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Sufficiently thin films of type-I superconductor in a perpendicular magnetic field exhibit a triangular vortex
lattice while thick films develop an intermediate state. To elucidate what happens between these two regimes,
precise numerical calculations have been made within Ginzburg-Landau theory at �=0.5 and 0.25 for a variety
of vortex lattice structures with one flux quantum per unit cell. The phase diagram in the space of mean
induction and film thickness includes a narrow wedge in which a square lattice is stable, surrounded by the
domain of stability of the triangular lattice at thinner films/lower fields and, on the other side, rectangular
lattices with continuously varying aspect ratio. The vortex lattice has an anomalously small shear modulus
within and close to the square lattice phase. Solutions of the Ginzburg-Landau equations have been obtained by
similar calculations for bulk systems and thin films with one vortex but two flux quanta per square or triangular
unit cell. Primitive lattices of double-fluxoid vortices are thermodynamically unstable in bulk in both type-I
and type-II superconductors, as expected. In type-I films these double-fluxoid lattices do not pre-empt the
single-fluxoid lattice structures.
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I. INTRODUCTION

Thin films of a bulk type-I superconductor subject to a
perpendicular magnetic field can behave like bulk type-II
superconductors, in that they develop a vortex lattice in
which each vortex carries a single-flux quantum. Pioneering
theoretical treatments by Tinkham1 and Maki2 applied
Ginzburg-Landau �GL� theory in the vicinity of the critical
field where the order parameter vanishes and showed that the
transition between normal state and superconducting state is
continuous, just as in bulk type-II materials. Lasher3 estab-
lished that a triangular vortex lattice is favored near the up-
per critical field for sufficiently thin films and found that a
sequence of vortex structures, starting with a square lattice
and continuing to more complicated structures, develops
with increasing thickness en route to the intermediate state.
Some years later Callaway4 pointed out that Lasher had not
considered the most general Abrikosov-type solutions to the
linearized GL equations, and he carried out a comprehensive
analysis of the phase diagram for periodic vortex arrays close
to the upper critical field. In the low-field limit, Pearl’s5,6

treatment of isolated vortices within London theory shows
that vortices in a sufficiently thin film have a long-range
repulsion; this repulsion should lead to the development of a
triangular vortex lattice. Remarkably, the structure of the
vortex phase diagram at intermediate magnetic field
strengths, where solution of the full GL equations is required,
has remained an open theoretical problem. That problem is
partially solved in the present work.

On the experimental side, magnetic decoration experi-
ments on type-I films of Pb, Sn, and In by Dolan and
Silcox7–9 in the mid-1970s could distinguish between lattices
of single-fluxoid vortices �which appear to be disordered due
to pinning�, intermediate state flux structures, and what they
referred to as “transitional” or “multifluxoid” structures.
Within linearized GL theory one can construct a flux struc-
ture phase diagram with the GL parameter � on one axis and
the product of film thickness and the square root of the mag-

netic field on the other;3 Dolan and Silcox’s results were
reasonably consistent with this phase diagram. However,
there have been no experimental observations of the distinct
single-fluxoid vortex lattice structures predicted by linear-
ized GL theory. In fact it is not obvious whether the vortex
structures found by Lasher and Callaway at intermediate
thicknesses survive on reducing the magnetic field. The cal-
culations within the full GL theory presented in this work
offer detailed guidance for experimental studies of such
structures in type-I films.

Interesting experimental results have also appeared at
very low fields. Hasegawa et al.10 applied electron hologra-
phy to examine the magnetic field in the space above flux
structures in Pb films. They found evidence for vortices with
more than one flux quantum �which they denoted multiply
quantized fluxes �MQF�-A� as well as flux structures that
seemed more likely to be associated with normal regions of
finite cross section �which they denoted MQF-B�. “Multiply
quantized” �also known as “giant”� vortices are known to
arise in various circumstances. Holes in a superconductor
parallel to the field trap vortices with greater fluxoid number
as their radii increase.11 Arrays of holes �antidots� can trap
multiple flux quanta per hole under appropriate conditions.12

The repulsion of vortices from a film edge can lead to the
formation of an equilibrium giant vortex in the center of
a small, thin disk13 and in other laterally confined
geometries.14 Metastable giant vortices develop in field cool-
ing of small cylinders.15 None of these seem relevant to the
experiment of Hasegawa et al., and the search for stable
lattices of multiply quantized vortices in the phase diagram
for type-I films without lateral confinement or defects was
another motivation for the present work.

It is noteworthy that a bulk GL superconductor with �
=1 /�2 and at the critical field exhibits massive �in fact com-
plete� degeneracy with respect to vortex configurations.16

Luk’yanchuk17 has carried out a thorough analysis of correc-
tions to the GL functional, together with deviations of � and
the magnetic field from their critical values, in breaking the
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degeneracy. He noted that demagnetization effects also break
the degeneracy but did no calculations along those lines. A
film geometry corresponds to maximum demagnetization, so
it may be interesting to compare the vortex phase diagram
for films with ��1 /�2 with the phase diagrams that follow
from the analysis by Luk’yanchuk.

In this paper we take some initial steps toward filling out
the magnetic flux structure phase diagram for the minimal
model, isotropic Ginzburg-Landau theory, of thin film type-I
superconductors. The competition between various phases is
delicate, so precise and accurate free-energy calculations for
different flux structures are necessary. Consequently, we
have followed the approach pioneered by Brandt for vortex
lattices in bulk18 and, more recently, thin film19 GL super-
conductors. The squared magnitude of the order parameter,
the supervelocity, and the magnetic field are represented as
linear combinations of appropriate basis functions. The GL
equations then become a set of nonlinear equations which are
solved by iteration.

The main text focuses on physics results from the calcu-
lations while the technical details are described in a series of
Appendices A through D. Section II presents the nomencla-
ture that will be used in connection with GL theory. Details
of the method of minimizing the GL free energy for mag-
netic flux structures in films consisting of single-fluxoid vor-
tices in lattices with one vortex per primitive cell are offered
in Appendix A. We found that the functional form chosen for
the magnetic field in Ref. 19 limits the accuracy of the cal-
culated magnetic field and consequently the free energy, and
we give a correct and computationally convenient alternative
together with the necessary modifications to the algorithm
for solving the associated nonlinear equations.

Section III presents the principal results of the calcula-
tions, which are based on evaluating the free energy for a
large number of points in the space of vortex lattices struc-
tures, film thicknesses, and mean magnetic inductions. Phase
diagrams, free energy densities, and vortex lattice shear
moduli are given for �=0.5 and 0.25. Other values of the GL
parameter could have been considered but the calculations
become significantly more challenging at smaller values of
�; and with results for just two values, some trends with
variation in � may be deduced. Section IV offers various
decompositions of the free energy density to facilitate the
physical interpretation of the flux structure phase diagram.

We have also extended Brandt’s method to construct so-
lutions of the GL equations for lattices of vortices which
carry two flux quanta per vortex and one vortex per primitive
cell. The formal developments for bulk superconductors, as
well as some subtle but crucial implementation details, are
presented in Appendices B and C, and the further develop-
ments for film geometry are briefly laid out in Appendix D.

It is well known that in bulk type-II superconductors
double-fluxoid vortex lattices are thermodynamically un-
stable with respect to single-fluxoid vortex lattices—at least
at low induction, thanks to the Matricon’s20 calculations for
isolated vortices, and close to the upper critical field, as
pointed out by Abrikosov.21 In Sec. V we verify that it is true
at arbitrary induction for �=1, and present other results of
calculations for lattices of double-fluxoid vortices in bulk
type-II and type-I superconductors.

