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We show that an ordinary semiconducting thin film with spin-orbit coupling can, under appropriate circum-
stances, be in a quantum topologically ordered state supporting exotic Majorana excitations which follow
non-Abelian statistics. The key to the quantum topological order is the coexistence of spin-orbit coupling with
proximity-induced s-wave superconductivity and an externally induced Zeeman coupling of the spins. For the
Zeeman coupling below a critical value, the system is a nontopological �proximity-induced� s-wave supercon-
ductor. However, for a range of Zeeman coupling above the critical value, the lowest energy excited state
inside a vortex is a zero-energy Majorana fermion state. The system, thus, has entered into a non-Abelian
s-wave superconducting state via a topological quantum phase transition �TQPT� tuned by the Zeeman cou-
pling. In the topological phase, since the time-reversal symmetry is explicitly broken by the Zeeman term in the
Hamiltonian, the edge of the film constitutes a chiral Majorana wire. Just like the s-wave superconductivity,
the Zeeman coupling can also be proximity induced in the film by an adjacent magnetic insulator. We show this
by an explicit model tight-binding calculation for both types of proximity effects in the heterostructure geom-
etry. Here we show that the same TQPT can be accessed by varying the interface transparency between the film
and the superconductor. For the transparency below �above� a critical value, the system is a topological
�regular� s-wave superconductor. In the one-dimensional version of the same structure and for the Zeeman
coupling above the critical value, there are localized Majorana zero-energy modes at the two ends of a
semiconducting quantum nanowire. In this case, the Zeeman coupling can be induced more easily by an
external magnetic field parallel to the wire, obviating the need for a magnetic insulator. We show that, despite
the fact that the superconducting pair potential in the nanowire is explicitly s wave, tunneling of electrons to
the ends of the wire reveals a pronounced zero-bias peak. Such a peak is absent when the Zeeman coupling is
below its critical value, i.e., the nanowire is in the nontopological s-wave superconducting state. We argue that
the observation of this zero-bias tunneling peak in the semiconductor nanowire is possibly the simplest and
clearest experiment proposed so far to unambiguously detect a Majorana fermion mode in a condensed-matter
system.
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I. INTRODUCTION

Particle statistics of a collection of indistinguishable par-
ticles is a genuinely quantum-mechanical concept without
any classical analog. In spatial dimensions three and above,
pairwise interchange of particle coordinates in a many-body
system is equivalent to a simple permutation of the coordi-
nates. Consequently, each interchange has the effect of either
a change in sign �fermion� or no change at all �boson� on the
many-body quantum wave function. In �2+1� dimensions,
however, exchanges and permutations are not necessarily
equivalent.1–3 In this case, under simple interchange of the
particle coordinates, the corresponding space-time trajecto-
ries can form nontrivial braids in the �2+1�-dimensional
space time.4 Consequently, in �2+1� dimensions, particles
can have quantum statistics strikingly different from the sta-
tistics of bosons and fermions.

A straightforward extension of the statistics of bosons and
fermions is the Abelian anyonic statistics, in which the
many-body wave function, under pairwise exchange of the
particle coordinates, picks up a phase �, which can take any
value between 0 �bosons� and � �fermions�. Since a phase

factor is only a one-dimensional representation of the braid
group in two dimensions �2D�, the statistics is still Abelian.
On the other hand, if the many-body ground-state wave func-
tion happens to be a linear combination of states from a
degenerate subspace, a pairwise exchange of the particles
can unitarily rotate the wave function in the ground-state
subspace. In this case, the effect of exchanging the particle
positions is an operation on the wave-function vector by a
unitary matrix representing this rotation. Consequently, the
statistics is non-Abelian,4,5 and the corresponding system is a
non-Abelian quantum system. It has been proposed that such
systems, if the ground-state subspace is concurrently pro-
tected by an energy gap, can be used as a fault-tolerant plat-
form for topological quantum computation �TQC�.4–6

One important class of non-Abelian quantum systems,
sometimes referred to as the Ising topological class,4 is char-
acterized by quasiparticle excitations called Majorana fermi-
ons, which involve no energy cost �when the mutual separa-
tion among the excitations is large�. The second quantized
operators, �i, corresponding to these zero-energy excitations
are self-Hermitian, �i

†=�i, which is in striking contrast to
ordinary fermionic �or bosonic� operators for which ci�ci

†.
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However, since �i and � j anticommute when i� j, they retain
some properties of ordinary fermion operators as well. The
Majorana fermions, which are actually more like half fermi-
ons, were envisioned by Majorana7 in 1935 as fundamental
constituents of nature �e.g., neutrinos are thought to be Ma-
jorana, rather than Dirac, fermions�. Majorana modes are
intriguing8 because each Majorana particle is its own antipar-
ticle unlike Dirac fermions where electrons and positrons �or
holes� are distinct. Although the emergence of Majorana ex-
citations, which are effectively fractionalized objects
�anyons� obeying non-Abelian anyonic statistics, in solid-
state systems is by itself an extraordinary phenomenon, a
great deal of attention has also been focused on them because
of the possibility of carrying out fault tolerant TQC in two-
dimensional systems using these Majorana particles. TQC, in
contrast to ordinary quantum computation, would not require
any quantum error correction since the Majorana excitations
are immune to local noise by virtue of their nonlocal topo-
logical nature.4,9 The direct experimental observation of Ma-
jorana modes in solid-state systems would therefore be a
remarkable breakthrough both from the perspective of fun-
damental physics of fractional statistics in nature and the
technological perspective of building a working quantum
computer. It is therefore not surprising that there has been
recent resurgence of immense interest for the experimental
realization �and detection� of Majorana fermions in solid-
state systems. Recently, some exotic ordered states in
condensed-matter systems, such as the Pfaffian states in frac-
tional quantum-Hall �FQH� systems,10–17 p-wave supercon-
ductors �SCs�/superfluids,12,18–31 theoretical models that can
be potentially simulated in cold atom optical lattice
systems,32–36 as well as the surface state of a topological
insulator �TI� or related systems37–49 have been discussed as
systems which can support Majorana fermions as the lowest
energy excitations. In the context of optical systems, it has
also been proposed that a 2D px+ ipy superfluid can be real-
ized using only s-wave Feshbach resonance modified by the
topological Berry phases arising from artificially generated
spin-orbit coupling.50 In the context of optically generated
s-wave superfluid systems, a similar topological phase has
also been found by considering an artificial “vortexlike” ex-
citation in the spin-orbit coupling parameter in the presence
of a magnetic field.51

It has been shown recently52 that even a regular semicon-
ducting film with a sizable Rashba-type spin-orbit coupling,
such as InGaAs thin films, can host, under suitable condi-
tions, Majorana fermions as low-energy excitations. Since
the basic effects behind the emergence of the Majorana fer-
mion excitations—spin-orbit coupling, s-wave superconduc-
tivity, and Zeeman splitting—are physically well understood
and experimentally known to occur in many solid-state ma-
terials, the proposed semiconductor heterostructure52 is pos-
sibly one of the simplest condensed-matter systems support-
ing Majorana quasiparticles and non-Abelian quantum order.
By an analysis of the real-space Bogoliubov-de Gennes
�BdG� equations for a vortex in the semiconductor thin film,
in which s-wave superconductivity and a Zeeman splitting
are proximity induced �Fig. 1�a��, it has been shown that the
lowest energy quasiparticle excitation in the vortex core is a
zero-energy Majorana fermion mode. This real-space analy-

sis has also been supported by a momentum-space analysis
in the form of an index theorem53 analogous to such a treat-
ment in the context of one-dimensional Dirac theory.54,55

Here a comment about the various means to induce a Zee-
man splitting in the semiconductor thin film is in order. Note
that when the spin-orbit coupling is of the Rashba type, we
require a Zeeman splitting which is perpendicular to the
plane of the film �Zeeman splitting parallel to the film does
not produce a gap in the one-electron band structure, a firm
requirement of our non-Abelian state�.52,53 Inducing such a
splitting by applying a strong perpendicular magnetic field is
not convenient because the magnetic field will give rise to
unwanted order parameter defects such as vortices. It is for
this reason that we propose to induce the Zeeman splitting by
the exchange proximity effect of an adjacent magnetic insu-
lator �MI� �we ignore the small coupling of the spins in the
semiconductor with the actual magnetic field of the magnetic
insulator�. More recently, it has been shown that, when the
spin-orbit coupling also has a component which is of the
Dresselhaus type, the appropriate Zeeman splitting can also
be induced by applying an in-plane magnetic field.56 The
Majorana mode is separated by a finite energy gap �so-called
minigap� from the other conventional fermionic excited
states in the vortex core. Thus, for a collection of well-
separated vortices, the resulting degenerate ground-state sub-
space is protected from the environment by the minigap. This
enables the potential use of the semiconductor heterostruc-
ture in Fig. 1�a� in TQC.

One of the main goals of the present paper is to provide
the important mathematical details relevant to our solutions
of the BdG equations in the semiconductor heterostructure.
These mathematical details, which were left out in Ref. 52,
are given in Secs. II and III below. It is important to note
that, unlike the case of the surface of a three-dimensional
�3D� strong topological insulator adjacent to an s-wave
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FIG. 1. �Color online� �a� The proposed heterostructure of a
semiconductor �SM� sandwiched between an s-wave SC and a mag-
netic insulator �MI�. In this geometry, the semiconducting film can
support non-Abelian topological order. �b� Single-particle band
structure in the semiconducting film with and without the Zeeman
splitting induced by the MI. Without the Zeeman splitting, the two
spin-orbit shifted bands touch at kx=ky = �k�=0 �red lines�. Then, for
any value of the chemical potential, the system has two Fermi sur-
faces. With a finite Zeeman splitting, the bands have an energy gap
near kx=ky = �k�=0 �blue lines�. If the chemical potential lies in the
gap, the system just has one Fermi surface �indicated by the dotted
circle�.
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superconductor,37 the BdG equations in the spin-orbit-
coupled semiconductor are not exactly solvable. We there-
fore only show that, in a specified region of the parameter
space, a single nondegenerate solution of the BdG equations,
which is spatially localized around the vortex core, is al-
lowed. We also show that the second quantized operator cor-
responding to such a solution is indeed a Majorana fermion
operator. �In a subsequent section �Sec. VI� we confirm the
existence of such zero-energy Majorana fermion states local-
ized at the vortex cores by a full numerical solution of the
BdG equations set up on a sphere.� In the next few sections
�Secs. IV–IX� we provide a comprehensive discussion of the
interesting physics of non-Abelian topological order arising
via the complex interplay of spin-orbit coupling, Zeeman
splitting, and s-wave superconductivity externally induced in
a host system. We also deduce the parameter space needed
for the establishment of the non-Abelian order, as well as the
associated topological quantum phase transition �TQPT� ac-
cessed by tuning the system in or out of this parameter space.
In Sec. X we study the superconducting and magnetic prox-
imity effects in the host semiconductor thin film by a micro-
scopic model tight-binding calculation. In the last part of the
paper �Sec. XI�, we consider a one-dimensional version of
our proposed structure—a semiconducting nanowire with
proximity-induced s-wave superconductivity and a Zeeman
splitting. We emphasize that the Zeeman splitting can now be
induced by a magnetic field parallel to the length of the wire
because such a field does produce a gap in the one-electron
band structure without producing unwanted excitations in the
adjacent superconductor. This obviates the need for a nearby
magnetic insulator. For the Zeeman splitting above a critical
value, the wire is in a non-Abelian topological phase with
zero-energy Majorana excitations at the ends. We propose a
scanning tunneling experiment from the ends of the semicon-
ducting nanowire as possibly the most realistic experiment
proposed so far to detect a Majorana fermion state in a
condensed-matter system.

We use the terminology Majorana particle or Majorana
fermion or Majorana state or Majorana excitation or Majo-
rana mode interchangeably in this paper, all of them meaning
precisely the same entity, namely, the nondegenerate zero-
energy eigenstate �i.e., a solution of the BdG equations� at
the vortex core of a spinless chiral p-wave or other such
topological superconductor. We emphasize that this object
obeys the non-Abelian braiding statistics rather than ordinary
fermionic statistics, and the Majorana particle is its own an-
tiparticle in contrast to the ordinary Dirac fermions where
electrons and holes �positrons� are distinct particle-hole con-
jugates of each other. A part of the results presented in this
paper—approximate solutions of the BdG equations in the
semiconductor heterostructure—has been published
elsewhere.52 In Secs. II and III we provide all the mathemati-
cal details relevant to the solutions of the BdG equation
which were left out in Ref. 52. Most of the results contained
in the subsequent sections are new. Some additional math-
ematical details related to the solution of the BdG equations
are relegated to the Appendix.

II. HAMILTONIAN

The single-particle effective Hamiltonian H0 for the con-
duction band of a spin-orbit-coupled semiconductor in con-
tact with a magnetic insulator is given by �we set �=1 hence-
forth�

H0 =
p2

2m�
− � + Vz�z + ���� 	 p�� · ẑ . �1�

Here, m�, Vz, and � are the conduction-band effective mass
of an electron, effective Zeeman coupling induced by prox-
imity to a magnetic insulator �we neglect the direct coupling
of the electrons with the magnetic field from the magnetic
insulator�, and chemical potential, respectively. The coeffi-
cient � describes the strength of the Rashba spin-orbit cou-
pling and �� are the Pauli matrices.

