characterized by half-integer edge spin, the SZH model is
similar to odd spin AKLT models �notice that the spin 3
AKLT model exhibits an edge spin 3/2 such as SZH�. Both
the AKLT and SZH phases are thus protected by symmetries
but the SZH phase seems to be much more robust. Given the
topological distinction of the two ground states, we construct
a model Hamiltonian interpolating between the AKLT and
SZH models

H��� = �1 − ��HAKLT + �HSZH

= �
�ij�


�P2�i, j� + �1 − ��P3�i, j� + �P4�i, j�� . �3�

Here, we set J2=K3=1, J4=K4=�. As the edge state is robust
unless the gap closes, there must exist one or several topo-
logical quantum phase transitions �TQPT� when varying �
from 0 to 1.
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In Ref. 14, the ground-state phase diagram of the AKLT-
SZH model in Eq. �3� has been studied by means of density-
matrix renormalization group �DMRG�.15 Between the
AKLT and SZH phases, a possible dimer phase has been
found. The most interesting feature is the presence of a mul-
ticritical �MC� point, at which a direct TQPT occurs between
the two distinct phases. However, there are still some impor-
tant questions. �1� Does the dimer phase indeed exist in the
thermodynamic limit? �2� What is the phase diagram for �
�0.27? �3� What is the central charge and low-energy effec-
tive theory at the MC point? �4� Does the effective theory
spread over the whole phase boundary?

Motivated by these questions, in this Rapid Communica-
tion we will revisit the model in Eq. �3� and try to answer all
open questions. For the present study, we keep up to m
=3400 DMRG states with more than 16 sweeps to get con-
verged results and the truncation error is less than 10−9. We
use both OBC and PBC with system sizes up to N=600 sites.

II. DIMER ORDER PARAMETER

We confirm the presence of the dimer phase for ��0.27,
see the phase diagram Fig. 1. In addition, we find a much
larger dimer phase for ��0.27. To clarify the presence of
the dimer phase, we have calculated the dimer order param-
eter �DOP�, D= ��SiSi+1�− �Si+1Si+2��, as a function of � and
�, where i=N /2 and we imposed OBC. In Fig. 2�a�, exem-
plarily the DOP as a function of � at �=0.2 for different
system sizes is shown. In the inset, the finite-size scaling is
also performed to obtain the DOP in the thermodynamic
limit. As shown in Figs. 1 and 2, when � decreases from �
=1, also the maximum amplitude of DOP decreases, and the
dimer phase shrinks with � monotonously. Finally, at the MC
point �=0.27, the DOP vanishes for any �. Surprisingly, for
smaller values of � there is a revival of the dimer phase,
which becomes even larger and the magnitude of DOP in-
creases, indicating a very robust dimer phase at small � re-
gion. In the limit �=0, the P4 term vanishes and we expect a
huge ground-state degeneracy. Therefore, it will be ex-

tremely difficult to get converged DMRG results and we
only consider ��0.1 in the phase diagram Fig. 1. Like for
the general spin 1 chain, we expect a generic dimer phase
containing the Hamiltonian Hdimer=�i−P0�i , i+1� with an
enhanced SU�5� symmetry. We performed DMRG calcula-
tions to verify this guess. We also studied the two Hamilto-
nians interpolating between Hdimer and the dimer phase for
��0.27 and for ��0.27, respectively. In both cases, we
found in the second derivative of the ground state energy
with respect to the interpolation parameter a weak signal
which might indicate a second order phase transition. It leads
us to the speculative result that the general spin 2 chain
might contain three different dimer phases. The nature of the
phase transition between dimer and AKLT phases seems to
be a higher order �i.e., third or more� phase transition. There-
fore, it will be extremely difficult to locate the exact phase
boundary numerically.

III. STRING ORDER PARAMETER

To distinguish different topological phases, one way is to
use the hidden string order parameter �SOP� defined as

G�	�= �Âi exp�i	�k=i
j−1Âk�Âj�. For spin-S AKLT model, the

peak of SOP is at 	c=
 /S for Âi=Si
z. But this SOP cannot be

used to distinguish the AKLT and SZH phase since it is finite
in both phases. Fortunately, Tu et al.10 proposed a SOP with

Âi=
1
6 �Si

z�
�Si
z�2−1� and 	c=
 which knows about SO�5�

symmetry of the SZH model and which is finite only in the
SZH phase. Therefore, we can use the SOP to characterize
the TQPT between SZH and other phases �in addition to
d2E /d�2�. In Fig. 3, the SOP for �=0.2 and �=1.0 is shown
for several system sizes and for N→�. In both the AKLT
and dimer phase, G�
�→0. In the SZH phase, however,
G�
� remains finite and approaches its maximum value10

4 /52=0.16 in the SZH limit �=1.

IV. ENTANGLEMENT SPECTRUM

To identify different phases, we can also use the entangle-
ment spectrum �ES�, which was originally introduced by
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FIG. 1. �Color online� Ground-state phase diagram of Hamil-
tonian �3� obtained by DMRG with N=600 sites. The location of
second-order phase transition is indicated by the red line. The re-
gion above the red line belongs to SZH phase while the region
below the blue line belongs to AKLT phase. The intermediate re-
gime between the topologically different SZH and AKLT phases are
dimer phases.