Section VI presents results for type-I films with double-
fluxoid vortices. Those calculations cannot be converged
over as broad a parameter range as those for either bulk
geometries or for single-fluxoid vortex lattices and their
physical implications are limited. Our main result is that the
phase diagrams presented in Sec. III for single-fluxoid vortex
lattices remain valid, in that the double-fluxoid lattices al-
ways have higher free energy in the range of parameters
where we claimed that triangular, square, and rectangular
lattices of single-fluxoid vortices were the equilibrium flux
structures. In Sec. VII we summarize the results of our cal-
culations and note their limitations, indicate some directions
for future theoretical work, and offer suggestions for experi-
ments.

A few remarks about alternative theoretical approaches to
constructing magnetic flux structures for GL superconductors
are in order before we proceed. Perhaps the most direct
method is to start with the usual, nongauge-invariant form of
the GL equations and construct a finite-difference approxi-
mation on a three-dimensional grid �except in cases where
the system is translationally invariant along the direction of
the magnetic field, for which a two-dimensional grid suf-
fices�. Because the equations are nonlinear an iterative solu-
tion is always required and the end result will depend on the
initial values; a comparison of free energies can be carried
out to determine the thermodynamically stable state. This
approach has been applied to a variety of different
problems.12,14,22,23 An important aspect of this method is its
generality: there are no symmetry constraints on either the
physical system or the solutions of the equations. By impos-
ing appropriate periodic boundary conditions it would be
possible to construct periodic vortex lattice solutions that
solve the problems treated in this paper. There are two sig-
nificant advantages to the computational approach that we
employ. First, the finite-difference approximation requires a
grid that extends outside of the film for the vector potential,
and so the number of variables would be significantly higher
than for our method. Second, our method has an internal
precision check, namely, inspection of the expansion coeffi-
cients corresponding to high wave numbers. For the finite-
difference method it would be necessary to perform calcula-
tions at different grid spacing and extrapolate to zero grid
spacing. The disadvantage of our method in comparison to
finite-difference calculations is that we are limited to one
vortex per primitive cell. It is conceivable that more compli-
cated flux structures have lower free energy than the single-
fluxoid triangular, square, and rectangular lattices where
shown on the phase diagrams in Sec. III. We are confident
that such is not the case, particularly at large mean induc-
tions where our results are consistent with linearized GL
theory; however, finite-difference calculations would be in-
valuable in establishing the large-thickness boundary of the
rectangular phase and in determining what thermodynami-
cally stable vortex lattices exist beyond it.

There are situations in which neither our method, nor
finite-difference calculations, nor any other numerical ap-
proach to solving the full GL equations are appropriate. The
flux structures experimentally observed in the intermediate
state can be extremely complicated: see the recent work of
Prozorov et al.24,25 for some examples. In the theoretical
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analysis of the intermediate state, physically approximate
treatments of the GL equations such as the “current-loop”
model26 can be highly informative. However, in the regime
of interest in the present work approximations of that sort are
not necessary, and they would affect the calculations of
phase diagrams and elastic moduli in an uncontrolled fash-
ion.

II. GINZBURG-LANDAU THEORY

In this paper standard reduced units are employed in
which lengths are multiples of the penetration depth �, en-
ergy densities are multiples of �0Hc

2 �with Hc the thermody-
namic critical field�, and magnetic inductions are multiples
of �2�0Hc. Note that in these units the upper critical mean
induction is �. We consider infinite films with −d /2�z
�d /2. The GL free energy can be expressed in gauge-
invariant form �rather than in terms of the GL order param-
eter �= fei� and vector potential A� by writing it in terms of
the square of the order parameter, �= f2, the supervelocity,

Q = A − �−1 � � �1�

and the deviation from mean induction,

b = B − ẑB̄ . �2�

We let S denote both the unit-cell area and the unit cell itself,

depending on context; for the former, S=	0 / B̄ with 	0
=2
 /�. The unit cell has primitive lattice vectors R10=x1x̂,
R01=x2x̂+y2ŷ and in those terms its area is S= �R10
�R01� · ẑ=x1y2. The general reciprocal lattice vector is given
by Kmn=2
�my2x̂+ �mx2+nx1�ŷ� /S. Note that the mean in-

duction can be expressed as B̄= 1
S�SdxdyB�x ,y ,z� · ẑ for any

value of z.
The free energy per unit volume of superconductor refer-

enced to the normal state is

F =
1

Sd
�

S

dxdy�
−d/2

d/2

dz	− � +
1

2
�2 +


��
2

4�2�
+ �Q2 + b2�

+
2

Sd
�

S

dxdy�
d/2

�

dz�B2 − B̄2� , �3�

where the contribution of the first two terms in the first inte-
gral is the condensation free energy Fcond, that of the next
two terms is the kinetic energy of the supercurrent Fkin, that
of the last term is the internal field energy Fmag, and that of
the second integral is the stray field energy Fstray.

In order to determine the phase diagram we will compare
the minimum F for different vortex lattice structures with the

same value of B̄ �and hence S�. For a particular vortex lattice
structure, minimizing the GL free energy with respect to
variations in the order parameter yields the first GL equation

1

2�2��2� −

��
2

2�
 = − � + �2 + �Q2. �4�

The second GL equation is

� � B = − �Q , �5�

which is identical to Ampère’s law in reduced units because
the supercurrent j is

j = − �Q . �6�

III. PHASE DIAGRAMS AND ELASTIC MODULI

We have carried out a series of calculations at various

values of B̄ and d, and for several kinds of vortex lattices
including triangular, square, rectangular �at various aspect
ratios� and two classes of oblique lattices which we will refer
to as rhombohedral �which interpolate between triangular
and square at fixed unit cell area, maintaining equality of the
primitive vector lengths� and sheared triangular �which inter-
polate between triangular and rectangular at fixed unit cell
area, keeping one primitive vector fixed�. The vortex struc-
ture with lowest free energy turns out to be either triangular,
square, or rectangular.

All of the results presented in this section are for �=0.5
and 0.25; even with just those two values for the GL param-
eter some trends with decreasing � are evident. Calculations
at small � are considerably more challenging: we have not
yet been able to obtained converged solutions at �=0.1.

Figures 1 and 2 show the resulting phase diagrams. The
phases found at the critical field extend to lower fields but

with the phase boundaries shifting to larger thicknesses as B̄

is reduced. At sufficiently low B̄ the interval of thickness
where the square lattice is stable is seen to vanish on the �
=0.25 phase diagram; and the same almost certainly holds

for �=0.5 but at a lower value of B̄ than we have considered.
Contours of constant aspect ratio within the rectangular

2 3 4 5

0.4

0.6

0.8

1

d

B̄
/
κ

κ = 0.5

0.6
0.4

FIG. 1. Vortex lattice phase diagram for �=0.5. The triangular-
square transition is discontinuous while the square-rectangular tran-
sition is continuous. Inside the rectangular phase, the dotted lines
labeled 0.6 and 0.4 are contours of constant aspect ratio. The dashed
line corresponds to the aspect ratio of 0.38, which is the smallest
aspect ratio for which a rectangular lattice is stable at the upper

critical field �B̄ /�=1�, following Callaway �Ref. 4�.
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phase are shown as dotted lines. On the �=0.5 phase dia-
gram we have included a dashed line where we speculate that
the rectangular phase ends and more complicated structures
with more than one flux quantum per unit cell begin. At the
critical field the location of that last phase boundary comes
from the linearized GL analysis of Callaway;4 and in draw-
ing that line at lower fields we assume that the aspect ratio
for the rectangular structure is constant along the boundary
with the adjacent phase.