The proximity-induced superconductivity in the semicon-
ductor can be described by the Hamiltonian,

Ĥp =� dr�
�r�ĉ↑
†�r�ĉ↓

†�r� + H.c� , �2�

where ĉ�
†�r� are the creation operators for electrons with spin

� and 
�r� is the proximity-induced gap. The pairing term

Ĥp and the noninteracting part H0 can be combined to obtain
the BCS mean-field Hamiltonian HBCS=H0+Hp. The excita-
tion spectrum of this Hamiltonian is defined in terms of the
Bogoliubov quasiparticle operators

�̂† =� dr	
�

u��r�ĉ�
†�r� + v��r�ĉ��r� , �3�

which satisfy

�ĤBCS,�̂†� = E�̂†. �4�

Such a quasiparticle operator �̂ can be used to construct ex-
cited states �̂†��0
 with energy E+E0 from the ground state
��0
 with energy E0. The ground state ��0
 is defined as the
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FIG. 2. �Color online� Complex roots z=zR+ ızI of the charac-
teristic equation, Eq. �25�, shown in the complex plane. Only solu-
tions with Re�z�=zR�0 are physically acceptable. In the non-
Abelian phase �C0= �
2+�2−VZ

2�
0�, three roots with positive
real parts and one root with negative real part for �=−1 while there
are only two roots on either side of the imaginary axis for C0�0 for
�=−1. The roots in the �=1 channel are the negative of the roots in
the �=1 channel.
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lowest energy state of the BCS Hamiltonian satisfying
�̂��0
=0. The equation for the quasiparticle operator, Eq.
�4�, can be rewritten as the BdG equations in the Nambu
basis,

� H0 
�r�

��r� − �yH0

��y
���r� = E��r� . �5�

Here, ��r� is the wave function in the Nambu spinor basis,
��r�= �u↑�r� ,u↓�r� ,v↓�r� ,−v↑�r��T. Introducing the Pauli
matrices �� in the Nambu space the Hamiltonian on the left-
hand side in Eq. �5� can be written as

HBdG = 
 p2

2m�
− � + Vz�z + ���� 	 p�� · ẑ��z + �
�r��+ + H.c.� ,

�6�

where �+=�−
† =

�x+ı�y

2 .

III. BdG EQUATIONS FOR A VORTEX

The single-particle Hamiltonian H0 can be written in polar
coordinates as

H0 = �p2 − � + Vz�z + ��� 	 p� · ẑ

= − ��2 − � + Vz�z + ı
�

2
��+p− − �−p+� , �7�

where �= �2

2m� , �+=�−
† =�x+ ı�y, p+= px+ ıpy =eı��−ı�r+ 1

r ���,
and p−= px− ıpy =e−ı��−ı�r− 1

r ���. The full BdG Hamiltonian
for an n-fold vortex can be written conveniently in the
Nambu space as

HBdG = �− ��2 − ���z + Vz�z + ı
�

2
��+p− − �−p+��z + 
�r�

	�cos�n���x + sin�n���y� . �8�

In order to diagonalize the above Hamiltonian it is con-
venient to note that the BdG Hamiltonian has a combined
spin-orbit-pseudospin rotational symmetry. This symmetry
can be expressed compactly by noting that HBdG commutes
with the operator

Jz = Lz +
1

2
��z − n�z� . �9�

Therefore, the eigenspinors of the BdG Hamiltonian can be
taken to be Jz eigenstates with eigenvalue Jz=mJ of the form

�mJ
�r,�� = eıLz��mJ

�r�

= eı�mJ−�z/2+n�z/2���mJ
�r�

=�
u↑,mJ

�r�eı�mJ+n−1/2��

u↓,mJ
�r�eı�mJ+n+1/2��

v↓,mJ
�r�eı�mJ−n+1/2��

− v↑,mJ
�r�eı�mJ−n−1/2��

� . �10�

The above equation can be used to eliminate the angular
degree of freedom � from the BdG equations as follows:

HBdG�mJ
�r,�� = EmJ

�mJ
�r,�� , �11�

H̃BdG,mJ
�mJ

�r� = EmJ
�mJ

�r� . �12�

Here H̃BdG,mJ
=e−ı�mJ−�z/2+n�z/2��HBdGeı�mJ−�z/2+n�z/2�� is � inde-

pendent. More specifically

H̃BdG,mJ
= − ��
�r

2 +
1

r
�r +

�2mJ − �z + n�z�2

4r2 � + ���z

+ Vz�z −
ı�

2
��+ − �−��z�r − ı

�

2r
��+

2mJ + n�z + 1

2

+ �−
2mJ + n�z − 1

2
��z + 
�r��x. �13�

Under the action of the particle-hole transformation op-
erator, �=�y�yK, the mJ spinor eigenstate with energy E
transforms into a −mJ eigenstate with energy −E because

�eı�mJ−�z/2+n�z/2���mJ
�r� = eı�−mJ−�z/2+n�z/2����mJ

�r� .

Therefore, a necessary condition for a nondegenerate, E=0,
Majorana state solution is that mJ=0. From here onward we

will write H̃BdG,mJ=0= H̃BdG and �mJ=0�r�=��r�. Single val-
uedness of the spinor wave functions in Eq. �10� requires that
�n−1� /2 must be an integer. Therefore, only odd vortices can
have nondegenerate Majorana eigenstates. From here on-
ward, for the simplicity of discussion, we will consider only
zero-energy solutions at the cores of single-flux-quantum
vortices �n=1�.

The BdG matrix H̃BdG may be reduced to a real Hamil-

tonian by applying the �z rotation U=eı�z�/4 as H̃BdG

→U†H̃BdGU. The solutions of the resulting E=0 BdG equa-

tion H̃BdG��r�=0 must come in complex conjugate pairs
��r� and ���r�. Therefore the solutions ��r� can be re-
quired to be real without loss of generality. For such real
solutions, it follows from the particle-hole symmetry of the
BdG equations that �y�y��r� is also a solution. Thus, any
nondegenerate E=0 solution must be real and satisfy the
property �y�y��r�=���r�. Moreover, because ��y�y�2=1,
the possible values of � are �= �1.

Using the relation �x= ı��y�z, which follows from �y�y
=�, the BdG Hamiltonian for a given value of � is of the
form

H̃BdG = − ��
�r
2 +

1

r
�r +

�− �z + �z�2

4r2 � + ���z + Vz�z −
�

2
��+

+ �−��z�r −
�

2r
��+

�z + 1

2
+ �−

�z − 1

2
��z + ı��y�z
�r� .

�14�

The Hamiltonian in this limit does not couple the �z= �1
sectors �electron and hole�. This allows one to write the BdG
differential equation in terms of only the electron sector ��z
=+1� of the spinor �0�r�= �u↑�r� ,u↓�r��T. The corresponding
reduced BdG equations for a single vortex �n=1� take the
form of a 2	2 matrix differential equation,
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�− ���r
2 +

1

r
�r� + Vz − � �
�r� + ���r +

1

r
�

− �
�r� − ��r − ���r
2 +

1

r
�r −

1

r2� − Vz − ���0�r� = 0. �15�

The hole part of the spinor is not independent and is con-
strained by the value of � such that v↑�r�=�u↑�r� and v↓�r�
=�u↓�r� and the Majorana spinor has the form ��r�
= ��0�r� , ı�y�0�r���T.

We now approximate the radial dependence of 
�r� by

�r�=0 for r
R and 
�r�=
 for r�R, where R is on the
order of the radius of a vortex core. In view of the topologi-
cal stability of the putative Majorana zero-energy solution to
local changes in the Hamiltonian,12 such an approximation
can be made without any loss of generality.

A. Solution inside the vortex core

Inside the vortex core �r
R�, which is the nonsupercon-
ducting region �
�r�=0�, it is possible to construct explicit
analytic solutions ��r ,z� to these equations in terms of the
Bessel functions J0�z� and J1�z� as

��r,z� = �u↑J0�zr�
u↓J1�zr�

� . �16�

By substituting Eq. �16� into Eq. �15� we find that �u↑ ,u↓�
and z satisfy

���− �r
2 −

1

r
�r� + Vz − � ���r +

1

r
�

− ���r� ��− �r
2 −

1

r
�r +

1

r2� − Vz − ��
	�u↑J0�zr�

u↓J1�zr�
�

= ��− �z2 + Vz − ��u↑J0�zr� + z�u↓J0�zr�
z�u↑J1�zr� + �− �z2 − Vz − ��u↓J1�zr�

� = 0, �17�

which implies

�− �z2 + Vz − � z�

�z − �z2 − Vz − �
��u↑

u↓
� = 0. �18�

Existence of solutions in terms of �u↑ ,u↓�T requires that z
satisfies the characteristic equation of the matrix in Eq. �18�,
which is given by

��z2 − ��2 − Vz
2 − z2�2 = 0. �19�

This is a quadratic equation in z2 with real roots. Therefore,
the solutions for z are either purely real or purely imaginary
and come in pairs with opposite signs. A real root z=k of this
equation corresponds to a crossing of some band at the Fermi
level. For purely real roots z, only the solution ��r ,z� cor-
responding to positive z is normalizable at the origin and
therefore physically acceptable. On the other hand, the
purely imaginary roots z= � ık lead to a single real solution
��r , ık�=��r ,−ık�. Thus we can see that in general there are
two linearly independent solutions. If all four solutions of z
are real then these correspond to the two Fermi surfaces ob-
tained from the intersection of the bands with the Fermi
level. If only one pair of solutions is real then the imaginary
pair corresponds to a decaying state.

The BdG equations describing the proximity-induced su-
perconductivity at a TI/SC interface37 follow from the BdG
equations for the present system, Eq. �15�, by taking �=0. In
this case the matrix equation reduces to

�Vz − � z�

�z − Vz − �
��u↑

u↓
� = 0. �20�

This equation only has one pair of real solutions z
= ���2−Vz

2 /� and therefore has only one linearly indepen-
dent solution in the core of the vortex.

B. Solution outside the vortex core

The solution outside the vortex does not have a simple
analytic form as the solution inside. Motivated by the large r
asymptotic expansion for Bessel functions, for r�R we can
consider a series expansion of the form

�u↑�r�
u↓�r�

� =
e−zr

r1/2��↑�1/r�
�↓�1/r�

� , �21�

where ��x� are analytic power series in x. We expect to be
able to close such a series of equations since the matrix in
Eq. �15� only has derivatives and powers of 1 /r,

���− �r
2 −

1

r
�r� + Vz − � �
 + ���r +

1

r
�

− �
 − ���r� ��− �r
2 −

1

r
�r +

1

r2� − Vz − �� e−zr

r1/2��↑�1/r�
�↓�1/r�

� = 0, �22�
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���− �r
2 −

1

4r2 + 2z�r − z2� + Vz − � �
 + ���r +
1

2r
− z�

− �
 − ���r −
1

2r
− z� ��− �r

2 +
3

4r2 + 2z�r − z2� − Vz − ����↑�1/r�
�↓�1/r�

� = 0. �23�

As shown in the Appendix, the last equation has a simple
solution as a power series in 1 /r which can be determined
numerically. Moreover in this power-series expansion we can
determine the equation for the zeroth-order term by formally
setting 1 /r=0 as below

�− �z2 + Vz − � �
 − z�

− �
 + z� − �z2 − Vz − �
���↑�0�

�↓�0�
� = 0. �24�

Setting z= ık one can see that the matrix appearing in the
above equation is related to the one determining the quasi-
particle band structure from the BdG equations. Normaliz-
ability of the solutions in Eq. �21�, require that they be ex-
ponentially decaying. This constrains physically acceptable
solutions to satisfy the constraint Re�z��0. The values of z
consistent with the above equation are determined by setting

Det�− �z2 + Vz − � �
 − z�

− �
 + z� − �z2 − Vz − �
�

= ��z2 − ��2 − Vz
2 + �z� � 
�2 = 0. �25�

The two families of solution for �= �1 are related simply by
flipping the sign of z. The sign of the product of the roots zn
of Eq. �25� is given by S=sgn��n�zn��=sgn�C0�, where C0
= ��2+
2−VZ

2� is the polynomial evaluated at z=0. The par-
ity of the number of normalizable solutions with Re�zn��0
is given by P=sgn��nRe�zn��. Since Eq. �25� is real, com-
plex roots zn occur in conjugate pairs. Therefore, complex
roots cannot affect the sign of either S or P. It follows that
S= P.

Therefore, the condition �VZ���
2+�2 implies that there
are an odd number of roots with positive real parts. Specifi-
cally, as seen in Fig. 2, if C0
0, there are three roots on one
side of the imaginary axis and one root on the other side.
Similarly for C0�0 we must have two solutions on each side
of the imaginary axis. A slightly different version of this
argument has previously been presented.57

C. Matching boundary conditions at the edge
of the vortex core

As discussed before, for 
2+�2�VZ
2, one of the channels

labeled by � has a solution with three decaying �negative
real parts� solutions and one growing solution. Out of these
three decaying solutions, one is purely real and negative and
the other two are complex conjugate with negative real parts.
An observation that can be made by considering Eq. �23� is
that if ��↑�1 /r� ,�↓�1 /r��T corresponds to a value z then
��↑

��1 /r� ,�↓
��1 /r��T corresponds to an eigenvalue z�. Thus

from one pair of complex conjugate decaying eigenvalues
we can construct a pair of real solutions

�u↑,�1,2��r�

u↓,�1,2��r� � = s�1,2��e−zr��↑�1/r�
�↓�1/r� � � e−z�r��↑

��1/r�
�↓

��1/r�
�� ,

�26�

where s1=1 and s2= ı with the solution 1 corresponding to +
and 2 to −.

The nondegenerate real eigenvalue already corresponds to
a real eigenvector

�u↑,3�r�
u↓,3�r�

� = e−zr��↑�1/r�
�↓�1/r�

� . �27�

On the other hand, for r
R we expect a two-parameter fam-
ily with the general solution given by

�v↑�r�
v↓�r�

� = a4�u↑,4�r�
u↓,4�r�

� + a5�u↑,5�r�
u↓,5�r�

� . �28�

Matching the gradient and the wave function at r=R we get

�
v↑�R�
v↓�R�

�rv↑�R�
�rv↓�R�

� = a4�
u↑,4�R�
u↓,4�R�

�ru↑,4�R�
�ru↓,4�R�

� + a5�
u↑,5�R�
u↓,5�R�

�ru↑,5�R�
�ru↓,5�R�

�
= 	

j=1

3

aj�
u↑,j�R�
u↓,j�R�

�ru↑,j�R�
�ru↓,j�R�

� . �29�

Together with the normalization constraint on the global
wave function, this leads to five equations in five variables,
which leads to a unique solution for the Majorana mode in
the case C0
0. However, for the other case with C0�0,
there are only two decaying modes outside the vortex core.
The existence of a Majorana mode would then require us to
satisfy five equations with four variables. Such a problem in
general is over constrained and no Majorana solutions exist
in this case.

IV. MAJORANA SOLUTION FOR VORTEX IN THE
SPIN-ORBIT COUPLING

For a planar system, the Rashba spin-orbit term ���
	p� · ẑ in the Hamiltonian we considered can also be written
as �� ·p. These two terms are simply related to each other by
a �z spin rotation and a more general Rashba-type spin-orbit
term can be written as
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HSO = ��cos ��� 	 p� · ẑ + sin �� · p� . �30�

A recent proposal51 has considered a defect in such a spin-
orbit coupling where the angle of the spin-orbit � varies in
space to form a vortex �����=��. The full BdG Hamiltonian
for such a vortex can be written in Nambu space as

HBdG = �− ��2 − ���z + Vz�z +
1

4
��+���r�eı�,p−�

+ �−���r�e−ı�,p+���z + 
�x, �31�

where the anticommutation must be introduced in the spin-
orbit term to preserve Hermiticity.