FIG. 2. �Color online� DOPs of Hamiltonian �3� depending on
�. �a� DOP for �=0.2 at system size N=40, 60, and 100, as well as
in the thermodynamic limit N=�. The finite-size scaling is given in
the inset. �b� DOP for different �, which disappears at the multi-
critical point �=0.27.
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Haldane16 in the context of fractional QH states and later
applied to spin chains in a momentum basis.17 The ES is
defined as the set of eigenvalues of the reduced density ma-
trix �A�TrB������ with A being a subsystem and B the
remainder of the system. Here we use the real space ES with
PBC to characterize the different phases. As shown in Fig. 4,
the lowest level of ES in AKLT phase is ninefold degenerate,
this degeneracy is associated with the edge spin 1. By in-
creasing �, a finite-size splitting of the nine ground states
occurs �chain length N=100�. After entering the dimer phase,
the lowest value of the ES becomes nondegenerate. By fur-
ther increasing �, the system enters the SZH phase, the low-
est level of the ES becomes degenerate again but now the
degeneracy is 16-fold in agreement with edge spin 3/2. In all
the three phases, the lowest level of ES is separated by a
large gap from the other levels.

V. CENTRAL CHARGE

The most interesting feature is the presence of the MC
point, as shown in Fig. 1. To characterize the critical theory
we should determine central charge and scaling dimensions.
The central charge can be obtained by calculating the von

Neumann entropy of a subsystem A with length x, defined as
SvN=−Tr��A ln �A�. For critical systems, it has been
established18 that SvN= �c /3�ln�x��+ c̃1 for PBC and SvN

= �c /6�ln�2x��+ln�g�+ c̃1 /2 for OBC, where c is the central
charge of the conformal field theory �CFT�, c̃1 is a model
dependent constant, and g is Affleck and Ludwig’s universal
boundary term.19 For finite chains, we can use the conformal
mapping x→x�= �N /
�sin�
x /N�. Using this formula the
central charge can be extracted in excellent agreement with
the CFT prediction.20,21

By performing finite-size scaling of the peak position of
d2E /d�2 as a function of � and �, we find the exact position
of the MC point at ��c ,�c�= �0.27,0.8518�. In Fig. 5�a�, the
finite-size scaling is shown for �=0.27. In Fig. 5�b�, we
show SvN at the MC point for different system sizes. The
regression fit for SvN shows very good convergence with sys-
tem size, indicating a central charge c=5 /2. For comparison,
in the inset of Fig. 5�b�, we show the results for some points
away from the MC point, where SvN starts to saturate indi-
cating the opening of a gap. In the same way, we find c
=5 /2 for the whole critical line between SZH and dimer
phases.

VI. EFFECTIVE FIELD THEORY

To find the corresponding CFT, we have listed all the
simple corresponding candidates with central charge c=5 /2
in Table I. S2 /S1 is the ratio between the scaling dimensions
of the second and first nontrivial primary fields. To charac-
terize the CFT theory at the critical line, we rescale and
match the lowest three finite-size energy levels obtained nu-
merically by exact diagonalization �ED� for systems with up
to N=12 sites to the form of the spectrum of a CFT �Ref. 22�

FIG. 4. The 100 lowest levels of the entanglement spectrum
−log 
i for system size N=100 at �=0.2. 
i are the eigenvalues of
the reduced density matrix.

FIG. 3. �Color online� String order parameters of H��� for �a�
�=0.2 and �b� �=1.0, for system size N=40, 60, and 100, and the
extrapolated value for N=�.

FIG. 5. �Color online� �a� Finite-size scaling of the peak position
�c�N� of d2E /d�2 as a function of � at �=0.27. �b� Von Neumann
entropy SvN at the multicritical point for different chain length with
the fitted central charge c. Inset: SvN for different parameter points
is shown for comparison.
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E�L� = E1L +
2
v

L

−

c

12
+ h + h̄� . �4�

Here the velocity v is an overall nonuniversal scale factor

and the scaling dimensions h+ h̄ take the form h=h0+n , h̄

= h̄0+ n̄ with n and n̄ non-negative integers. h0 and h̄0 are the
holomorphic and antiholomorphic conformal weights of pri-
mary fields in the CFT. The momenta �in units 2
 /L� are

such that k=h− h̄ or k=h− h̄+L /2. We consider the energy

spectrum at k=0 with scaling dimension S=2h �i.e., h= h̄�.
We find that S2 /S1=1.56 at the critical line. Comparing this
value with the values in Table I, we find that only SO�5�1 is
compatible with our data while all the other candidates can
be explicitly ruled out. To further confirm this, we also cal-
culate the ratio �1+S2� / �1+S1� at k=2
 /L. We find �1
+S2� / �1+S1�=1.27, which is also consistent with the value
�1+1� / �1+5 /8�=1.23 �here n=1� of SO�5�1 CFT, by consid-
ering the finite-size effect. We conclude that the critical line
is described by SO�5�1 Wess-Zumino-Witten �WZW� model.

This result is particularly interesting since we expect three
integrable models in the phase diagram of the general spin 2
chain:23 the Takhtajan-Babujian chain 
SU�2�4 WZW with
c=2�, the permutation operator 
SU�5�1 WZW with c=4�,
and the Reshetikhin model. From the latter model it is be-
lieved that it could be described by SO�5�1 WZW with c
=5 /2.24 It turns out that this model is located near our criti-
cal line in the phase diagram of the general spin 2 chain.
Indeed we find c=5 /2 for the Reshetikhin model but we
leave its connection to our critical line as an open question.24

In conclusion, we have confirmed the phase diagram of
the AKLT-SZH chain; remarkably, also for ��0.27 a dimer
phase is present. The critical line separating the SZH and
dimer phases has the same central charge c=5 /2 and can be
described by SO�5�1 WZW theory.
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