When the phase diagram from linearized GL theory is
applied to interpret experiments �see, for example, Refs. 7–9�
the phase boundaries at the critical field are extrapolated to

lower field by assuming that dB̄1/2 is constant along the
phase boundaries, as suggested by Lasher.3 That is not a
terrible approximation, but the numerical results are notice-
ably different, with the domain of stability of the triangular
phase reduced compared to the linearized GL theory. The
critical endpoint for the square to rectangular transition is a
qualitative feature that only emerges from the full GL treat-
ment.

It is interesting to look at the free energies that underlie
the phase diagrams to see the scale of the free energy differ-
ences. In the lower panel of Fig. 3, F is presented as a func-
tion of mean induction for �=0.5 and d=2.4 while Fig. 4
does the same for �=0.25 and d=0.94 �the latter thickness is
chosen so that the phase transitions in the two figures are at

roughly the same values of B̄ /��. The rhombohedral lattice
free energies, not shown in those figures, are nearly degen-
erate with the free energies of square and triangular lattices
at phase transition between them, and close to the transition
their free energies almost linearly interpolate between square
and triangular lattice free energies.

Shear moduli have been evaluated for the three lattice
structures which appear on the phase diagram: see the upper
panels of Figs. 3 and 4. For triangular lattices the only shear
modulus is c66= 1

2 �c11−c12�. For square lattices there are two
distinct types of shear, with moduli c66 and 1

2 �c11−c12�: the
former preserves equality of primitive lattice vector length

while the latter preserves orthogonality of primitive lattice
vectors. We present both on the figures because the latter
vanishes at the continuous square-rectangular transition and
the former is anomalously small at the discontinuous
triangular-square transition. For the rectangular lattices we
considered only the shear mode which preserves orthogonal-
ity of primitive lattice vectors; the corresponding modulus is
1
2 ��c11+c22� /2−c12�. In every case the shear modulus is cal-
culated by evaluating the energy difference between the ref-
erence lattice structure and a slightly sheared lattice. One can

1 1.5 2 2.5

0.4

0.6

0.8

1

d

B̄
/
κ

κ = 0.25

0.6

0.4

FIG. 2. Same as Fig. 1 but for �=0.25. Note the critical
endpoint for the square-rectangular transition at d�2.1.
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FIG. 3. Shear moduli and free energies per unit volume for
triangular, square, and rectangular lattices, at �=0.5 and d=2.4, for
mean inductions around the domain of stability of the square lattice.
Free energies are referenced to value for the square lattice; on that
graph the triangular lattice values are the triangles and the
minimum-F rectangular lattice values are the circles. The vertical
dashed segments in both plots indicate the transition between trian-
gular and square lattices, to make clear the discontinuity in shear
modulus. On the shear modulus plot, triangles are c66 for the trian-
gular lattice, diamonds are c66 for the square lattice, squares are
1
2 �c11−c12� for the square lattice, and circles are 1

2 ��c11+c22� /2
−c12� for the minimum-F rectangular lattice. Both free energy den-
sities and shear moduli are in units of �0Hc

2.
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FIG. 4. Same as Fig. 3 but for �=0.25 and d=0.94.
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see in the figures the small domains of metastability for the
triangular and square lattice phases. It is also apparent that
the vortex lattices at these values of � and d are anomalously
soft for a wide range of mean inductions.

IV. FREE ENERGY DECOMPOSITIONS

The preceding section presented the main physical results
of the calculations but further insight might be gained by
comparing not just the free energy density for different lat-
tice structures but also examining various parts of the free
energy density. One decomposition is into the condensation,
kinetic, and magnetic terms described following Eq. �3�. Let

us first consider �=0.5, B̄ /�=0.825, and d=2.0, which is in
the triangular phase but not far from the square phase. For a
bulk system at the same GL parameter and mean induction,
the square lattice has lower free energy density than the tri-
angular lattice. Why is the relative stability reversed in the
film? In Table I we present the differences in free energy
density components between the film and the bulk system for
both triangular and square vortex lattices. The signs of all
those differences may be understood as a consequence of
suppression of the order parameter in the film compared to
the bulk, and particularly a widening of the vortex cores
associated with the spreading of the field lines near the film
surfaces. However, the exchange of stability is a more subtle
matter since that depends on the difference �triangular minus
square lattice values� of those free energy density differ-
ences. Alternatively, we can compare the triangular and
square lattice free energy density components for films of
different thickness, as presented in Table II. It is then evident
that with increasing thickness, the transition to the square
vortex lattice is favored only by the condensation term.

We can also examine the z dependence of the free energy
density, integrating in Eq. �3� only over x and y and dividing
only by S to define F�z�. �Fstray is taken as a z-independent
contribution to F�z�.� Figure 5 compares square and triangu-

lar vortex lattices for �=0.5 just below the upper critical
field for d=1.5, 2.0, and 2.5. The triangular lattice has lower
total free energy only for d=1.5. However, in every case F�z�
is lower for the triangular lattice when z�d /2 and, with
decreasing z, F�z� decreases more rapidly for the square lat-
tice than for the triangular lattice. Figure 5 is thus consistent
with the interior of the film being more bulklike than the
surface; and in fact F�0� approaches F for a bulk system as d
increases. The difference between F�d /2� for triangular and
square vortex lattices varies comparatively weakly with d.
These features of F�z� suggest a qualitative picture of the
triangular-square lattice transition based on a competition be-
tween an interior region like that in bulk and a surface layer
like that in an ultrathin �d�� film.

However, this picture is misses some important physics,
which is revealed when F�z� is decomposed along the lines
of the condensation, magnetic, and kinetic terms. If the sur-
face layers were ultrathin-film-like one would expect
Fcond�0� to be significantly different from Fcond�d /2� since,
as noted above, it is only the condensation term which favors
the square lattice as the thickness is increased. Instead, we
find that the condensation term is nearly independent of z,
as is � �as pointed out by Brandt for films of type-II
superconductors19�. Fmag is smaller at the surface, where the
field lines spread out, than in the center of the film, which is
contrary to the behavior of F�z� as a whole, and therefore
Fkin is mainly responsible for the z dependence seen in Fig.
5. In the regime explored in this paper, with the film thick-
ness no more than a few multiples of either the penetration
depth or the coherence length, it seems that no simple picture
is adequate.

V. LATTICES OF DOUBLE-FLUXOID VORTICES
IN BULK SUPERCONDUCTORS

We now turn to calculations for vortex lattices in which
the vortices carry two flux quanta per unit cell. As noted in
Sec. I, calculations for vortex lattice in bulk are a prerequi-
site for the corresponding calculations in film geometry. In
this section we describe the bulk calculations. We are not

TABLE I. Film minus bulk free energy density terms for �

=0.5, B̄ /�=0.825, and d=2.0.

Triangular Square

104�Fcond 161.0 180.0

104�Fkin −116.0 −129.0

104��Fmag+�Fstray� −25.5 −29.0

TABLE II. Differences in free energy density terms �triangular

lattice minus square lattice� at �=0.5 and B̄ /�=0.825 for several
values of d. Note that �F�0 for d=2.0 but is positive at the other
thicknesses.

d 2.0 2.33 2.6

104�Fcond −4.44 −2.64 −1.37

104�Fkin 6.55 5.29 4.42

104��Fmag+�Fstray� −2.31 −2.60 −2.81
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d = 2.0

d = 2.5

FIG. 5. Free energy density dependence on z for films of various

thickness with �=0.5 and B̄=0.99 /�, for square and triangular vor-
tex lattices �indicated by the symbols�.
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aware of previous calculations within nonlinear GL theory
for lattices of multiple fluxoid vortices in bulk superconduct-
ors but since such flux structures were universally expected
to be unstable with respect to the Meissner state or single-
fluxoid vortex lattices there would have been little motiva-
tion to carry them out for their own sake.