Substituting the circular-polar form for the derivatives we
note that the Hamiltonian becomes

H̃BdG = − 
���r
2 +

1

r
�r −

��
2

4r2� + ���z + Vz�z

−
ı

2
��+���r,��r�� +

��r�
r

�e−ı�,eı����� + H.c.� + 
�x,

�32�

which in turn simplifies to a �-independent form

H̃BdG = − 
���r
2 +

1

r
�r −

��
2

4r2� + ���z + Vz�z

−
1

2
��+����r��r + ���r�� −

ı��r�
r

��� + ı�� + H.c.�
+ 
�x. �33�

Therefore, Jz=Lz commutes with the above Hamiltonian and
the spinor form is

�mJ
�r,�� = eıLz��mJ

�r� = eımJ��mJ
�r� = eımJ��

u↑,mJ
�r�

u↓,mJ
�r�

v↓,mJ
�r�

− v↑,mJ
�r�
� .

�34�

As before only the mJ=0 channel can lead to a nondegener-
ate Majorana solution and the BdG equation in this channel
is given by

H̃BdG = − 
���r
2 +

1

r
�r� + ���z + Vz�z −

1

2
��+����r��r

+ ���r�� +
��r�

r
� + H.c.� + 
�x. �35�

Since the above BdG equation is real, it can be reduced to
a 2	2 matrix differential equation,

� − ���r
2 +

1

r
�r� + Vz − � �
 + ��r��r + ���r� +

��r�
r

− �
 + ��r��r + ���r� +
��r�

r
− ���r

2 +
1

r
�r� − Vz − � ��0�r� = 0. �36�

As before, considering a step-function vortex profile
��r�=0 for r
R and ��r�=� for r�R, one notices that the
reduced BdG equation outside the spin-orbit vortex core re-
sembles the reduced BdG equation in the same region for a
regular vortex in the large r limit �Eq. �15� with 
�r�=
�.
Inside the vortex core ��r�=0, and the BdG equations, as
before, are analytically solvable via Bessel functions as be-
low

���− �r
2 −

1

r
�r� + Vz − � �


− �
 ��− �r
2 −

1

r
�r� − Vz − ��

	�u↑J0�zr�
u↓J0�zr�

� = 0, �37�

where

�− �z2 + Vz − � �


− �
 − �z2 − Vz − �
��u↑

u↓
� = 0. �38�

As before, this leads to two solutions inside and three solu-
tions outside the vortex core, with five constraints at the
interface. This leads to a single nondegenerate Majorana so-
lution at the interface.

The previous calculation of the wave function of the sys-
tem discussed in this section in Ref. 51 yielded the result
�0�r��e−�VZ−
�r/� for the asymptotic �r→�� behavior of the
zero-energy wave function. For small 

VZ, and �=0 we
find that the asymptotic zero-energy wave function behaves
as �0�r��e−
r/� e−ı�r/�

�r
. Further that the previous result �0�r�

�e−�VZ−
�r/�,51 is valid only in the limit VZ−
�
, which
excludes the limit of small 
. Our result, �0�r��e−
r/� e−ı�r/�

�r
,

can be understood from the physically reasonable require-
ment that the Majorana fermion becomes more delocalized
in the limit of weak superconductivity �small 
�. According
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to our result for small 
, the decay length of the zero-energy
wave function diverges in the limit of vanishingly weak su-
perconductivity �
→0� and the Majorana mode disappears
by delocalizing over the entire system.

V. MAJORANA SOLUTION ON THE SURFACE OF A
TOPOLOGICAL INSULATOR

Now we apply a similar argument to the vortex in
proximity-induced s-wave superconductivity on a TI
surface37 which is obtained from our Rashba model by set-
ting �=0. The equation for the allowed values of z in the
superconductor for r�R are then

�2 − Vz
2 + �z� � 
�2 = 0, �39�

z = � �
 � ı��2 − Vz
2�/� . �40�

Therefore, in each of the � channels, for small Vz, there are
a pair of complex conjugate eigenvalues on the same side of
the imaginary axis. For the + channel both the eigenvalues
are to the right of the imaginary axis and therefore are ac-
ceptable decaying solutions. Thus there are two linearly in-
dependent solutions �u↑,1 ,u↓,1� and �u↑,2 ,u↓,2� for r�R.
From our previous discussion it is now clear that there is
only one such solution �u↑,3 ,u↓,3� for r
R.

Since the Hamiltonian is linear in the derivative, the
boundary conditions only require us to match the wave func-
tion �u↑�r� ,u↓�r��T at r=R and not the derivative. The bound-
ary conditions that the zero-energy solution must satisfy at
r=R are given by

�u↑�R�
u↓�R�

� = a3�u↑,3�R�
u↓,3�R�

� = 	
j=1

2

aj�u↑,j�R�
u↓,j�R�

� . �41�

Together with the normalization condition for the zero-
energy wave function, the above equations provide three
constraints for the three variables a1 ,a2 ,a3. This yields a
unique zero-energy Majorana wave function for a vortex on
a TI surface.

VI. NUMERICAL CALCULATION OF THE VORTEX
EXCITATION SPECTRUM IN THE

SPIN-ORBIT-COUPLED
SEMICONDUCTOR

In previous sections we calculate and show the existence
of a Majorana mode in a vortex at the interface of an s-wave
superconductor and a spin-orbit-coupled semiconductor. The
most important information missing from these analytical
calculations is the excitation gap above the zero-energy Ma-
jorana state, the so-called minigap. A proper calculation of
this requires a numerical solution of the vortex problem
which can be done by considering the system on a sphere
with a vortex-antivortex pair58,59 as shown in the inset of Fig.
3�a�.

The BdG Hamiltonian of this problem can be written as

H = 
�p†p +
�

2
��� 	 R̂� · p + p† · �� 	 R̂�� − ���z + VZ� · R̂

+ 
�r��x, �42�

where p=−ı��−R̂�R̂ ·��� is the non-Hermitian gradient op-

erator restricted to the surface of the sphere and R̂= r
r . The

above Hamiltonian takes a more familiar form in angular
coordinates as

H = 
 �

R2L2 −
�

R
L · � − ���z + VZ� · R̂ + 
���

	�cos ��x + sin ��y�

= 
 �

R2L2 −
�

R
�Lz�z +

1

2
L+�− +

1

2
L−�+� − ���z

+ VZ�Rz�z +
1

2
R+�− +

1

2
R−�+�

+
1

2


���
sin �

�R+�− + R−�+� , �43�

(a)

(b)

FIG. 3. �Color online� �a� Plots for the individual components of
the four-component wave function ��r�= �u↑�r� ,u↓�r� ,v↓�r� ,
−v↑�r��T for the zero-energy Majorana state at the north pole. The
components of � satisfy u�=v�

� confirming the Majorana nature of
the wave function. We also show the semiconductor heterostructure
on the surface of a sphere with a vortex and an antivortex �with
reduced superconducting amplitudes at the vortex cores� situated at
the north and the south poles. �b� Numerical results for the vortex
minigap 
E �solid line� and bulk gap �dashed line� plotted against
the spin-orbit-coupling strength � on the semiconductor. In these
plots we have used 
=0.5, �=0.0, and �=1.0 in the units where
Vz=1. The spin-orbit-coupling strength �=0.3 in �a� and varies for
�b�. In these units, the size of the vortex core has been taken to be
unity.
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where Rz=cos � and R�=sin �e�ı�. In these equations R−
=R+

† and L−=L+
†. The spectrum of excitations of this system

is found by solving the eigenvalue problem

H� = E� . �44�

Similar to the vortex in the planar geometry, the BdG
Hamiltonian has a combined spin-orbit-pseudospin rotational
symmetry. This symmetry can be expressed compactly by
noting that the Hamiltonian commutes with

Jz = Lz +
1

2
��z − �z� , �45�

where we have used the identity �R� ,Lz�= �R�. The � de-
pendence of the eigenstates with mJ=m can be written as
eıLz��m���=eı�m−��z−�z�/2���m���. The �-independent part of
the eigenstate �m��� then satisfies a one-dimensional BdG
equation Hm�m���=Em�m���, where

Hm = Um
† ���HUm��� , �46�

which can be explicitly checked to be � independent and
Um���=eı�m−��z−�z�/2��. To solve for the �-dependent part of
�m��� it is necessary to convert Hm to a discrete matrix by
expanding �m���=	lcl,mPl

�m��cos ��, where Pl
�m��cos �� are

the associated Legendre polynomials which are the
�-independent parts of the spherical Harmonics. In the asso-
ciated Legendre polynomial basis the kinetic-energy term L2

has the simple diagonal form l�l+1�. Under the transforma-
tion in Eq. �46�, the terms Rz,� in H transform into
P1

�0,�1��cos �� in Hm. Therefore, its matrix elements in the
associated Legendre polynomial basis can be calculated us-
ing the spherical harmonic addition theorem. A similar pro-
cedure can be used to calculate the matrix elements of the
�-dependent vortex. For a vortex, we take 
���
=
 tanh R sin � /�, where � is taken to be the length scale of
the vortex. From symmetry properties it is clear that

��� /sin � is an even polynomial in sin � and can be written
in terms of associated Legendre polynomials as


���
sin �

= 	
l

c�2l+1�P�2l+1�
1 �cos �� , �47�

where the associate Legendre polynomial can be written as
Pl

1�cos ��=−sin �Pl��cos �� and cl=
�2l+1�
2l�l+1��−1

1 Pl
1�x�
�x�dx. As

with the R operators, the angular momentum matrix elements
can be calculated from the above expansion by using the
spherical harmonic addition theorem.

As in the analytic solution for the vortex, the angular
momentum index m transforms from m→−m under the
particle-hole transformation � and we expect nondegenerate
E=0 Majorana solutions of Eq. �44� only in the m=0 chan-
nel. This is confirmed by our numerical solution of Eq. �44�
where we find that only in the topological phase C0
0, are
there a pair of states in the m=0 angular momentum channel
whose eigenvalues approach 0 exponentially with increasing
radius R. The nonzero-energy eigenvalue of the Majorana
fermion is a result of the presence of two vortices in our
calculation with a finite distance between them. The wave
function of the E=0 eigenvalue of the m=0 angular momen-
tum channel, that is localized at the north pole is plotted in

Fig. 3�a�. The components of the wave function are seen to
satisfy u�=v�

� confirming the Majorana character of these
states. In the figure, the wave functions of the Majorana
modes is seen to decay and oscillate away from the north
pole. The splitting between the Majorana modes into a pair
of exponentially small oscillating eigenvalues is a result of
the overlap between the Majorana modes at the two poles.60

Aside from the E=0 eigenvalue in the m=0 angular mo-
mentum channel, an isolated vortex confines a set of nonzero
eigenvalues in other m�0 angular momentum channels. Of
these, the eigenvalue with the smallest absolute value occurs
in the m=1 angular momentum channel and has an eigen-
value equal to the so-called minigap of the vortex. As men-
tioned before, the superconductivity in the non-Abelian su-
perconducting phase is re-entrant with a bulk gap that is
proportional to the spin-orbit-coupling strength. As seen
from Fig. 3�b� both the bulk and minigap are proportional to
the spin-orbit-coupling strength �. For spin-orbit coupling
��1 and chemical potential �=0, both the minigap and the
bulk gap are of order the induced pairing potential 
. There-
fore for the semiconductor structure where superconductivity
is proximity induced, the minigap of a vortex can be tuned to
be of order 
 if the chemical potential � can be tuned to be
less than order VZ, the Zeeman potential applied to the semi-
conductor. This is different from the conventional case of a
regular �not proximity induced� where the chemical potential
is of order EF and the minigap is of order 
2 /EF which is
much smaller than 
.

Thus the ability to independently control the chemical po-
tential in the semiconductor heterostructure provides us with
a powerful tool that can increase the minigap of the vortex in
the semiconductor heterostructure shown in Fig. 1 by orders
of magnitude from the values in chiral p-wave superconduct-
ors to on the order of 1 K. This leads to the possibility of
performing TQC with the Majoranas trapped in vortices in
the heterostructure at temperatures which are as large as a
fraction of a 1 K.

VII. BULK TOPOLOGICAL QUANTUM PHASE
TRANSITION

We found that the Majorana modes exist for a spin-orbit-
coupled semiconductor system only in the parameter regime
C0= �
2+�2�−VZ

2 
0. This in turn was related to the parity
of the roots in one half of the complex wave-vector plane of
solutions outside the vortex core. As pointed out before in
the context of Eq. �25�, these roots are indeed properties of
the reduced bulk superconducting Hamiltonian in the ab-
sence of a vortex. We also expect such a connection between
the bulk properties and the existence of Majorana modes on
general topological grounds.12

To show explicitly the connection between the condition
for the existence of Majorana modes �C0
0� and the bulk
properties, we note that even though the gap in the bulk
superconducting state prevents the existence of propagating
states at E=0, it allows evanescent states. Since the states at
E=0 are particle-hole symmetric eigenstates �0 of a real
Hamiltonian, we can apply an argument analogous to Eq.
�15� to obtain a bulk BdG equation in a � channel
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� − ��2 + Vz − � �
 + ���x + ı�y�
− �
 − ���x − ı�y� − ��2 − Vz − �

��0�x,y� = 0.

�48�

Considering an evanescent state of the form �0�x ,y�
=e−z�x cos �+y sin ���0 leads to a constraint on z which was pre-
viously written as Eq. �25�. Therefore, the condition on C0,
which determines whether the phase supports a Majorana
solution or not is precisely related to the parity of decaying
evanescent modes in a given � channel in the bulk supercon-
ductor at E=0.

A change in the parity of the decaying evanescent modes
requires an E=0 mode to become propagating, which can
only exist if the bulk superconductor is gapless. Therefore, a
change in the sign of C0, which determines the topological
nature of the phase, must be accompanied by a closing of the
bulk spectrum. This is determined by the full BdG Hamil-
tonian for a state with momentum k�cos � , sin �� and can be
written in the Nambu space as

HBdG = ��k2 − ���z + Vz�z +
ı�k

2
�e−ı��+ − eı��−��z + 
�x.

�49�

The spectrum is obtained by considering Det�HBdG−Ek�=0
which can be simplified to the equation,

Ek
2 = Vz

2 + 
2 + �̃2 + �2k2 � 2�Vz
2
2 + �̃2�Vz

2 + �2k2� ,

�50�

where �̃=�k2−�. Setting k=0, it can be seen that

E0
2 = �VZ � �
2 + �2�2, �51�

which vanishes as C0 becomes zero, as expected. Recent
work61 has shown that the quantity C0 is the Pfaffian of the
BdG Hamiltonian at k=0, �C0= Pf�HBdG�k=0��y�y��. The
sign of C0, which determines whether the phase of the super-
conductor is non-Abelian or not has been shown to be
related61 to the parity of the first Chern number topological
invariant describing time-reversal broken topological
superconductors.62–65

The phase diagram of the spin-orbit-coupled semiconduc-
tor system can be understood from Fig. 4, which gives the
variation in the quasiparticle gap versus the Zeeman split-
ting. One knows from topological stability of the Majorana
fermion mode that, due to its nondegeneracy, the Majorana
state is protected as long as the bulk gap does not close as
one moves through the parameter space. In Fig. 4, the gap
closes �at the wave vector k=0� for the Zeeman splitting
corresponding to Vz

2=Vzc
2 =
2+�2. The phase with Vz�Vzc

supports the nondegenerate Majorana state while the phase
with Vz
Vzc does not. These two regions are separated by a
gapless point in the parameter space, which signifies a topo-
logical quantum phase transition. The quantum phase transi-
tion is topological since the superconducting order on both
sides is explicitly s wave and the two phases differ only by
the topological properties such as Majorana modes in defects
and boundaries. A similar phase transition involving Majo-
rana fermions in an artificial laser generated �vortex� in the

spin-orbit coupling with a critical Zeeman field satisfying a
similar condition has previously been reported in the context
of cold atoms.51

VIII. COMPETITION BETWEEN SUPERCONDUCTIVITY
AND ZEEMAN SPLITTING

The proposal to realize Majorana fermion modes in spin-
orbit-coupled semiconductor system involves the introduc-
tion of a large Zeeman potential. In general, a Zeeman split-
ting is known to compete with and eventually destroy
superconductivity. To understand better the competition be-
tween the Zeeman splitting and superconductivity in a spin-
orbit-coupled semiconductor, we first consider the case with-
out spin-orbit coupling. This case is described by the BdG
Hamiltonian

HBdG = ��k2 − ���z + Vz�z + 
�x. �52�

The dispersion relation of this Hamiltonian is Ek

= �Vz��
2+ �̃2. In this case, with Vz=0, we obtain a con-
ventional proximity-induced s-wave superconductor with no
Majorana phase. As Vz increases above ��2+
2 the quasi-
particle gap of the system closes and one obtains a metal
with a Fermi momentum kF given by �kF

2 =���Vz
2−
2.

This is the well-known Chandrasekhar-Clogston limit66,67

where strong Zeeman splitting suppresses the superconduct-
ing quasiparticle gap. This suppression is due to the fact that,
in the spin-polarized regime ��VZ�� ����, a small pairing po-
tential cannot open a s-wave superconducting gap since the
latter couples opposite spins.

The BdG Hamiltonian at kF is doubly degenerate and is
given by

HBdG = �Vz
2 − 
2�z + Vz�z + 
�x. �53�

The degeneracy of the above Hamiltonian at the gapless
point, which arises from the particle-hole symmetry, is lifted

FIG. 4. �Color online� Quasiparticle gap versus Zeeman cou-
pling for various values of spin-orbit interaction �. The strength of
the spin-orbit coupling in the inset is such that �=0.3 corresponds
to 0.1 eV Å. The other parameters are taken to be 
=0.5 and �
=0.0. The gap vanishes at the critical value Vz=�
2+�2. The spin-
orbit coupling has negligible effect below this critical point and the
superconducting gap is of a conventional s-wave type. Above the
critical value and in the absence of spin-orbit coupling, the super-
conducting gap is destroyed by the Zeeman coupling. Spin-orbit
coupling opens up a gap in this phase leading to re-entrant super-
conductivity which is topological.
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by the Rashba spin-orbit coupling term �kF�x�z in the semi-
conductor to lowest order in perturbation theory. This yields
a topological superconductor with a gap given by

Eg � 2�kF



Vz
�54�

for �kF�VZ.
Considering the gap as a function of the Zeeman splitting

�Fig. 4�, it is clear that, for Zeeman splitting below the criti-
cal value VZ
�
2+�2, the superconductivity is nontopo-
logical in nature. The topological superconducting phase that
supports Majorana fermions is created by the application of a
Zeeman splitting to suppress the conventional pairing poten-
tial. In this regime, the spin-orbit coupling can open up a gap
resulting in a re-entrant superconducting phase. However, as
is evident from the previous discussions, the re-entrant su-
perconductivity is unconventional �topological� in the sense
that it supports Majorana fermions.

IX. TOPOLOGICALLY PROTECTED EDGE STATES AT
INTERFACES

One of the signatures of a topological phase is the exis-
tence of gapless edge states which are inextricably linked to
bulk topological properties such as Majorana modes in
vortices.4,68–71 The spin-orbit-coupled semiconductor struc-
ture introduced in Sec. II can be shown to have gapless edge
states using methods similar to the ones described in the
previous sections. Furthermore it turns out that this approach
to analyze the existence of Majorana edge modes does not
impose additional requirements such as rotational invariance
that were critical for the demonstration of a Majorana solu-
tion in a vortex. Therefore, this method can be used to ex-
amine the question of the existence of Majorana edge modes
even in the heterostructures with more general forms of spin-
orbit coupling proposed by Alicea56 where the Zeeman split-
ting can be introduced by an in-plane magnetic field.

A. BdG Hamiltonians for edges

Edges can be created in the semiconductor heterostructure
by varying a parameter of the Hamiltonian such as �, VZ, or

 perpendicular to the edge of a surface. Without loss of
generality we can consider an edge that is perpendicular to
the direction ŷ. Because of translational symmetry along the
edge, the resulting edge BdG Hamiltonian has kx as a param-
eter. The momentum parameter kx transforms as kx→−kx un-
der the particle-hole transformation. Therefore, a nondegen-
erate Majorana mode can only exist for kx=0.

Fixing kx=0 reduces the two-dimensional edge problem
to a one-dimensional BdG Hamiltonian for a single-band
semiconductor with spin-orbit coupling �assumed to be linear
in the momentum ky�, which in general can be written as

HBdG = �− ��y
2 − ��y���z + Vz� · B̂ + ı��y�̂ · ��z

+ 
�y�cos ��x + 
�y�sin ��y , �55�

where the unit vector B̂ is the direction of the effective Zee-
man field and the unit vector �̂ characterizes the spin-orbit

coupling. Using the spin-rotation transformations on HBdG,
we can choose �̂= ŷ without loss of generality. This yields
the Hamiltonian

HBdG = �− ��y
2 − ��y���z + Vz� · B̂ + ��ı�y��z�y

+ 
�y�cos ��x + 
�y�sin ��y , �56�

which is invariant under spin rotations about the y axis.
Therefore without loss of generality we can reduce the above
Hamiltonian to

HBdG = �− ��y
2 − ��y���z + VZ�cos ��z + sin ��y�

+ ��ı�y��z�y + 
�y�cos ��x + 
�y�sin ��y . �57�

Nondegenerate Majorana spinor solutions are of the form
�= �u , ı�yu

�� and are completely determined by the two-
spinor u. This fact was used to obtain the Majorana solutions
for vortices to reduce the BdG equation from a 4	4 system
of equations to a 2	2 system of equation. However, this
reduction procedure required the BdG Hamiltonian to be real
which is not the case for general forms of spin-orbit coupling
and Zeeman splitting. The BdG equation for the zero-energy
mode HBdG�=0 may be reduced to an equation for u as

��− �y
2 − ��y�� + VZ�cos ��z + sin ��y� + ��ı�y��y�u

+ 
�y�eı��ı�y�u� = 0. �58�

This equation is not real but may be reduced to a system of
real equations by writing u=uR+ ıuI and taking the real and
imaginary parts of the resulting equation giving a pair of
equations of the form

��− �y
2 − ��y�� + VZ cos ��z + ��ı�y��y + 
�y�cos ��ı�y��uR

− �
�y�sin � − VZ sin ���ı�y�uI = 0, �59�

��− �y
2 − ��y�� + VZ cos ��z + ��ı�y��y − 
�y�cos ��ı�y��uI

+ �
�y�sin � − VZ sin ���ı�y�uR = 0. �60�

The above pair of equations is similar to the pair of equations
obtained for the two �= �1 channels except that earlier the
two channels were decoupled. For 
�y� independent of y, the
two channels can also be decoupled by choosing � such that

�y�sin �=VZ sin �. In what follows, we will make this
choice and also replace VZ cos �→VZ and 
 cos �→
. This
results in a reduced BdG equation for the E=0 reduced
spinor �0�y�,

�− ��y
2 + Vz − ��y� �
�y� + ��y

− �
�y� − ��y − ��y
2 − Vz − ��y�

��0�y� = 0,

�61�

where �= �1.
An edge in a two-dimensional system of the type consid-

ered above is defined by requiring some parameter of the
Hamiltonian to vary across the edge situated at y=0. We take
this parameter to be constant for y
0 and y�0. In this case,
our previous approach can be applied in a way even simpler
than the application to the vortex problem, since the solu-
tions on both sides of the interface at y=0 can be approxi-
mated as a sum �0�y�=	nane−znyun where, as in the interior
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of the vortex �but far from the vortex core� �Eq. �24��,

�− �zn
2 + Vz − � �
 − zn�

− �
 + zn� − �zn
2 − Vz − �

�un = 0. �62�

Similar to the vortex case, in the topological phase C0= �
2

+�2−VZ
2�
0, there are three values of zn such that Re�zn�


0, while in the nontopological phase C0�0, there are only
two solutions in a given � channel. The coefficients an in the
solution are determined by matching the boundary conditions
on �0�y� at y=0. The coefficient C0, written in terms of the
original parameters of the wire, reduces to

C0 = 
2 cos2 � + �2 − VZ
2 cos2 � = 
2 + �2 − VZ

2 �63�

and is not affected by the � and � parameters that were
introduced to make the BdG Hamiltonian real. The proce-
dure of reducing the BdG Hamiltonian to a real Hamiltonian
introduces an additional constraint in the form of a minimum
value of 
 required to be in a gapped topological phase i.e.,
�
�� �VZ sin ��.

B. Chiral edge states

Based on analogy with FQH state and chiral p-wave su-
perconductors, one expects a chiral gapless state confined to
the edge of the semiconductor heterostructure. An edge can
be created in such structures by raising the chemical poten-
tial � toward the edge such that electrons stay confined in-
side the system. Therefore, an edge of a system confined to
y�0 is defined by ��y�=� for y�0 and ��y�=�� �Vz� for
y
0. In these structures we assume that 
�y�=
 is indepen-
dent of y.

The BdG equation for y�0 and kx=0 now reduces to a
2	2 system of equations,

�− ��y
2 − � + Vz�z − ı��y�y + ı��y
���y� = 0, �64�

where

��y� = �u↑�y�
u↓�y�

� . �65�

In order to solve a semi-infinite system we make a plane-
wave trial solution ansatz,

��y� = e−zy�u↑

u↓
� , �66�

where z must now satisfy

�− �z2 + Vz − � �
 − z�

− �
 + z� − �z2 − Vz − �
��u↑

u↓
� = 0. �67�

As in the case of the vortex �Eq. �25��, for Vz
2� �
2

+�2� there are three solutions on the right half of the com-
plex z plane and one solution on the left half for �=−1. The
situation is opposite for �=1. Solutions with Im�z��0 are
physical on the left edge of the system while Im�z�
0 is
physical on the right edge of the system. Thus for �=−1
there are three physical solutions on the left edge of the
system which is the exact number needed to make the two-
component spinor vanish at the left edge. Consequently,

there is a localized zero mode at the left edge of the system
in the �=−1 channel. Similarly there is a localized zero
mode at the right edge of the system in the �=+1 channel.
Finally, for Vz

2
 �
2+�2�, there are no zero-energy solutions
at either edge since there are only two physical solutions at
each edge which is insufficient to match the boundary con-
ditions. Since the wave function is confined to the edge, we
expect the boundary conditions �0,↑�0�=�0,↓�0�=0, which
together with normalization lead to three constraints. As
mentioned before, in the topological phase we obtain three an
coefficients corresponding to the three normalizable solu-
tions in the interior. Therefore, there is a unique zero-energy
state resulting from a matching of the boundary conditions.
This state is a Majorana mode for the end point of the nano-
wire in the topological phase �C0
0�, which disappears
when we tune the wire through a phase transition to C0�0.
The Majorana modes at the edges discussed above only oc-
curred at kx=0. The complete spectrum of the edge is ob-
tained by considering the BdG Hamiltonian at small kx�0
using the k · p perturbation theory. To lowest order in kx, the
Nambu Spinor wave function can be approximated as
�kx

�x ,y��eikxx�0�y� with an energy Ekx
=vkx, where v

= ��0��y�z��0
.
A similar chiral Majorana wire is obtained by considering

an edge between the topological phase C0
0 and C0�0
where ��y� is constant but VZ�y�=0 for y�0. In that case
there are five constraints to match as in the vortex case, and
there are five coefficients, three arising from the topological
phase at y
0 and two from the nontopological phase y�0.

C. Nonchiral Majorana edge states

Now we consider the junction of a pair of topological
superconducting islands with phases � and ��=�−� which
is a geometry that is of particular interest to TQC
architechtures.37,52 For such a choice of phases, the effective
pairing potential in 
 cos ��x� is a step function given by

�x�=
 cos � for x
0 and 
�x�=−
 cos � for x�0. As
before we then replace 
 cos �→
. Focusing on the kx=0
particle-hole symmetric momentum for the edge, solutions
for x
0 and x�0 can be expanded in terms of spinor func-
tions given in Eq. �66� which is written in terms of eigenval-
ues z and eigenvectors satisfying Eq. �67�. Normalizable so-
lutions must now be composed of superpositions of
exponentials with Re�z�
0 for y
0 and Re�z��0 for x
�0. We note at this point that the equations for x�0 and
x
0 differ by a change in sign of 
�x� across the interface
which corresponds to a change in sign of z. Thus, as before
for �=−1, in the topological phase we have three values of z
such that Re�z��0 for x�0 and three values such that
Re�z�
0 for x
0. Following the boundary condition
matching argument of the last section, for the � junction
there are six states at x=0 to compose wave functions at x
=0 which need to satisfy five constraints. Therefore, generi-
cally there will be a pair of zero-energy modes satisfying
these equations.