The numerous technical developments required for these
calculations are described in Appendices B and C. To illus-
trate the effectiveness of the calculational scheme described
therein, we present results for �=1 and �=1 /2 of triangular
arrays of both double and single-fluxoid vortices.

For �=1, Fig. 6 shows the order parameter and induction

along a line connecting two adjacent vortices at B̄
=�0Hc2 /2 for both double and single-fluxoid vortices. As
one would expect, the cores of double-fluxoid vortices are
wider than those of single-fluxoid vortices. Figure 7 presents

the magnetic Gibbs free energy density G=F−Ha ·B in the
full range of applied fields Hc1�Ha�Hc2 for triangular lat-
tices of single and double-fluxoid vortices. The applied field
Ha is calculated in the same manner as in Refs. 27 and 28,
based on the virial theorem of Doria et al.29 These calcula-
tions confirm the universal expectation that double-fluxoid
vortex lattices are thermodynamically unstable in bulk
type-II superconductors at arbitrary applied field.

For �=1 /2 the corresponding results are shown in Figs. 8
and 9. Neither of the vortex lattices are thermodynamically
stable at any applied field, as expected for a bulk type-I
superconductor; below the thermodynamic critical field the
Meissner state is stable. What might not have been expected
is that the vortex lattices have a higher Gibbs free energy
than the normal state. In addition, �2G /�Ha

2�0, which is
inconsistent with a thermodynamically stable homogeneous
state, but not a surprise since the mixed state is inhomoge-
neous. Nonetheless, the magnetic induction and order param-
eter profiles associated with these vortex lattices are entirely
unremarkable, and serve well as initial values for calcula-
tions in film geometry.

VI. LATTICES OF DOUBLE-FLUXOID VORTICES
IN FILMS

Solutions of the GL equations in film geometry with lat-
tices of double-fluxoid vortices may be obtained by combin-
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FIG. 7. Gibbs free energy densities, referenced from the normal
state, as a function of applied field at GL parameter �=1 for bulk
superconductor.
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decreasing from x=0� and squared order parameter �curves increas-
ing from x=0� for double-fluxoid �dashed� and single-fluxoid
�solid� triangular vortex lattices at the same parameters �=1 and

B̄=�0Hc2 /2. The horizontal axis label is written as as x /�, even
though ��1 in the units used throughout this work, to emphasize
that the same length scale is being used for both vortex lattices. The
intervortex spacing for single-fluxoid vortices is 3.81� and is
greater by a factor of �2 for double-fluxoid vortices.
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ing the developments of Appendices A and B. The relevant
formulas are presented in Appendix D.

Our results in film geometry for double-fluxoid vortex
lattices are very limited compared to those for single-fluxoid
vortices for several reasons. The calculations for double-
fluxoid vortex lattices converge more slowly, by roughly a
factor of 5, than for single-fluxoid vortices. �That is not un-
expected, given that the same holds for the bulk calcula-
tions.� Furthermore, there is a narrower range of parameters
in which we have been able to obtained converged results at
all. Surprisingly, we have encountered difficulties with mean
inductions too close to the upper critical value, for which the
single-fluxoid vortex lattice calculations readily converge.
But the main issue is that these calculations have much less
physical significance than their single-fluxoid analogs. In the
portion of parameter space where states of one flux quantum
per primitive cell are not the equilibrium flux configuration,
there are many competing states, and those with one double-
fluxoid vortex per primitive cell form a small subset. In fact,
Callaway’s results4 suggest that such states are never the
global free energy minima close to the upper critical field.
Consequently there is no reason to carry out extensive cal-
culations to arrive at a phase diagram for double-fluxoid vor-
tex lattices analogous to Fig. 1. What we can do, instead, is
offer some further support for the phase diagram of Fig. 1 by
showing that double-fluxoid vortex lattices have greater free
energy than single-fluxoid vortex lattices in the region of
parameter space we claim that the latter are stable.

Figures 10 and 11 present free energy densities referenced
to the normal state as a function of film thickness for a �
=1 /2 superconductor at mean inductions which are 90% and
70%, respectively, of the critical value. Triangular and square
lattices of single and double-fluxoid vortices are compared.
�The minimum free energy rectangular lattices of single-
fluxoid vortices lie close enough to the square lattices for this

purpose.� At 90% of the critical B̄, the speculated boundary
between rectangular vortex lattice and more complicated
structures is at d�3.2 while a double-fluxoid structure does

not yield a lower free energy than the single-fluxoid square

lattice until d�4.5. At 70% of the critical B̄, the correspond-
ing values are d�4.0 and d�4.5. If that trend continues, it

is possible that at sufficiently small B̄ and large d the phase
diagram, Fig. 1, will require revision; however we have not
been able to obtain converged double-fluxoid vortex lattice
solutions at low enough mean induction to make a definite
claim.

VII. CONCLUSIONS

We have improved and extended Brandt’s method19 for
solving the GL equations for thin-film superconductors in
perpendicular magnetic fields, and applied it to a series of
calculations for various flux structures with one single-
fluxoid vortex per primitive cell in type-I superconductor
films of intermediate �several times the penetration depth�
thickness. The phase diagrams presented in Sec. III are a
significant step beyond the linearized theory toward the de-
velopment of an accurate equilibrium flux structure phase
diagram for films of type-I GL superconductors. The results
suggest that nontriangular �square and rectangular� single-
fluxoid vortex lattice structures can be thermodynamically
stable at mean inductions well below the upper critical value.

The anomalous softness of the vortex lattice in and near
the domain of stability for the square vortex lattice offers
hope that some features of the theoretical phase diagram
might be observed in critical current measurements, in the
form of “peak effects”30 well below the upper critical field.
Such measurements are much simpler to carry out than any
vortex imaging experiment. However, quantitative compari-
son between the theoretical phase diagrams and experimental
results may be complicated by thermal fluctuations31 and
other effects which are unaccounted for in the minimal GL
free energy.

More fully developed phase diagrams would require simi-
lar calculations for structures with more that one flux quan-
tum per primitive cell. We have made progress in that direc-
tion with our results for primitive lattices of double-fluxoid
vortices, which are degenerate cases of two flux quanta per
primitive cell. The complexity of the solution for even these
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FIG. 10. Free energy densities of several vortex lattice structures

as a function of film thickness at mean induction B̄=0.9�0Hc2 for
�=1 /2. Triangle symbols are for triangular lattices and square sym-
bols are for square lattices; open symbols are for single-fluxoid
vortices and solid symbols for double-fluxoid vortices.
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FIG. 11. Same as Fig. 10 but for mean induction

B̄=0.7�0Hc2.
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special cases, as detailed in Appendices B through D, sug-
gests the difficulty of treating the general case. So far our
attempts at Ansätze and iterative algorithms for two single-
fluxoid vortices in a unit cell have failed to converge to
physically reasonable solutions.