It might appear that, unlike the case for the chiral edge
states, the pair of Majorana states cannot be topologically
protected. In the case of the TI/SC interface,37 the existence
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of such a pair of nonchiral Majorana edge modes at a phase
difference � was a consequence of time-reversal symmetry
which is broken here. In our calculation we find that because
of this time-reversal breaking, the pair of degenerate zero
modes may occur at a phase difference of �−2�. In fact, by
considering the evolution of the Andreev bound-state spec-
trum in the junction as a function of phase difference,57 it is
possible to show that even though the Majorana nature of the
pair of nonchiral Majorana modes is not topologically pro-
tected, it is not possible to eliminate the zero modes all to-
gether. The zero crossing of the nonchiral Majorana modes
may only be shifted to different values of phase by time-
reversal breaking perturbations. This is a result of the fact
that the two-particle-hole symmetry related branches of the
Andreev bound-state spectrum differ by fermion parity.
Therefore, even though an infinitesimal perturbation can lift
the degeneracy of the two zero modes at some value of phase
difference ��, it can only do so by shifting the crossing to a
neighboring value of ��. Similar to the chiral edge modes
one can use the k · p perturbation theory to construct a pair of
linearly dispersing modes from the pair of zero-energy states
at ky =0.

X. MODEL CALCULATIONS OF PROXIMITY EFFECTS
IN SUPERCONDUCTOR-SEMICONDUCTOR-

MAGNETIC INSULATOR
HETEROSTRUCTURES

In this section we study, starting from a microscopic tight-
binding model, the excitation spectrum of a semiconductor
thin film sandwiched between an s-wave SC and a ferromag-
netic insulator �MI�. We determine the dependence of the
effective SC gap and Zeeman splitting induced by proximity
effects on the parameters that characterize the heterostructure
model. We also calculate the dynamical contributions to a
low-energy effective theory of the proximity effect and iden-
tify parameter regimes suitable for the experimental imple-
mentation of the semiconductor-based proposal of a platform
for topological quantum computation.

To study the proximity effect in the SC-semiconductor-MI
heterostructure, we consider the minimal microscopic model
defined by the Hamiltonian

Htot = H0 + HSC + HMI + Ht̃S
+ Ht̃M

. �68�

The H0 term describes the semiconductor thin film,

H0 = 	
i,j,�

tijci�
† cj� +

�

2 	
i,�,��

�ci+�x�
† �i�̂y��,��ci��

− ci+�y�
† �i�̂x��,��ci�� + H.c.� + 	

i,�
V�zi�ci�

† ci�, �69�

where the first contribution describes hopping on a cubic
lattice while the second represents a lattice model of the
Rashba spin-orbit interaction. The hopping matrix elements
are nonvanishing for nearest neighbors, tij =−t0, and next-
nearest neighbors, tij =−t1, and we also include an on-site
contribution tii=�0 that shifts the bottom of the semiconduc-
tor spectrum to zero energy. The parameter � represents the

Rashba coupling constant and �x�y� are nearest-neighbor dis-
placements in the xy plane of a cubic lattice with lattice
parameter a. The system is assumed to be infinite in the x
and y directions and contains N planes perpendicular to the z
direction. The quantities �̂x�y� are Pauli matrices and ci�

† ,ci�
are electron creation and annihilation operators, respectively.
The last term represents an external bias potential that
modify the on-site energies along the z direction.

For the superconductor we use a simple mean-field model
defined by the Hamiltonian

HSC = − ts 	
�i,j
,�

bi�
† bj� + �s	

i,�
bi�

† bi� + 	
i

�
bi↑
† bi↓

† + H.c.� ,

�70�

where ts represents the nearest-neighbor hopping on a cubic
lattice and 
 is the mean-field s-wave SC order parameter.
The SC and the semiconductor thin film have a planar inter-
face perpendicular to the z direction. For clarity, the electron
creation and annihilation operators inside the SC were de-
noted bi�

† and bi�, respectively.
The third term in Eq. �68� represents the ferromagnetic

insulator which, again, is modeled at the mean-field level by
the Hamiltonian

HMI = − 	
�i,j
,�

tm�ai�
† aj� + 	

i,�
��m� − �

 

2
�ai�

† ai�. �71�

The nearest-neighbor hopping is spin dependent and we con-
sider the case tm↓=−tm↑�0. The spin-dependent on-site en-
ergy was divided into a contribution �m�=�m0+6tm� that
places the top of the valence band and the bottom of the
conduction band at the same energy �m0 and a term propor-
tional to the insulating gap  . The last two terms in Eq. �68�
describe the coupling at the two interfaces,
semiconductor-SC and semiconductor-MI, respectively,

Ht̃S
= − 	

�i,j
,�
t̃S�bi�

† cj� + H.c.� , �72�

Ht̃M
= − 	

�i,j
,�
t̃M�ai�

† cj� + H.c.� . �73�

The parameters t̃S and t̃M characterize the transparencies of
the two interfaces and provide the energy scales for the cou-
pling between the semiconductor thin film and the SC and
MI, respectively. These energy scales are crucial for deter-
mining the strength of the proximity effects.

We diagonalize Eq. �68� numerically for a system with
periodic boundary conditions along the x and y directions
and a finite size along the z direction. The semiconductor, SC
and MI contain N, Ns, and Nm planes, respectively. For the
semiconductor thin film we consider 5!N!20 while Ns and
Nm are typically on the order of several hundreds. For large
systems, the proximity effects are independent on Ns and Nm
and we explicitly checked that the values used in the calcu-
lations are within that regime. The hopping matrix elements
for the semiconductor are t0=1.57 eV and t1=0.39 eV,
which, for a cubic lattice with a=5.5 Å generate in the low-
wavelength limit a small effective mass m�=0.04me charac-
teristic of semiconductors such as InAs. The value of the
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Rashba coupling constant is �=18 meV, corresponding to a
strong spin-orbit coupling of the order 100 meV Å. For the
SC, the hopping parameter is ts=0.35 eV and 
=1.5 meV,
while the magnetic insulator is described by tm↓=−tm↑
=0.36 eV and a gap value  =200 meV. The coupling pa-
rameters t̃S and t̃M are varied and typically range within sev-
eral hundreds millielectron volt.

A. Magnetic proximity effect

First, we turn on the coupling at the interface between the
semiconductor and the MI. Figure 5 shows the spectrum of a
slab containing a semiconductor thin film with N=10 atomic
layers in contact with a MI. The coupling at the interface is
t̃m=250 meV. The semiconductor spectrum is characterized
by ten strongly dispersive bands represented by red �dark
gray� curves in the upper panel of Fig. 5. For an isolated
semiconductor, these bands are weakly split by the spin-orbit
interaction and are double degenerate at k=0. However, as a
result of the magnetic proximity effect, an effective Zeeman
splitting removes this degeneracy. This is shown in the lower
panel of Fig. 5 for the lowest energy mode that has the mini-
mum inside the insulating gap. The induced Zeeman splitting
is entirely a result of the exchange interaction between the
MI and the SM layers and is not related to the magnetic field
produced by the ferromagnetic MI. In fact, effective Zeeman
splittings have been known to induced by antiferromagnetic
insulators as well through a phenomenon commonly known
as exchange bias.72

A natural question of practical importance concerns the
dependence of the induced Zeeman splitting on the param-
eters of the model. To get a better intuition of the physics
behind the proximity effect, we start with an analysis of the

structure of the wave functions of the relevant states. Con-
sider a semiconductor state with an energy within the insu-
lating gap  . When the semiconductor and the MI are
coupled, the wave function describing this state will partly
penetrate into the magnetic insulator, where it decays expo-
nentially. These components of the wave functions inside the
MI will acquire ferromagnetic correlations equivalent to an
effective Zeeman field. Hence, the strength of the proximity
effect is related to the fraction of the wave function that
penetrates the MI. This qualitative picture of the proximity
effect is illustrated in Fig. 6. In general, the fraction of the
wave function that penetrates the insulator depends on three
types of factors: �i� the properties of the quasi-two-
dimensional parent system, in this case the semiconductor
film, �ii� the properties of the insulating host system, and �iii�
the coupling strength at the interface.

The first and last types of factors are qualitatively illus-
trated in Fig. 6. For example, by controlling the value of the
on-site energy �0, i.e., chemical potential of the semiconduc-
tor, one can bring the minima of different semiconductor
bands within the insulating gap. The profiles of the wave
functions in the transverse direction �i.e., perpendicular to
the film� depend on which band is inside the gap, as shown
in Fig. 6 for the first two bands, n=1 and n=2. Furthermore,
the fraction of the wave function that penetrates the insulator
depends on its amplitude at the interface. This amplitude is
significantly different for n=1 and n=2, hence one expects
significantly different strengths of the proximity effect. Of
course, the amplitude at the interface can be also modified by
changing the size of the system �N� or by applying a bias
potential V�z� that can tilt the spectral weight toward or away
from the interface. In addition to the amplitude at the inter-
face, which is determined by the parameters of the semicon-
ductor, the fraction of the wave function that penetrates the
MI also depends on the slope at the interface. In essence, this
slope is controlled by the coupling parameter t̃m, as illus-
trated in Fig. 6. Finally, the parameters of the exponential
decay inside the insulator, as well as the strength of the fer-
romagnetic correlations depend on the properties of the in-
sulating host.

Next we proceed with a quantitative analysis of the in-
duced Zeeman splitting and derive an effective low-energy
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FIG. 5. �Color online� Band structure for a semiconductor-
ferromagnetic insulator heterostructure described by Eqs. �68�, �69�,
�71�, and �73� with N=10 and t̃M =250 meV. The red points �the
wide bands in the upper panel� represent semiconductor states while
the magenta bands �narrow bands in the upper panel� are ferromag-
netic insulator states. The lower panel shows the low-energy behav-
ior around k=0. Notice the spitting of the semiconductor band at
k=0 due to the effective Zeeman term induced by ferromagnetic
proximity effect.
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FIG. 6. �Color online� Dependence of the amplitude of low-
energy states on the distance from the semiconductor-MI interface
for three different sets of parameters. In order of increasing penetra-
tion depth into the MI: lowest semiconductor band �n=1� and t̃m

=0.25 eV �blue�, second semiconductor band �n=2� and t̃m

=0.25 eV �black�, and n=2, t̃m=0.5 eV �red�. For a given set of
parameters, a certain fraction of each low-energy wave function
penetrates the insulator leading to ferromagnetic correlations in the
semiconductor thin film, i.e., to an effective Zeeman field induced
by proximity effect.

SAU et al. PHYSICAL REVIEW B 82, 214509 �2010�

214509-14



theory for the ferromagnetic proximity effect. We consider
the situation when the states of the nth semiconductor band
with wave vectors near k=0 have energies inside the insu-
lating gap. The states �nk��ri� corresponding to vanishing
spin-orbit coupling, �=0, form a convenient basis for the
low-energy Hilbert subspace of interest. Projecting the
Hamiltonian H0 onto this subspace we obtain

H0eff�k� =�
k2

2m�
��ky − ikx�

��ky + ikx�
k2

2m�
� , �74�

where m� is an effective mass with a value slightly different
from the effective mass corresponding to the 3D semicon-
ductor model. The difference stems from the quasi-2D geom-
etry of the system. The insulating degrees of freedom can be
integrated out and replaced by an interface self-energy. When
projected onto the low-energy subspace, this contribution be-
comes

"����k,#� = − t̃m
2 ��nk�z0��2G���

�m� �k,#;z0 + �z� , �75�

where G���
�m� �k ,# ;z0+�z� is the Green’s function of the mag-

netic insulator and ��k�z0��2 the amplitude of the semicon-
ductor wave function, both at the interface. From Eq. �75�
one immediately notice that, neglecting dynamical effects,
i.e., setting #=0, any induced Zeeman splitting has to be
proportional with the amplitude of the wave function at the
interface times the square of the interface transparency. For a
vanishing bias potential, V�z�=0, the wave-function ampli-
tude on the j atomic layer is proportional to sin2��nj / �N
+1�� and the amplitude at the interface becomes

��nk�z0��2 =

2 sin2� n�

N + 1
�

N + 1
. �76�

Note that, for clarity, we dropped the spin label, as the am-
plitude is spin independent. Also note that for large N the
amplitude becomes ��nk�z0��2�2n2�2 / �N+1�3. The depen-
dence of the induced Zeeman splitting on the wave-function
amplitude is shown in Fig. 7. As the film thickness w=Na is
increased, the value of the wave-function amplitude at the
interface drops rapidly, as expected from Eq. �76�. Due to the
proximity effect, an effective Zeeman splitting creates a gap
in the nth semiconductor band at k=0,

 ̃ = En2�0� − En2�0� , �77�

where Enj�k� are the energies of the nth semiconductor band
within the magnetic insulator gap �see lower panel of Fig. 5�.
The proportionality between the induced Zeeman gap  ̃ �dots
in Fig. 7� and the amplitude of the wave function �lines in
Fig. 7� reveal the absence of significant dynamical effects,
Eq. �75�. This conclusion is further supported by the linear

dependence  ̃ on the square of the interface transparency, t̃m
2 ,

shown in Fig. 8. We emphasize that the effective coupling
constant that determines the strength of the ferromagnetic
proximity effect, gm=2t̃m

2 ��n�z0��2 /$m, where $m is a charac-

teristic bandwidth for the magnetic insulator, can be tuned
by: �a� modifying the semiconductor film thickness �see Fig.
7�, �b� applying a bias voltage �see Figs. 7 and 8�, and �c�
changing the semiconductor-MI coupling �Fig. 8�.

So far we have discussed the dependence of the proximity
effect on the properties of the quasi-two-dimensional parent
system and on the coupling strength at the interface. Next we
briefly investigate the role of the insulating host system. We
note that a full analysis would require a treatment of the
magnetic insulator beyond the simple mean-field picture
used here but this would not change the results obtained so
far. Within our mean-field approximation, the MI Green’s
function from Eq. �75� can be easily evaluated,

G���
�m� �k,#;z0 + �z� = ����	

�

1

# − E���k� + i�
�%�k��z0 + �z��2,

�78�

where E���k� are the energies of the insulator bands and
%�k��z0+�z� the values of the corresponding eigenstates at
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FIG. 7. �Color online� Dependence of the normalized effective
Zeeman splitting on the semiconductor thickness for different sets
of parameters �dots�. The continuous lines represent the normalized
wave-function amplitude at the interface �the Nth layer�
��n�N��2 / ��n�10��2. The reference gap is  ̃0=2.955 meV. The
wave-function amplitude in the absence of an applied bias, V�z�
=0, is determined using Eq. �76� for n=1 �lower dark gray curve�
and n=2 �upper dark gray curve�, while for a linear bias V�z�
=V0z /w with V0= �1 eV the amplitude is determined numerically
�light gray curves�.
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FIG. 8. �Color online� Dependence of the normalized Zeeman
splitting on the interface transparency for a system with N=12 and
different model parameters �dots�. The straight lines are guide for
the eyes. The reference interface coupling is t̃m0=250 meV. The
rather small deviations from a linear dependence indicate that dy-
namical effects are negligible, i.e., neglecting the frequency depen-
dence in Eq. �75� is a good approximation.
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the interface. It is convenient to express the Green’s function
in terms of the partial density of states �k��#�=	���#
−E���k���%�k��z0+�z��2. Within our model, this partial den-
sity of states becomes

�k��#� =
2

�$�

�1 − 
# − Ē��k�
$�

�2

�79�

with $�=2�tm�� being half of the bandwidth in the insulating

phase and Ē��k� the energy values at the middle of the va-
lence and conduction bands for a given wave vector parallel

to the interface. At k=0 we have Ē��0�=−�−�� /2+$��.
Note that �k��#� vanishes for values of # outside the band-
width. Using Eq. �79�, we obtain for the Green’s function the
expression

G��
�m� =

2

$�


# − Ē�

$�

− sign�# − Ē����# − Ē�

$�

�2

− 1� .

�80�

Note that the imaginary part of the Green’s function vanishes
for values of # within the insulating gap. Also, because the
energies of interest are much smaller than the insulator band-
width, #�$�, we can neglect the frequency dependence in
Eq. �80�. Finally, within the static approximation, we obtain
for the induced Zeeman splitting the expression

 ̃ = 
 ̃↓ − 
 ̃↑,


 ̃� = gm��− � − �� 
2 + $��

$�

+ ��
− � − �� 
2 + $��

$�

�2

− 1� , �81�

where the effective coupling constant is gm

=2t̃m
2 ��n�z0��2 /$�. To test the accuracy of this effective low-

energy theory, we compare the values of the induced Zeeman
splitting predicted by Eq. �81� with the numerical calcula-
tions. The results for various values of the insulating gap
shown excellent agreement �see Fig. 9�. Finally, we note that
away from k=0 the dispersion of the low-energy bands
Enj�k� can be obtained by adding the self-energy contribu-
tion, Eq. �75�, to the effective theory described by Eq. �74�.
Within the static approximation we have

Heff�k� =� k2

2m�
−

 ̃

2
��ky − ikx�

��ky + ikx�
k2

2m�
+

 ̃

2
� �82�

with  ̃ given by Eq. �81�. Explicit calculations for various
sets of parameters show that this low-energy theory repre-
sents an excellent approximation for all k values of interest.

B. Superconducting proximity effect

Next, we turn our attention to the effects induced by the
proximity of an s-wave superconductor on the

semiconductor-MI heterostructure. The parameters of the
semiconductor-MI interface are fixed with t̃m=250 meV. We
consider a semiconductor thin film with N=10 and create a
new interface at the free surface of the semiconductor by
coupling it to a SC with an s-wave gap 
, i.e., we add the
terms given by Eqs. �70� and �72� to the total Hamiltonian
�68�. The corresponding spectrum is shown in Fig. 10. The
semiconductor band is split due to the ferromagnetic prox-

Ferromagnetic gap (meV)
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FIG. 9. �Color online� Dependence of the effective Zeeman
splitting on the ferromagnetic insulator gap for the first �n=1, lower
set of dots� and second �n=2, upper set of dots�, semiconductor
bands. For n=2 an additional linear bias is applied. The semicon-
ductor has N=10 layers and the interface coupling with the ferro-
magnetic insulator is t̃m=250 meV. The continuous lines are calcu-
lated using the effective low-energy theory described by Eq. �81�.
Notice the remarkable agreement between the low-energy theory
and the exact results and the difference in energy scales between the
insulating gap and the induced gap.
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FIG. 10. �Color online� BdG spectrum of the full Hamiltonian
�68� for a semiconductor thin film with N=10 sandwiched between

a MI � =0.2 eV, t̃m=250 meV, and  ̃=2.95 meV� and an s-wave
SC �
=1.5 meV and t̃s=130 meV�. The red points �highly disper-
sive bands inside the MI and SC gaps� represent states that reside
�mostly� within the semiconductor, magenta designates the MI
bands �upper panel, dark gray bands with a 0.2 eV gap�, while the
SC states are blue �upper and lower panels, bands with a 3meV
gap�, while SC states are blue �upper and lower panels, bands with
a 3meV gap�. Due to the effective Zeeman filed, the semiconductor
bands are split and only one crosses the chemical potential �see
upper panel�. As a result of the superconductor proximity effect, a
small gap opens at the crossing points �see lower panel�.
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imity effect and the chemical potential is tuned so that it
crosses only the lower energy mode. When the coupling to
the SC is turned on, a small gap opens at low energies due to
the SC proximity effect �see Fig. 10 lower panel�.

Before a quantitative analysis, let us illustrate qualita-
tively the behavior of the proximity-induced SC gap. Figure
11 shows the low-energy spectrum for three different values
of the coupling constant t̃s. For t̃s=0 �red line, maximum gap
at k=0� the BdG spectrum is gapless. A nonvanishing inter-
face coupling opens a small gap at the crossing points. The
value of this finite wave-vector gap increases with t̃s but the
gap at k=0 decreases. �black line, intermediate gap at k=0�.
Eventually, at a critical value t̃SC the gap vanishes at k=0,
before opening again for larger couplings �yellow curve,
small gap at k=0�. This closing of the induced gap signals
the presence of a quantum phase transition.52

In order to understand this behavior, it is useful to develop
an effective low-energy theory for the SC proximity effect.
As shown previously,42,43 dynamical corrections are crucial
in capturing the low-energy physics in this case, in contrast
to the ferromagnetic proximity effect. Using the results ob-
tained in Refs. 42 and 43, the Green’s function describing the
low-energy physics of the heterostructure can be written as

− G−1 = ��k + �k�+ + �k
��−��z +

 ̃

2
�z +

gs


�
2 − #2
�x

− #�1 +
gs

�
2 − #2� , �83�

where �k=k2 /2m�−�,  ̃ is given by Eq. �81�, �k=��ky

− ikx�, and the effective coupling is gs=2t̃s
2���zs��2 /$s. The

wave-function amplitude is evaluated at the
semiconductor-SC interface and $s=2ts is half of the SC
bandwidth. The low-energy spectrum can be obtained by
solving the corresponding BdG equation, Det�G−1�=0. Ex-
plicitly, we have

#2�1 +
gs

�
2 − #2
�2

=
 ̃2

4
+ �2 + ��k�2 +

gs
2
2


2 − #2

− 2��k
2�  ̃2

4
+ ��k�2� +

 ̃2

4

gs
2
2


2 − #2 .

�84�

A comparison between the solution of Eq. �84� and the nu-
merical calculations is shown in the upper panel of Fig. 12.
The good agreement between the two calculations indicates
that all the relevant ingredients have been incorporated into
the effective low-energy theory. Note that the magnetic
proximity-induced Zeeman splitting does not affect the
proximity-induced superconducting pairing potential, unlike
the case of nonproximity-induced superconductors. This is
because the Zeeman potential is proximity induced and is
proportional to the tunneling to the magnetic insulator, which
vanishes at the superconductor since it is separated from the
magnetic insulator by the semiconductor. This argument is
further supported by the good agreement between the effec-
tive model and the numerical calculation. The dependence of
the minimum gap on the interface coupling is shown in the
lower panel of Fig. 12. Note that the critical value of t̃s at
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FIG. 11. �Color online� Dependence of the low-energy spectrum
on the coupling between the semiconductor and the SC: t̃s=0 �red,
maximum gap at k=0�, t̃s=130 meV �black, intermediate gap at
k=0�, and t̃s=190 meV �yellow, small gap at k=0�. The semicon-
ductor film has N=10 layers and is also coupled �at the opposite
surface� to a ferromagnetic insulator �t̃m=250 meV�. A proximity-
effect-induced superconducting gap opens at finite k. As t̃s is in-
creased, the minimal gap shifts to lower wave vectors and rest
increases, then decreases and eventually vanishes at a critical cou-
pling before opening again �see also Fig. 12�.
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FIG. 12. �Color online� Upper panel: comparison between the
solution of the effective low-energy theory given by Eq. �84� �lines�
and the numerical solution of Hamiltonian �68� �dots� for two val-
ues of the chemical potential, �=0 �minimum gap at kx�0.021 /a
and �=−1meV �minimum gap at kx�0.007 /a. Only positive ener-
gies are shown. The semiconductor film �N=10� is coupled to both
a ferromagnetic insulator �t̃m=250 meV� and an s-wave SC
�t̃s=200 meV�. Lower panel: dependence of the induced minimum
gap on the SC interface transparency. The vanishing of the gap at a
critical value t̃SC����t̃SC�0��188 meV, t̃SC�−1��148 meV� re-
flects a quantum phase transition between a topologically nontrivial
SC �at small values of t̃s� and a trivial s-wave SC �at large
couplings�.
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which the gap vanishes can be obtained from Eq. �84� by
setting #=0. Explicitly we have

t̃SC��� =
�ts

���zs��
�  ̃2

4
− �2�1/4

. �85�

The last question that we address in this section concerns
the situation when a higher energy semiconductor band, n
�1, has the minimum in the vicinity of the chemical poten-
tial. For concreteness, we consider the case n=2. The phys-
ics in the vicinity of k=0 is similar with the case studied
above. In addition, the n=1 bands cross the chemical poten-
tial at some large value of k. Nonetheless, assuming that the
partial density of states of the superconducting metal �k��#�
does not vary significantly with the wave vector, i.e., the
effective mass of the metal is much greater than the effective
mass of the semiconductor, the n=1 bands will be gapped
and the induced gap is typically grater than the minimum gap
near k=0. Hence, the general conclusions of our analysis of
the n=1 case hold for n�1. To illustrate this point, we show
in Fig. 13 the relevant details of the low-energy spectrum for
the case n=2.

XI. MAJORANA FERMION MODES IN ONE-
DIMENSIONAL NANOWIRE

In the previous sections, we discussed how Majorana
states may appear at vortices and edges of various two-
dimensional spin-orbit-coupled semiconductor heterostruc-
tures. In this section, we show that Majorana fermions can
also be realized in the much simpler one-dimensional nano-

wire set up �Fig. 14�. In this setup we propose to study a
semiconducting nanowire with a sizeable spin-orbit coupling
�e.g., InAs� placed on an s-wave superconductor �e.g., Al�.
An in-plane magnetic field is used to create a Zeeman split-
ting in the nanowire,57,73 which gives rise to the band struc-
ture shown in Fig. 14�b�. The direction of the magnetic field
�parallel or perpendicular to the length of the wire� that is
required to open a gap in the nanowire depends on the exact
direction of the spin-orbit coupling in the wire. For Rashba
spin-orbit coupled wires, the direction of the spin-orbit cou-
pling is perpendicular to the wire �which is the direction of
the momentum�. Therefore the in-plane magnetic field re-
quired to open a gap is parallel to the direction of the wire.
As will become clear later, that if the magnetic field is not
completely aligned with the direction of the wire, a topologi-
cal superconductor exists only above a critical strength of the
proximity effect 
� �VZ sin ��, where � is the angle between
the magnetic field and the direction of the wire. The chemi-
cal potential in the wire � is assumed to be controlled by
external gate voltages.

We argue below that, for the Zeeman splitting satisfying
VZ���2+
2, a single nondegenerate zero-energy state ex-
ists at the end of the wire as the only low-energy bound state.
The second quantized operator for this state is again a Ma-
jorana fermion operator. This mode can be detected as a
zero-bias conductance peak in the scanning tunnel micro-
scope �STM� tunneling spectrum. On reducing the Zeeman
splitting so that VZ
��2+
2, the Majorana mode, and
hence the zero-bias conductance peak, should disappear from
the tunneling spectrum.

The BdG Hamiltonian for a one-dimensional single-band
semiconductor with spin-orbit coupling �which is linear in
the momentum� in proximity to an s-wave superconductor
�Fig. 14�, can be written as

HBdG = �− ��y
2 − ��y���z + Vz� · B̂ + ı��y�̂ · ��z + 
 cos ��x

+ 
 sin ��y . �86�

Here the unit vector B̂ gives the direction of the effective
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FIG. 13. �Color online� Details of the low-energy spectrum for
the case when the n=2 semiconductor band has the minimum in the
vicinity of the chemical potential. The semiconductor film has N
=10 layers and the couplings at the interfaces with the ferromag-
netic insulator and the SC are �t̃m=250 meV� and �t̃s=200 meV�,
respectively. The low-energy physics in the vicinity of k=0 �upper
panel� is described by the effective theory given by Eq. �84� with a
coupling constant gs that includes the amplitude of the n=2 state at
the interface. The n=1 semiconductor bands cross the chemical
potential at larger values of k �lower panel� and are gaped due to SC
proximity effect. Note that the gap at large wave vectors does not
vanish at a critical coupling.