The only definite conclusions that we have been able to
draw from the double-fluxoid vortex calculations concern
bulk type-II superconductors. As long expected, but never
explicitly demonstrated, lattices of double-fluxoid vortices
have higher magnetic Gibbs free energy than lattices of
single-fluxoid vortices at all values of applied field. For
films, all we are able to state is that the calculations for
double-fluxoid lattice structures do not lead us to modify the
phase diagrams presented in Sec. III.
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APPENDIX A: SINGLE-FLUXOID VORTEX LATTICE
CALCULATIONS IN FILM GEOMETRY

A key step in Brandt’s approach19 is to decompose the
supervelocity as

Q = QA + q , �A1�

where QA is the supervelocity of the Abrikosov solution cor-
responding to the given vortex lattice, which satisfies

� � QA = �B̄ − 	0 � �2�r� − Rvortex��ẑ , �A2�

where r�= �x ,y�, �2 is the two-dimensional Dirac delta func-
tion, and the sum runs over all vortices. Inside the film,

b = � � q . �A3�

With the definitions and relations from Sec. II and just
above, the problem is to determine �, q, and b that minimize
the free energy. Brandt’s Ansatz for these fields is as follows:

��r� = �
K�,Kz

aK�Kz
�1 − cos K� · r��cos Kzz , �A4�

q�r� = �
K�,Kz

bK�Kz

ẑ � K�

K�
2 sin K� · r� cos Kzz , �A5�

bz�r� = �
K�,Kz

bK�Kz
cos K� · r� cos Kzz , �A6�

b��r� = �
K�,Kz

bK�Kz

K�Kz


K�
2
sin K� · r� sin Kzz . �A7�

Here K� is the set of reciprocal lattice vectors, excluding the
origin, and Kz= �2
 /d�n with n running over the whole num-
bers. Several features of this Ansatz are worth noting. Only
two sets of expansion coefficients, aK�Kz

and bK�Kz
, are re-

quired because b and q are linked by Eq. �A3�. The period-

icity of � combined with the quadratic behavior of � near
the vortices suggests the form of expansion for the r� de-
pendence in Eq. �A4� while the boundary condition for the
order parameter at a superconductor-insulator interface
makes the cosine expansion natural for the z dependence.
Equation �A5� leads to supercurrents with, as one would an-
ticipate, only in-plane components, as well as with the ap-
propriate periodicity and behavior near vortex lines. The mo-
tivation for the z dependence of the expansions for b and q is
that q and bz are even functions of z while b� is an odd
function.

Inserting Eqs. �A4� and �A5� into the first GL equation
leads to coupled nonlinear equations for the expansion coef-
ficients aK�Kz

and bK�Kz
which can be readily cast in the

form of equations for the aK�Kz
suitable for solution by it-

eration: see Eq. �A15� below. More equations must come
from the second GL equation inside the film, together with
��b=0 outside the film and the boundary conditions on the
induction. The induction above the film satisfies

Bz = B̄ + �
K�

bK�

s cos K� · r�e−K��z−d/2�, �A8�

B� = �
K�

bK�

s K�

K�

sin K� · r�e−K��z−d/2� �A9�

and the continuity-of-Bz boundary condition may be ex-
pressed as

bK�

s = �
Kz

bK�Kz
cos dKz/2. �A10�

It is convenient to derive the equations for the expansion
coefficients by direct minimization of the free energy �in-
cluding the stray field energy� with respect to the bK�Kz

,
which leads to Eqs. �19�–�23� of Ref. 19.

In order to carry out a calculation of the expansion coef-
ficients it is necessary to truncate the expansion, setting
aK�Kz

and bK�Kz
to zero for K�Kz outside some range. It is

also necessary to approximate the integrals that appear in the
iteration equations as finite sums. Those integrals arise from
applying orthogonality relations and, ideally, the coefficient
truncation and numerical integration could be done consis-
tently so that the trigonometric functions retained in the ex-
pansion are orthogonal with respect to the numerical integra-
tion. This is done naturally for the z coordinates of the
integration, by making the simplest choice of uniform spac-
ing. In the xy plane Brandt employs a rectangular grid for
integration but a circular domain for the allowed K� values.
Though a rectilinear domain for K� would be more consis-
tent we have followed Brandt’s choice, on the grounds that
when K� is large the expansion coefficients ought to be
small.

What is there to object to in the method described above?
In brief, Eq. �A5� �and its corollaries Eqs. �A6� and �A7��
impose periodic boundary conditions in the z direction which
are not physically appropriate. According to Eq. �A7�, as the
film surface is approached from within, b��r�→0. This
leads to a discontinuity in b� across the film boundary, as
can be seen from Eq. �A9�, which by Ampère’s law implies a
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sheet current density at the film surface which is inconsistent
with the GL �or even London� theory description of a super-
conductor.

The consequences of this flaw in the Ansatz are surpris-
ingly difficult to see—no clear sign of it appears in the re-
sults presented by Brandt in Ref. 19, many of which we
reproduced independently. When we implemented that
method the first suggestion of a problem came when we
compared two calculations of the supercurrent which should
have given the same results, namely, j=−�Q and j=��B
=��b. An example is shown in Fig. 12, for a system at
fairly low mean induction. Note that the supercurrent calcu-
lated according to ��B actually circulates in the wrong
direction for some values of z. A hint that the problem was
the form of the z dependence in Eqs. �A5�–�A7�, and not
simply an error in our implementation as we first supposed,
was that the disagreement become more evident as the maxi-
mum value of Kz was increased.

Our solution is to replace the cosine expansion for the z
dependence of q with an expansion in terms of Legendre
polynomials of even order since the latter form a complete,
orthogonal set of even functions over a finite interval that
allow for nonzero derivatives at the ends of the interval.
Instead of Eqs. �A5�–�A7�, take

q�r� = �
K�,l

bK�l
ẑ � K�

K�
2 sin K� · r�P2l�2z/d� , �A11�

bz�r� = �
K�,l

bK�l cos K� · r�P2l�2z/d� , �A12�

b��r� = �
K�,l

bK�l
− K�

K�
2 sin K� · r�

2

d
P2l� �2z/d� . �A13�

There is an additional benefit of the Legendre polynomial
expansion for the accuracy of the calculations. A numerical
scheme for z integration which maintains orthogonality of
the Legendre polynomials is appropriate for the iterative cal-
culation of the b coefficients, namely, Gauss-Legendre
quadrature. The abscissas for Gauss-Legendre quadrature are
at zeros of Pn �where n is larger than the highest order used
in the Ansatz�, and these zeros are more numerous near the
film surfaces where the most rapid changes occur for b and
q. Finally, the Legendre polynomials are optimal for our pur-
poses, compared to other sets of polynomials, because they
are orthogonal with respect to a constant weight function,
just like the trigonometric functions.

We now present the full scheme for generating solutions
to the GL equations for films. We use �¯ �U to denote the
volume average over a unit cell by numerical quadrature in
which the z abscissas are uniformly spaced while �¯ �G is
the same, except it employs Gauss-Legendre quadrature for
the z coordinate. Angle brackets without a subscript refer to
an analytic expression for the volume average over the unit
cell. Before beginning the iterative calculations a set of ini-
tial aK�Kz

and bK�l coefficients must be chosen; we will
discuss that choice following the iteration scheme.

For the order parameter coefficients we use Brandt’s itera-
tion scheme, without modification, but for completeness we
include it here. Defining

g = 
��
2/4�2� �A14�

the first GL equation leads to the iteration

aK�Kz
ª

4���2 − 2� + �Q2 + g�cos K� · r� cos Kzz�U

��Kz,0
+ 1���K�

2 + Kz
2�/2�2 + 1�

.

�A15�

This is always followed by an iteration to minimize F by
multiplying all the aK�Kz

by the same factor,

aK�Kz
ª aK�Kz

�� − g − �Q2�U/��2�U. �A16�

This step was introduced by Brandt in solving the GL equa-
tions in bulk superconductors; if omitted, the calculations
generally do not converge.

Next comes the iteration for the bK�l. Our modification of
the expansions for b and q require corresponding changes to
the iteration scheme compared to Ref. 19. It is convenient to
construct some auxiliary quantities such as the stray-field
expansion coefficients

bK�

s = �
l

bK�l �A17�

�compare Ref. 19, Eqs. �10� and �21��; a quantity that arises
from ���Q2� /�bK�l,

DK�l = ���QyKx − QxKy�sin K� · r�P2l�2z/d��G

�A18�

�compare Ref. 19, Eqs. �20� and �22��; and
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FIG. 12. Supercurrent density components jx and jy calculated
from −�Q �crosses� and ��B �circles� from solutions by the

method of Ref. 19 for a system with �=0.5, B̄=0.4 /�, d=4.3, and
a 32�13�9 grid for real-space sampling. The vortex lattice is
triangular, with one primitive translation being x1x̂. In these plots
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SK�l = �
l�=0

l

bK�l�2l��2l� + 1� + �
l�=l+1

bK�l�2l�2l + 1� ,

�A19�

which appears in

��b2�/�bK�l = 2SK�l/�dK��2 + bK�l/�4l + 1� . �A20�

These last two expressions are rather more complicated than
the corresponding Eq. �19� of Ref. 19 because, unlike sines
and cosines, the P2l� are not orthogonal. The second sum in
Eq. �A19� is finite on account of the truncation of the expan-
sion.

With these definitions the revised iteration scheme is

bK�l ª

− 2SK�l − 2DK�l − 2K�bK�

s /d + c���bK�l

K�
2 /�4l + 1� + c���

,

�A21�

where the constant c and the order parameter mean ���
=�K�

aK�0 are included to stabilize the iterations �compare
Ref. 19, Eq. �23��.

The algorithm is started with an initial guess for the aK�Kz
and bK�l coefficients. Convergence to the physical solutions
is not guaranteed, and in fact it is essential to have good
initial values. We used bulk solutions27 as initial values for
aK�0 and bK�0, with the other coefficients initially zero. �The
bulk solutions themselves require initial values for aK�0; for
those, which can be taken from solutions of the linearized
GL equations which are known for all lattice structures with
one vortex per primitive cell.32�

One cycles through Eqs. �A15�, �A16�, and �A21� until F
has converged to an absolute tolerance of 1�10−10 or better,
which typically requires about 200 iterations. This is slower
convergence than is achieved with the cosine Ansatz for the
z dependence for the supervelocity. A possibly related matter
is that we have not found a suitable expression for the “sta-
bilizer” c that works well—large enough to maintain stability
of the iteration scheme, small enough to allow for reasonably
quick convergence—over the entire range of parameters that
we have studied. What we do instead is to adjust c during the
iteration cycle by monitoring the evolution of Fmag and Fstray
because when either of those field energies increases strongly
it is a sign that an instability is developing. An algorithm that
works reliably is that when either Fmag and Fstray increases by
more than 50% following Eq. �A21� then c is multiplied by
10 and the bK�l iteration is rerun; independently, every 30
iterations c is divided by 2.

Although our calculations do not converge as rapidly as
those reported in Ref. 19 they always lead to solutions with
lower free energies, typically by 0.5% or less �with the same
number of coefficients included in both calculations�. These
small differences are enough to produce noticeable changes
in the phase boundaries. Our calculations also have the ap-
pealing feature that increasing the l cutoff for the bK�l al-
ways gives an improved solution; the same is not true of
increasing the Kz cutoff for the bK�Kz

. Repeating the calcu-
lations presented in Fig. 12 yields supercurrent densities

from −�Q and ��B which are nearly coincident, and which
are close to the −�Q values displayed in that figure.

APPENDIX B: GENERALIZING BRANDT’S METHOD
TO DOUBLE-FLUXOID VORTEX LATTICES

Consider a vortex in which the phase of the order param-
eter changes by 2
p on circling the vortex core. If that core
is at the origin, then the order parameter behaves as �
�rpeip� as r→0 �see, for example, Tinkham,33 Sec. 5.1� and
the modulus squared order parameter as ��
�
2�r2p. Now
focus on the p=2 case. Brandt suggests27 that for a lattice
with one vortex per primitive cell we adopt the Ansatz

��r� = �
K

aK�1 − cos�K · r��2 �B1�

in which r is a two-dimensional vector and K runs over
reciprocal lattice vectors excluding the origin. This form sat-
isfies the requirements of periodicity and fourth-power be-
havior near vortex cores. It turns out to be useful to express
this with only first powers of cosines, as

��r� = �
K

aK	3

2
− 2 cos�K · r� +

1

2
cos�2K · r�� . �B2�

In a bulk superconductor B�r�=B�r�ẑ. For small r the
induction satisfies B�r��B�0�− 1

2���r�, so B�0�−B�r��r4.
The small-r behavior suggests the following form for the

deviation from mean induction, b�r�=B�r�− B̄:

b�r� = �
K

bK	2 cos�K · r� −
1

2
cos�2K · r�� . �B3�

The supervelocity is decomposed as Q�r�=QA�r�+q�r�,
where QA is the supervelocity in the Abrikosov limit, satis-

fying ��QA�r�= �B̄−2	0��r��ẑ, and the deviation from the
Abrikosov form satisfies

q�r� = �
K

bK
ẑ � K


K2
 	2 sin�K · r� −
1

4
sin�2K · r�� .

�B4�

Since the GL equations and their solutions are indepen-
dent of z in the bulk, it is possible to obtain iterative expres-
sions for both the aK and the bK directly from the GL equa-
tions, rather than extremalizing the GL free energy as was
done for bK in films following Ref. 19.

The first GL equation leads to an iterative equation for aK.
Following Brandt,27 we obtain

aK ª

2�2


K
2 + 2�2 ��− 2� + �2 + �
Q
2 + g�cos K · r� +
1

4
aK/2.

�B5�

If K /2 is not a reciprocal lattice vector then aK/2�0; we will
refer to such reciprocal lattice vectors as “fundamentals.”
Equation �B5� should be compared with the corresponding
relation for single-fluxoid vortices, Eq. �11� in Ref. 27: the
only differences are the existence of the second term and a
factor of 2 in the first term.
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The next step in the iterative scheme, as in Ref. 27, is to
rescale all of the aK so as to minimize F. This goes through
without modification.

Finally, iterative equation for bK is

bK ª −
���� − ����B�r� + ��� � Q� · ẑ�cos K · r�


K
2 + ���
+

1

4
bK/2

�B6�

and if K is a fundamental then bK/2�0.
The GL equations are solved, in principle, by cycling

through the three steps in the iterative scheme until the co-
efficients converge to the desired level of precision. In prac-
tice we find that the equations as written do not usually con-
verge to a physical solution; however, by “mixing” the aK
that comes out of Eq. �B5� with the value from the prior
iteration �and likewise for the bK produced by Eq. �B6�� the
convergence of the algorithm is much improved. We have
not attempted to determine optimal mixing parameters but
taking 90% of the prior iteration plus 10% of the current
iteration has been sufficient.

Even with mixing, it is crucial to have a good initial guess
for the aK and bK. Brandt demonstrated27 that the solution of
the linearized GL equations for the aK, together with bK=0
for all K, serves well for the initial values for single-fluxoid

vortex lattices at any B̄. For type-II superconductors the
same holds true for double-fluxoid vortex lattices; however,
for ��1 /�2 that choice of initial values does not always
lead to a converged solution. For type-I superconductors we
have found it necessary to first carry out calculations close to
the upper critical mean induction and then gradually reduce

B̄, using the results of the aK and bK for the larger B̄ as initial
values for the subsequent calculation. The initial values for

the calculations at the largest B̄ are taken from solutions to
the linearized first GL equation; however, constructing those
solutions for double-fluxoid vortex lattices in terms of the aK
is not trivial, either, and we detail our method in Appendix C
below.