Superconductor

nanowire

STM

E

k

(a)

(b)

Magnetic field

FIG. 14. �Color online� �a� Geometry to detect zero-energy Ma-
jorana fermions using STM spectroscopy on a semiconducting
nanowire. The Zeeman splitting is induced by a parallel magnetic
field while the chemical potential is controlled by an external gate
�not shown�. The Majorana fermion mode localized at the end of
the nanowire gives rise to a zero-bias peak in the STM tunneling
spectrum from the end. The tunneling spectrum from the bulk of the
nanowire is gapped. �b� Band structure of the nanowire in the to-
pological superconducting phase.
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Zeeman field and the unit vector �̂ characterizes the spin-
orbit coupling. From inspection it is now clear that this
Hamiltonian is formally identical to the Hamiltonian for the
edge states, Eq. �56�, at kx=0. Therefore, from the solution of
the chiral edge state at kx=0 for the semiconductor thin film
�Sec. IX B�, we conclude that in the topological phase of the
wire �C0
0�, the ends of the nanowire support localized

zero-energy Majorana states. For magnetic fields B̂ that are
not orthogonal to the direction of the spin-orbit coupling �̂,
the proximity-effect-induced pairing potential 
 must exceed


� �VZ sin ��, where sin �= B̂ · �̂ as discussed in Sec. IX.

STM detection of Majorana end modes in the
nanowire

In the previous section, we showed that the end of a nano-
wire in the topological phase is characterized by a Majorana
mode. The Majorana modes at the ends of a one-dimensional
p-wave superconductor have been shown to lead to distinct
signatures in the STM tunneling spectrum.74,75 In what fol-
lows, we analytically and numerically calculate the STM
conductance spectrum from one end of our semiconducting
nanowire. We find that, for the Zeeman coupling satisfying
�VZ��
2+�2�, this spectrum has a zero-bias conductance
peak. The zero-bias peak disappears as the Zeeman splitting
is reduced to satisfy �VZ
�
2+�2�.

The tunneling spectrum of a superconducting system,
similar to the tunneling conductance of normal systems, can
be calculated using the Keldysh formalism of nonequilibrium
Green’s function75 where the superconducting system is
coupled to a tip which is initially in thermal equilibrium at a
chemical potential �t, by an adiabatically increasing tunnel-
ing amplitude perturbation V. To calculate the current, we
consider an STM tip state ��

†�x��, where x� is restricted to the
tip. The tunneling Hamiltonian between the STM tip and the
superconducting wire can be written as

Htunnel =� dxdx�	
�

�V�xx����
†�x�����x�

+ V��xx����
†�x����x��� . �87�

The tunneling current can be related to the Keldysh Green’s
function of the combined system as75

I =� dxdx�	
�

�V��xx��G��
�K��xx�� − V�xx��G��

�K��x�x�� .

�88�

The Keldysh Green’s function G�K� can be evaluated using
the Dyson equation

G��
�K��xx�� = − G��

�R��xx1�V�x1x1��g��
�K��x1�,x�� − G��

�K�

	�xx1�V�x1x1��g��
�A��x1�,x�� , �89�

G��
�K��x�x� = − g��

�R��x�x1��V
��x1x1��G��

�K��x1,x� − g��
�K�

	�x�x1��V
��x1x1��G��

�A��x1,x� , �90�

where g= �H0−#� are the unperturbed Green’s function and

H0 is the unperturbed Hamiltonian. Since the initial systems
are in equilibrium, g�K�= �g�R�−g�A��tanh �−�

2T . Substituting
these into Eq. �88�, we get

I = ı� dxdx1d#	
�

 ��xx1;#�
tanh
# − �t

2T
�G��

�R��xx1;#�

− G��
�A��x,x1;#�� + G��

�K��xx1;#�� , �91�

where

 ��xx1;#� =� dx�dx1�V
��xx��V�x1x1�����xx1;#� �92�

and the tip spectral function at energy # is given

���xx1;#� = ı�g��
�A��x1�,x�� − g��

�R��x1�x��� . �93�

The exact Green’s function in the superconductor can be
calculated by integrating out the tip using Dyson’s equation
through the relation

G�xx1;#� = g�xx1;#� + g�xx2;#�"�x2x3;#�G�x3x1;#� ,

�94�

where the tip induced self-energy is given by

"�xx1;#� = �
−�

�

d#�
 �xx1;#��

# − #�
, �95�

"K�xx1;#� = tanh
� − �

2T
 �xx1;#� . �96�

The self-energy discussed above is for the normal Green’s
function, which is relevant for the tip. However to describe
the superconductor, we need to consider the Nambu spinor
Green’s function at complex frequency #. To be consistent
with particle-hole symmetry, the self-energy in Nambu
spinor notation is given by

"Nambu�#� = �"�#� 0

0 − "��− #��
� . �97�

The retarded and advanced self-energy are given at frequen-
cies #� ı�, respectively. The Dyson equations for the full
Green’s function G= �HBdG−#�−1 in terms of the self-energy
can be decomposed componentwise76 as

G�#� = �1 − g�#�"�#��−1g�#� , �98�

G�K� = �1 + G�R�"�R��g�K��1 + "�A�G�A�� + G�R�"�K�G�A�.

�99�

Since the starting system is in equilibrium, g�K�

=tanh �−�
2T �g�R�−g�A�� and writing �1+"G�=GH0, where H0 is

the unperturbed Hamiltonian, the latter equation can be re-
duced to

G�K� = G�R�"�K�G�A�. �100�

Finally using the equilibrium constraint on the tip, one ob-
tains the expression for the current75
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I = ı� dxdx1d#	
�

 ��xx1;#�tanh
# − �t

2T
�G��

�R��xx1;#� − G��
�A�

	�x,x1;#�� . �101�

To proceed further we must make assumptions about the
Green’s function for the STM tip. For a simple STM tip
tunneling to the end of the nanowire, the tunneling can be
assumed to occur between one point on the tip and the end of
the wire. Furthermore, we can assume that the local density
of states of the tip is a Lorentzian function ��#−�t�2 /W2

+1�−1, where W is the bandwidth about the tip. With these
assumptions  is given by

 ��xx1;#� =
 

�# − �t�2/W2 + 1
��x���x1� , �102�

where �t is the chemical potential of the tip. The correspond-
ing self-energy is given by

"�xx1;#� =
 W

# − ı sgn Im�#�W
, �103�

where sgn Im�#� is the sign of the imaginary part of #. The
expression for the current with the above spectral density is
given by

I = ı � d#	
�

tanh
# − �t

2T

1

#2/W2 + 1
�G��

�R��00;#� − G��
�A�

	�00;#�� . �104�

Using the identity tanh� #
2T �=4#T	n�0

1
#2+�2n+1�2�2T2 and the

fact G�R� and G�A� are analytic in the upper and lower half
complex frequency planes, respectively, the # integral can be
replaced by a discrete sum over imaginary Matsubara fre-
quencies as

I = T 	
�,n�0

W2

W2 − �2n + 1�2�2T2Re�G���00;�t + ı�2n

+ 1��T�� − T W	
�

tan
W

2T
Re�G���00;�t + ıW�� .

�105�

The second term in the expression for I regulates the singu-
larity in the first term for W��2n+1��T. Using the Dyson
equations �Eq. �98��, the expression for the Green’s function
G can be written in terms of the unperturbed nanowire
Green’s function g�00;#� at complex frequency # as

G���00;#� = g�00;�t + ı�2n + 1��T��1 − "�00;�t + ı�2n

+ 1��T��g�00;�t + ı�2n + 1��T�−1���. �106�

The unperturbed nanowire Green g�x ,x�=0;#� at x�=0
satisfies the BdG equation

��− ��x
2 − � − Vg�x� − ı��y�x−��z + Vz�z + 
�x − #�

	g�x,x� = a;#� = ��x − a� �107�

for x�−a with the boundary condition g�x=−a ,x�=0;#�
=0. Here the end of the wire has been taken to be at x=−a.

Away from the boundary x=−a and the contact point of the
tip, x=x�=0, the Green’s function can be expanded

g�xx� = 0;#� = 	
n

�nCn,−
† eznx for x 
 0, �108�

g�xx� = 0;#� = 	
Re�zn�
0

�nCn,+
† eznx for x � 0, �109�

where

��− �zn
2 − � + ı��yzn��z + Vz�z + 
�x − #��n = 0

�110�

and C are a set of vectors that are determined from boundary
conditions. The quadratic eigenvalue problem in Eq. �110�
can be reduced to a linear generalized eigenvalue problem by
defining &=z� as

z& = −
�

�
�y& −

1

�
��− � + Vz�z�z� + ı
�y − E�z�� .

�111�

The coefficient vectors C are determined numerically by
solving the boundary conditions

g�x = − a,x� = 0;#� = 0, �112�

− �z��xg�x,x� = 0;#��x=0+
− �xg�x,x� = 0;#��x=0−

� = 1 ,

�113�

g�x = 0−,x� = 0;#� = g�x = 0+,x� = 0;#� . �114�

The current I��t=V� is calculated by using the Green’s
function g�x=0,x�=0;#� in Eqs. �105� and �106�. The con-
ductance dI

dV obtained by numerical differentiation of the cur-
rent is shown in Fig. 15. In the units of the calculation, we
have taken, �=1, 
=0.5, �=0.3, T=0.01,  =0.001, and W
=5.0. The Matsubara sum in Eq. �105� was taken to be
nmax=500 corresponding to 2�nT�30. As can be seen from
panel �a� of the figure, the Majorana fermion mode at the end
of the wire �in the non-Abelian phase, i.e., VZ��
2+�2

=0.5 meV� gives rise to a peak in the conductance at zero
bias �V=0�. The zero-bias peak decreases in strength for
Zeeman much beyond the transition �VZ'0.75� meV since
the excitation gap starts to reduce in the topological phase at
large Zeeman couplings �see Eq. �54��. This weakens the
tunneling of the Majorana to the tip since the Majorana state
becomes more delocalized. Apart from the zero-bias peak,
the bulk states in the nanowire also contribute to the STM
conductance at bias voltages above the bulk energy gap. It is
important to emphasize that, unlike p-wave superconducting
nanowires, the tunneling spectrum of the present system
�Fig. 15� has no state �other than the zero-energy Majorana
state at the end� below the bulk energy gap 
. Therefore the
effective minigap at the ends is order the bulk energy gap
�
�. As the Zeeman splitting is lowered toward the critical
value VZ,c=�
2+�2=0.5 meV, the bulk energy gap closes
before reopening for VZ
�
2+�2=0.5 meV. For VZ in this
regime, the semiconductor is in a regular s-wave supercon-
ducting phase and there is no peak at zero bias. Instead there
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are two peaks which are associated with Van Hove singulari-
ties of the bulk quasiparticle spectrum. These peaks become
sharper as the Zeeman potential is gradually lowered to zero.

STM spectroscopy can be used to not only verify the ex-
istence of the zero-energy Majorana states localized around
the ends but also to study the spatial structure of the zero-
energy wave functions. Panel �b� of Fig. 15 shows the zero-
bias tunneling conductance as a function of distance a from
one end of the wire. The calculation shows that the conduc-
tance vanishes at the end of the wire �the Majorana wave
function must vanish at the end of the wire to satisfy the
physical boundary condition�. The zero-bias conductance
then rises to a peak and oscillates with an envelope that
decays away from the end of the wire. The decay length
becomes longer as the in-plane magnetic field is tuned to-
ward the critical value VZ,c=0.5 meV. No such zero-bias
conductance should be observable for VZ
VZ,c. Thus, the
STM experiment from the semiconducting nanowire pro-
vides one of the most experimentally feasible probes of Ma-
jorana fermions in condensed-matter systems.

The numerical results discussed in the previous para-
graphs, Fig. 15, can be understood analytically in the limit

that the STM tunneling strength is smaller than the thermal
broadening � �T�. In this limit the current can be approxi-
mated as

I��t� � T 	
�

	
n�0

Re�g�00;�t + ı�2n + 1��T���� ,

�115�

which can be cast into the more familiar expression for STM
current

I��t� �  	
�
� d#�A���#��tanh� �#� − �t�

2T
� , �116�

where the STM spectral function is given by A����#�
=Im�g����00;#��.24 The corresponding conductivity

G��t� =
dI��t�

d�t
=  	

�
� d#�A���#��sech2��t − #�

T
� .

�117�

From the previous section, it is clear that the topological
phase is characterized by a single Majorana state localized at
the end. This zero-energy Majorana mode is expected to lead
to a zero-bias peak in the tunneling spectrum. To see this we
consider the 4	4 Nambu Green’s function near #=0 where
it is dominated by the zero-energy pole as

g�00;#� �
��†

#
, �118�

where �T= �u↑ ,u↓ ,u↑
� ,u↓

��. The corresponding spectral func-
tion is

A��#� � u�u��
� ��#� . �119�

Using this in Eq. �117�, the contribution of the zero-energy
state to the conductance becomes

G��t� =
dI��t�

d�t
=  ̃ sech2��t

T
� , �120�

where  ̃= 	��u��2.
Therefore STM spectroscopy provides a multifacted tool

to study the properties of the topological quantum phase
transition in the wire as the magnetic field is tuned from Bx
�0 to Bx�0.5 T �which is significantly below the parallel
critical field of thin-film Nb �Ref. 77��. First the STM spectra
away from the ends provides information about the induced
superconducting gap in the wire, which diminishes as a func-
tion of applied magnetic field, goes to zero at the transition
and then increases. For magnetic fields above the critical
value, a zero-bias peak appears in the STM spectrum near
the ends of the wire. Finally, STM can also be used to probe
the spatial structure of the wave function of this Majorana
mode. Thus, the STM experiment from the semiconducting
nanowire provides one of the most experimentally feasible
probes of Majorana fermions in condensed-matter systems.