In order to have a finite computational problem the expan-
sions for �, b, and q must be truncated; and the iterations
involve integrals over the unit cell which must be numeri-
cally evaluated. These two issues are related. For single-
fluxoid lattices it was sufficient to carry out the quadrature
by summation of values on a grid aligned with the primitive
lattice vectors, and to include in the expansions only 
K

�Kmax with Kmax chosen so that the number of reciprocal
lattice vectors was about the same as the number of points in
the integration grid. For double-fluxoid lattices the situation
is more complicated.

The expansion �Eq. �B2�� for � can be rearranged so that
it has nearly the same form as for single-fluxoid lattices

��r� = �
K
	2aK −

1

2
aK/2��1 − cos�K · r�� . �B7�

Equations �B1�, �B2�, and �B7� are identical for infinite sums
but they are different when truncated. As discussed in Ap-
pendix C, the aK that solve the linearized GL equations for
double-fluxoid lattices do not fall off in a Gaussian manner

like they do for single-fluxoid lattices; however, it turns out
that 2aK− 1

2aK/2 is nearly Gaussian. This motivates the fol-
lowing truncation scheme for constructing � when evaluat-
ing integrals: use Eq. �B7�, including in the sum reciprocal
lattice vectors with 
K
�Kmax except for fundamentals with
Kmax /2� 
K
�Kmax. Expressions analogous to Eq. �B7� ex-
ist for b and q, and we apply the same truncation scheme
when calculating them for the purposes of numerical integra-
tion and graphical display. Failure to use this truncation
scheme, and instead simply cutting off the sums in Eqs. �B1�,
�B3�, and �B4� with the condition 
K
�Kmax, leads to high
wave number artifacts. These artifacts generate a negative �
near the vortex core, which allows the �Q2 term in the free
energy to become negative and quickly leads the iterations to
run away.

It is tempting to define cK�2aK− 1
2aK/2, dK�2bK

− 1
2bK/2, and carry out iterative calculations for those quanti-

ties, by moving the 1
4aK/2 from the right side of Eq. �B5� to

the left �and likewise for Eq. �B6��. The resulting equations
have exactly the form of Eqs. �11� and �13� from Ref. 27 for
the iterations of the coefficients for single-fluxoid lattices.
Doing this invariably leads to single-fluxoidlike solutions
�behaving like ��r2 and B�0�−B�r��r2 near the vortex

core� which are inconsistent with the assumed forms of B̄,
QA, and S. These unphysical solutions are free energy saddle
points rather than minima.

APPENDIX C: SOLVING THE LINEARIZED GL
EQUATIONS IN TERMS OF THE aK

In his pioneering work on vortex lattices in superconduct-
ors, Abrikosov21 showed that for an applied field just below
Hc2, the first GL equation �when expressed as an equation for
the order parameter� has the form of Schrödinger’s equation
for a charged particle confined to a plane and subject to a
magnetic field. With an assumed periodicity of the vortex
lines and one flux quantum per vortex, an analytic solution
�A exists and can be expressed21,34,35 in terms of a Jacobi
theta function,

�A�x,y� = e−
y2/x1y2�1	 


x1
�x + iy�,

x2 + iy2

x1
� , �C1�

where the lattice parameters x1, x2, and y2 were defined just
below Eq. �B4�. This leads18 to the Fourier-like expansion

�A=�KaK
A �1−cos�K ·r��, with aK

A =−�−�m+mn+ne−Kmn
2 S/8
.

Lasher36 pointed out that for vortices of multiplicity p,
�A

�p��r�= ��A�r /�p��p is a corresponding solution of the lin-
earized GL equations. In principle one could use this form to
determine aK

A for double-fluxoid lattices in Eq. �B1�, starting
from Eq. �C1�, but we did not attempt to carry that through.

We have taken an alternative approach based on numeri-
cal solution of a linear system for the aK

A derived from the

linearized GL equations. In the linear regime b�r�=B�0�− B̄
−�A�r� /2� �see, for example, De Gennes,37 Sec. 6.7�. Taking
the curl and combining with the second GL equation yields
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1

2�
� �A � ẑ = �AQA. �C2�

Combining Eqs. �B2� and �C2�, and the Fourier expansion
for the supervelocity in the Abrikosov limit �see Eq. �24� in
Ref. 18�, leads to the linear system

�
Ki

AjiaKi

A = − ��A� �C3�

with

Aji � Cji − �Ki,Kj

1

2B̄�

K j
2 + �Ki,Kj/2

1

8B̄�

K j
2 �C4�

and

Cji � −

K j
2 − Ki · K j


K j − Ki
2
−


K j
2 + Ki · K j


K j + Ki
2
+


K j
2 − 2Ki · K j

4
K j − 2Ki
2

+

K j
2 + 2Ki · K j

4
K j + 2Ki
2
. �C5�

We follow Brandt’s convention that ��A�=1, so �3 /2��KaK
A

=1.
The system of Eq. �C3� could be rendered finite by setting

aK
A =0 for 
K
�Kmax; however, this is not a good closure

assumption because of slow convergence with increasing
Kmax. Equation �C4� shows the strong connection between
aK

A and aK/2
A mentioned in Appendix B. For Kmax /2� 
K


�Kmax the corresponding aK
A are connected to coefficients

associated with vectors beyond the cutoff. In addition, as

K j
→�, Cji→−3 /2, which leads via Eq. �C4� to aK

A

�aK/2
A /4 at large 
K
. We therefore set a2K

A =aK
A /4, a4K

A

=aK
A /16, and so on for Kmax /2� 
K
�Kmax, which leads to a

modified linear system with coefficients Aji� . For 
Ki

�Kmax /2, Aji� =Aji but for Kmax /2� 
Ki
�Kmax,

Aji� = Aji + �
l=1

�

4−lCj,2li. �C6�

In the numerical calculations we have truncated the sum at
l=4 after finding no significant change in the aK

A when fur-
ther terms are included.

As a check on this approach to solving the linearized GL
equations we have carried an analogous analysis for single-
fluxoid lattices. The numerical results from solving the cor-
responding linear equations for the aK

A match the analytic
expression.

APPENDIX D: SOLVING THE GL EQUATIONS FOR
DOUBLE-FLUXOID VORTEX LATTICES IN FILMS

The Ansätze for the various physical quantities are

��r� = �
K�,Kz

	2aK�Kz
−

1

2
aK�/2,Kz

��1 − cos K� · r��cos Kzz ,

�D1�

q�r� = �
K�,l

	2bK�l −
1

2
bK�/2,l� ẑ � K�

K�
2 sin K� · r�P2l�2z/d� ,

�D2�

bz�r� = �
K�,l

	2bK�l −
1

2
bK�/2,l�cos K� · r�P2l�2z/d� ,

�D3�

b��r� = �
K�,l

	2bK�l −
1

2
bK�/2,l�− K�

K�
2 sin K� · r�

2

d
P2l� �2z/d�

�D4�

with aK�/2,Kz
and bK�/2,l vanishing if K� /2 is not a recipro-

cal lattice vector.
The iterative equation for aK�Kz

, replacing Eq. �A15�, is

aK�Kz
ª

2���2 − 2� + �Q2 + g�cos K� · r� cos Kzz�U

��Kz,0
+ 1���K�

2 + Kz
2�/2�2 + 1�

+
1

4
aK�/2,Kz

. �D5�

The iterative equation for bK�l involves several auxiliary
quantities. Replacing Eq. �A19� is

SK�l = �
l�=0

l �17

4
bK�,l� − bK�/2,l� −

1

4
b2K�,l�2l��2l� + 1�

+ �
l�=l+1

�17

4
bK�,l� − bK�/2,l� −

1

4
b2K�,l�2l�2l + 1�

�D6�

and replacing Eq. �A18� is the expression

DK�,l = ���ẑ · K� � Q�	4 sin�K� · r��

−
1

2
sin�2K� · r���P2l�2z/d��

G
. �D7�

The stray-field coefficients, replacing Eq. �A17�, are given
by

bK�

s = �
l

2bK�l −
1

2
bK�/2,l. �D8�

Then the desired iterative equation, replacing Eq. �A21�, is

bK�l ª
1

1 + c���
4

17�bK�/2,l + b2K�,l +
17

4
c���bK�l +

4l + 1

K�
2

�	− 2SK�l/d2 − DK�l − 2K��2bK�

s −
1

4
b2K�

s /d�� .