XII. SUMMARY AND CONCLUSION

Let us first recapitulate the most important results con-
tained in each section in this paper. In Secs. II and III we

(a)

FIG. 15. �Color online� �a� Conductance dI /dV as a function of
voltage �t=V. For the plot we have taken �=�2 /2m�, where m�

=0.04me for InAs, 
=0.5 meV for Nb, �=0, �=0.1 eV Å, and
T=100 mK. The different values of VZ in millielectron volt are
given in the inset. The distance of the STM tip from the end of the
nanowire has been taken as a=100 nm. The plots for VZ

�0.5 meV �corresponding to Bx�0.5 T for InAs with gInAs�35�
are in the topological phase and show a zero-bias peak while the
plots for VZ
0.5 meV do not. �b� Position dependence of the zero-
bias conductance in the topological phase. The amplitude of the
zero-bias conductance is seen to be localized near the end of the
wire and corresponds to the localized wave function of the Majo-
rana mode at the end of the wire.
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analyze in detail the Hamiltonian and the BdG equations for
a spin-orbit-coupled semiconductor in the proposed hetero-
structure geometry in the presence of a vortex. Here we pro-
vide all the mathematical details, left out in Ref. 52, which
are necessary to conclusively establish the presence of a non-
degenerate Majorana mode at the vortex core. In Sec. IV, we
use the same formalism to establish the existence of a Ma-
jorana mode localized in a “vortexlike” defect in the spin-
orbit coupling that can be artificially created in a spin-orbit-
coupled atomic system potentially realizable in an optical
lattice. Here we find that, contrary to a previous treatment of
the same problem,51 the decay length of the zero-energy Ma-
jorana mode localized in the spin-orbit vortex is inversely
proportional to the superconducting gap. Therefore, in the
limit of vanishing superconducting gap, the Majorana mode
will delocalize over the entire system. We then show in Sec.
V how the same formalism can be used to demonstrate the
existence of a Majorana fermion mode in a vortex on the
surface of a 3D topological insulator, even though in this
simpler case an exact solution of the BdG equations is al-
ready available.37

In Sec. VI, we confirm our approximate analytical calcu-
lations, which are indicative of the existence of the zero-
energy modes in the vortices in the spin-orbit-coupled semi-
conductor, by a full numerical solution of the BdG equations
setup on a sphere.58 Here we obtain the full bound-state ex-
citation spectrum for the BdG Hamiltonian relevant for a
vortex-antivortex pair placed at the poles of a sphere.58 In the
non-Abelian phase of the semiconductor film, this calcula-
tion produces a pair of lowest energy states whose energy
eigenvalues approach zero exponentially with the radius of
the sphere. This indicates the presence of one exact zero-
energy state on each vortex in the limit of infinite intervortex
separation. The numerical calculations also show that the
excitation gap above the zero-energy state, the minigap, can
be made comparable to the induced s-wave gap 
 in the
semiconductor film. This surprising result, which was ob-
tained previously for the proximity-induced superconducting
state on the surface of a TI,42 is now extended to the spin-
orbit-coupled semiconductor in this paper. The enhancement
of the minigap increases the regime of temperature in which
any non-Abelian quasiparticle is accessible in experiments
by many folds �from T� 
2

EF
to T�
�. In Sec. VII we briefly

discuss the parameter regime in which the non-Abelian to-
pological state is the ground state in the semiconductor film.
The associated topological quantum phase transition
�TQPT�, which can be accessed by varying any one of the
three parameters—Zeeman coupling �Vz�, chemical potential
���, and the proximity-induced s-wave gap �
�—is a transi-
tion at which the excitation gap vanishes at wave vector k
=0. In Sec. VIII, we analyze the interplay of the Zeeman
coupling and the proximity-induced s-wave superconductiv-
ity in the presence of spin-orbit coupling. We show that, even
though the Zeeman coupling can eliminate s-wave supercon-
ductivity in the absence of spin-orbit coupling, the latter can
give rise to a re-entrant non-Abelian superconducting state
despite the fact that �Vz�� �
�. Apart from the zero-energy
Majorana states in order parameter defects such as vortices,
the non-Abelian topological state in the semiconductor film

is also characterized by gapless Majorana modes at the
sample edges. In Sec. IX, we use the same techniques em-
ployed in the earlier sections to demonstrate the existence of
these edge modes, which turn out to be chiral Majorana
modes because of the explicit breakdown of the time-reversal
symmetry.

In Sec. X we study the proximity effects in
superconductor-semiconductor-magnetic insulator hetero-
structures starting from a microscopic tight-binding model.
The superconductor and the magnetic insulator are described
at the mean-field level. We determine the excitation spectrum
of a slab containing a semiconductor thin film sandwiched
between an s-wave superconductor and a ferromagnetic in-
sulator and identify the dependence of the induced gaps on
the parameters of the model. In particular, we study the de-
pendence of the effective Zeeman splitting and induced su-
perconducting gap on the thickness of the semiconductor
film, the applied bias potential and the strength of the cou-
pling at the interfaces.

Finally, in Sec. XI we demonstrate the existence of zero-
energy Majorana modes at the ends of a one-dimensional
version of the spin-orbit-coupled semiconductor system—a
semiconducting nanowire. It has been shown that it may be
far simpler to experimentally realize Majorana fermions in
the one-dimensional nanowire system because the Zeeman
splitting can be induced by a modest in-plane magnetic field,
obviating the need for a proximate magnetic insulator.57,73

We find that the Majorana modes at the two ends of the
nanowire can be probed by scanning tunneling microscope
experiments. We show by explicit calculations that the Ma-
jorana modes at the ends of the nanowire give rise to zero-
bias conductance peaks in the tunneling spectrum at the
ends. These peaks disappear on lowering the Zeeman cou-
pling so that the system settles into the nontopological super-
conducting state. Furthermore these zero-bias conductance
peaks are found to be the only features at bias voltages below
the induced superconducting gap in the nanowire. We believe
that the observation of this zero-bias tunneling peak in the
semiconductor nanowire is the simplest experiment proposed
so far to unambiguously detect a Majorana fermion state in a
condensed-matter system.

We note here that the Majorana fermions, being non-
Abelian particles belonging to the �SU2�2 conformal field
theory �i.e., the so-called “Ising anyon” universality class�,
cannot directly be used for universal fault-tolerant topologi-
cal quantum computation �TQC�.4 They can serve as topo-
logically protected quantum memory or can be used in quan-
tum computation along with supplementary unprotected
quantum gates requiring only small amounts of error
corrections.78 Since the topological protection for the semi-
conductor heterostructures in our work is very robust, with
the energy gap providing the protection being on the order of
the superconducting gap �1–10 K� itself, our proposed sys-
tem could serve as an excellent quantum memory in TQC
applications. In a recent development, Bonderson et al.79

have shown that certain dynamic-topology-changing opera-
tions, which are feasible in our proposed semiconductor het-
erostructures, dubbed Ising sandwich heterostructures in Ref.
79, could allow fully fault-tolerant TQC to be carried out
using our proposed systems. Thus, in addition to the funda-
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mental significance of the possible non-Abelian quantum or-
der and the existence of topological Majorana excitations,
these semiconductor-superconductor structures may have fu-
ture application as the basic components of a topological
quantum computer.

Our proposed non-Abelian system is possibly one of the
simplest to study experimentally since it involves neither
special materials nor exceptional purity nor the application
of a high magnetic field. It is encouraging to note that
proximity-induced s-wave superconductivity has already
been realized in a host InAs semiconductor film,80,81 which
additionally has a sizable spin-orbit coupling. Experimen-
tally, the only new effect that must be introduced to the sys-
tem is a strong enough Zeeman splitting of the spins. We
argue how this can be achieved also via the proximity effect
due to a nearby magnetic insulator. It is important to empha-
size that when the spin-orbit coupling is of the Rashba type,
we require a Zeeman splitting which is perpendicular to the
plane of the film. This is because a Zeeman splitting parallel
to the film does not produce a gap in the one-electron band
structure.52,53 Inducing a perpendicular splitting by applying
a strong perpendicular magnetic field is not convenient be-
cause the magnetic field will give rise to unwanted order
parameter defects such as vortices. It is for this reason that
we propose to induce the Zeeman splitting by the exchange
proximity effect of an adjacent magnetic insulator �we ignore
the small coupling of the spins in the semiconductor with the
actual magnetic field of the magnetic insulator�. More re-
cently, it has been shown that, when the spin-orbit coupling
also has a component which is of the Dresselhaus type, the
appropriate Zeeman splitting can also be induced by apply-
ing an in-plane magnetic field.56 Note that an in-plane mag-
netic field does not produce unwanted vortex excitations.
The one-dimensional version of our system—a semiconduct-
ing nanowire—is also a non-Abelian system in the presence
of proximity-induced s-wave superconductivity and a Zee-
man coupling. It is quite exciting that the superconducting
proximity effect on an InAs nanowire has already been real-

ized in experiments.82,83 In this case, the Zeeman coupling
can be more easily introduced by applying an external mag-
netic field parallel to the length of the wire because such a
field does produce a gap in the one-electron band structure
without producing unwanted excitations in the adjacent su-
perconductor. This obviates the need for a nearby magnetic
insulator.57 In the topological superconducting state of the
nanowire �i.e., the Zeeman coupling is above a critical
value�, there are zero-energy Majorana states localized
around the two ends. Such zero-energy states can be revealed
by zero-bias conductance peaks in STM tunneling experi-
ments at the ends of the wire. All other contributions to the
conductance occur at energies higher than the bulk gap 
.
There will be no such zero-bias peak when the wire is in the
topologically trivial s-wave superconducting state �i.e., the
Zeeman coupling is below the critical value�. Such an STM
experiment from the semiconducting nanowire will serve as
an unambiguous probe for the condensed-matter manifesta-
tion of a Majorana fermion mode.
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APPENDIX: POWER SERIES FOR THE RASHBA
MODEL AT r�R

Even though we found an analytic solution for the null
vectors of the matrix for 
�r�=0 in the region r
R, we
could not find such a solution for 
�r�=
�0 for r�R. In a
previous section we claimed without explicit proof that the
solution to this equation can be written in terms of a power-
series expansion for ��1 /r�. Since we are interested in the
solution at large R we expect a power series in 1 /R to con-
verge. To generate the equation for the power series for � it is
convenient to shift to a basis where the 1 /r=0 part of the
matrix is diagonal,

���− �r
2 −

1

4r2 + 2z�r − z2� + Vz − � �
 + ���r +
1

2r
− z�

�
 − ���r −
1

2r
− z� ��− �r

2 +
3

4r2 + 2z�r − z2� − Vz − �� = A + B , �A1�

where

A = �− �z2 + Vz − � �
 − z�

�
 + z� − �z2 − Vz − �
� , �A2�

B = ��− �r
2 −

1

4r2 + 2z�r� + ı��y�r + ��x/2r −
�

2r2�z.

�A3�

If S is the matrix of eigenvectors of A then A=SDS−1, where
D is a diagonal matrix such that D22=0 and D11=Trace�A�
=�. Thus the relevant system of differential equations
becomes
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SDS−1 + ��− �r
2 +

1

4r2 −
1

2r2�z + 2z�r� + ı��y�r + ��x/2r

−
1

2r2�z���↑�1/r�
�↓�1/r�

� = 0, �A4�

��↑,1�1/r�
�↓,1�1/r�

� = S−1��↑�1/r�
�↓�1/r�

� , �A5�


�� 0

0 0
� + ��− �r

2 +
1

4r2 −
1

2r2S−1�zS + 2z�r�
+ �S−1�ı�y�S�r +

�

2r
S−1�xS���↑,1�1/r�

�↓,1�1/r�
� = 0,

�A6�

where in the above we note that it is sufficient to provide a
series expansion for �1�1 /r� since S is independent of r. The
matrix S may be written explicitly as

S = ��b2 − c2 + b �b2 − c2 − b

− c c
� , �A7�

where a=�z2−�, b=Vz, and c= �
−�z.
It is easy to see that our equation is satisfied to order 1 /r2

by the choice

��↑,1�1/r�
�↓,1�1/r�

� = ��
�b2 − c2 − b

c�
�1/r�

1
� . �A8�

The upper and lower components of the above solutions are
different orders in 1 /r. Therefore we redefine our spinor as

��↑,2�1/r�
�↓,2�1/r�

� = �1 0

0
1

r
���↑,1�1/r�

�↓,1�1/r�
� , �A9�

the above solution at lowest order motivates us to modify our
ansatz so that the upper and lower component are of the
same order in 1 /r as below

M��↑,2�1/r�
�↓,2�1/r�

� = 0, �A10�

where the matrix differential operator M is given by

M = �1 0

0
1

r
�
�� 0

0 0
� + ��− �r

2 +
1

4r2 −
1

2r2S−1�zS + 2z�r�
+ �S−1�ı�y�S�r +

�

2r
S−1�xS��1 0

0 r
� . �A11�

The terms in the matrix part of the above equation can be
separated into two categories. Those that preserve the order
of a term 1 /rn and those that increase the order of a term to
1 /rn+1. The terms that preserve the order are contained
within the matrix below

�1 0

0
1

r
�
�� 0

0 0
� + ��2z�r� + �S−1�ı�y�S�r +

�

2r
S−1�xS�

	�1 0

0 r
� + higher order �A12�

=�� 0

0 0
� + �2�z + �S−1�ı�y�S��0 0

0 1
�

+ �
�b2 − c2 − b

c �0
1

2
+

br
�b2 − c2

�r

0 0
� + higher order.

�A13�

The matrix written explicitly here preserves the order of 1 /rn

while the rest of the terms generate terms of order 1 /rn+1 or
higher. We can check this by applying the above matrix to a
spinor proportional to 1 /rn. The resulting spinor is

��� 0

0 0
� + �2�z + �S−1�ı�y�S��0 0

0 1
�

+ �
�b2 − c2 − b

c �0
1

2
+

br
�b2 − c2

�r

0 0
�� 1

rn��↑

�↓
�

�A14�

=
Qn

rn ��↑

�↓
� , �A15�

where

Qn = ��� 0

0 0
� + �2�z + �S−1�ı�y�S��0 0

0 1
�

+ �
�b2 − c2 − b

c �0
1

2
−

b�n + 1�
�b2 − c2

0 0
�� . �A16�

From this it is clear that the action of the matrix differential
operator M on the spinor ��↑ ,�↓�r−n is the nonsingular matrix
that acts on the spinor ��↑ ,�↓� in the above equation.

This fact can be used to create a procedure for generating
the power series for �2�1 /r� iteratively. To see how this is the
case consider the stage after the �n−1�th iteration, where the
power series has been approximated to

�2
�n−1��1/r� = 	

j=0

n−1
�2

�j�

rj . �A17�

To calculate �2
�n�, we note that
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0 = M�2
�n��1/r�

= M
�2

�n�

rn + M�2
�n−1��1/r�

=
Qn�2

�n�

rn + M�2
�n−1��1/r� + o�r−�n+1�� . �A18�

Solving the equation to o�r−n� yields the iterative relation

�2
�n� = − Qn

−1 lim
r→�

rnM�2
�n−1��1/r� . �A19�

As discussed previously, we already have a starting guess for
the solution for n=1 so that the residue is of order 1 /r2.
Using the nonsingular matrix Qn we can continue to solve
the for the higher-order coefficient by inverting the matrix
over the residue. The above argument provides a procedure
for how to construct the power series for ��1 /r� referred to in
Eq. �22� of the main body of the text.
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