�D9�

The discussion in Appendix B concerning truncation
schemes for the sums representing �, b, and q is equally
germane in film geometry.

MARK C. SWEENEY AND MARTIN P. GELFAND PHYSICAL REVIEW B 82, 214508 �2010�

214508-12



*martin.gelfand@colostate.edu
1 M. Tinkham, Phys. Rev. 129, 2413 �1963�.
2 K. Maki, Ann. Phys. �N.Y.� 34, 363 �1965�.
3 G. Lasher, Phys. Rev. 154, 345 �1967�.
4 D. J. E. Callaway, Ann. Phys. �N.Y.� 213, 166 �1992�.
5 J. Pearl, Appl. Phys. Lett. 5, 65 �1964�.
6 J. Pearl, Ph.D. thesis, Polytechnic Institute of Brooklyn, 1965.
7 G. J. Dolan and J. Silcox, Phys. Rev. Lett. 30, 603 �1973�.
8 G. J. Dolan, J. Low Temp. Phys. 15, 133 �1974�.
9 G. J. Dolan, J. Low Temp. Phys. 15, 111 �1974�.

10 S. Hasegawa, T. Matsuda, J. Endo, N. Osakabe, M. Igarashi, T.
Kobayashi, M. Naito, A. Tonomura, and R. Aoki, Phys. Rev. B
43, 7631 �1991�.

11 G. S. Mkrtchyan and V. V. Shmidt, Sov. Phys. JETP 34, 195
�1972�.

12 G. R. Berdiyorov, M. V. Milosević, and F. M. Peeters, Phys. Rev.
Lett. 96, 207001 �2006�.

13 V. A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett.
81, 2783 �1998�.

14 G. R. Berdiyorov, A. D. Hernandez, and F. M. Peeters, Phys.
Rev. Lett. 103, 267002 �2009�.

15 V. V. Moshchalkov, X. G. Qiu, and V. Bruyndoncx, Phys. Rev. B
55, 11793 �1997�.

16 E. B. Bogomol’nyi, Sov. J. Nucl. Phys. 24, 449 �1976�.
17 I. Luk’yanchuk, Phys. Rev. B 63, 174504 �2001�.
18 E. H. Brandt, Phys. Status Solidi B 51, 345 �1972�.
19 E. H. Brandt, Phys. Rev. B 71, 014521 �2005�.

20 J. Matricon, Ph.D. thesis, Université de Paris, 1966.
21 A. A. Abrikosov, Sov. Phys. JETP 5, 1174 �1957�.
22 D. J. Priour and H. A. Fertig, Phys. Rev. B 67, 054504 �2003�.
23 D. J. Priour and H. A. Fertig, Phys. Rev. Lett. 93, 057003

�2004�.
24 R. Prozorov, A. F. Fidler, J. R. Hoberg, and P. C. Canfield, Nat.

Phys. 4, 327 �2008�.
25 R. Prozorov, R. W. Giannetta, A. A. Polyanskii, and G. K. Per-

kins, Phys. Rev. B 72, 212508 �2005�.
26 R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev.

Lett. 76, 3818 �1996�.
27 E. H. Brandt, Phys. Rev. Lett. 78, 2208 �1997�.
28 U. Klein and B. Pöttinger, Phys. Rev. B 44, 7704 �1991�.
29 M. M. Doria, J. E. Gubernatis, and D. Rainer, Phys. Rev. B 39,

9573 �1989�.
30 A. B. Pippard, Philos. Mag. 19, 217 �1969�.
31 J. Hove, S. Mo, and A. Sudbo, Phys. Rev. B 66, 064524 �2002�.
32 E. H. Brandt, Phys. Status Solidi 36, 381 �1969�.
33 M. Tinkham, Introduction to Superconductivity, 2nd ed.

�McGraw Hill, New York, 1996�, p. 454.
34 W. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133,

A1226 �1964�.
35 E. H. Brandt, Phys. Status Solidi B 36, 393 �1969�.
36 G. Lasher, Phys. Rev. 140, A523 �1965�.
37 P.-G. de Gennes, Superconductivity of Metals and Alloys �W. A.

Benjamin, New York, 1966�, p. 274.

SIMPLE VORTEX STATES IN FILMS OF TYPE-I… PHYSICAL REVIEW B 82, 214508 �2010�

214508-13

http://dx.doi.org/10.1103/PhysRev.129.2413
http://dx.doi.org/10.1016/0003-4916(65)90153-3
http://dx.doi.org/10.1103/PhysRev.154.345
http://dx.doi.org/10.1016/0003-4916(92)90287-V
http://dx.doi.org/10.1063/1.1754056
http://dx.doi.org/10.1103/PhysRevLett.30.603
http://dx.doi.org/10.1007/BF00655631
http://dx.doi.org/10.1007/BF00655630
http://dx.doi.org/10.1103/PhysRevB.43.7631
http://dx.doi.org/10.1103/PhysRevB.43.7631
http://dx.doi.org/10.1103/PhysRevLett.96.207001
http://dx.doi.org/10.1103/PhysRevLett.96.207001
http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1103/PhysRevLett.81.2783
http://dx.doi.org/10.1103/PhysRevLett.103.267002
http://dx.doi.org/10.1103/PhysRevLett.103.267002
http://dx.doi.org/10.1103/PhysRevB.55.11793
http://dx.doi.org/10.1103/PhysRevB.55.11793
http://dx.doi.org/10.1103/PhysRevB.63.174504
http://dx.doi.org/10.1002/pssb.2220510135
http://dx.doi.org/10.1103/PhysRevB.71.014521
http://dx.doi.org/10.1103/PhysRevB.67.054504
http://dx.doi.org/10.1103/PhysRevLett.93.057003
http://dx.doi.org/10.1103/PhysRevLett.93.057003
http://dx.doi.org/10.1038/nphys888
http://dx.doi.org/10.1038/nphys888
http://dx.doi.org/10.1103/PhysRevB.72.212508
http://dx.doi.org/10.1103/PhysRevLett.76.3818
http://dx.doi.org/10.1103/PhysRevLett.76.3818
http://dx.doi.org/10.1103/PhysRevLett.78.2208
http://dx.doi.org/10.1103/PhysRevB.44.7704
http://dx.doi.org/10.1103/PhysRevB.39.9573
http://dx.doi.org/10.1103/PhysRevB.39.9573
http://dx.doi.org/10.1080/14786436908217779
http://dx.doi.org/10.1103/PhysRevB.66.064524
http://dx.doi.org/10.1002/pssb.19690360140
http://dx.doi.org/10.1103/PhysRev.133.A1226
http://dx.doi.org/10.1103/PhysRev.133.A1226
http://dx.doi.org/10.1002/pssb.19690360141
http://dx.doi.org/10.1103/PhysRev.140.A523

