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Magnetization and initial permeability measurements were done on the ferromagnetic shape memory alloys
Ni2Mn1−xCuxGa �0�x�0.4�. On the basis of the results, the phase diagram in the temperature-concentration
plane was determined for this alloy system. The determined phase diagram is spanned by the paramagnetic
austenite phase �I�, paramagnetic martensite phase �II�, ferromagnetic austenite phase �III�, ferromagnetic
martensite phase �IV�, and the premartensite phase �V�. It was found that the magnetostructural transitions
between the phases I and IV can occur in the concentration region 0.23�x�0.30 and that Ni2Mn1−xCuxGa has
the characteristics of the phase diagram closely similar to those of the phase diagram of Ni2+xMn1−xGa. In
order to understand the phase diagram, the phenomenological free energy as a function of the martensitic
distortion and the magnetization was constructed and analyzed, where couplings between these order param-
eters in existing theories were improved. Satisfactory agreements between the theory and experiments were
obtained except for the appearance of the premartensite phase. The analyses show that the biquadratic coupling
term, together with a higher order coupling term, of the martensitic distortion to the magnetization, plays an
important role in the interplay between the martensite phase and the ferromagnetic phase.
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I. INTRODUCTION

Some Heusler-type alloys exhibit both the martensitic
transition causing the shape memory effect and the ferromag-
netic transition. The two phase transitions strongly affect
each other, resulting in various fascinating phenomena. Some
of such the phenomena are now considered to make these
alloys useful as functional materials. In fact, the magnetic-
field-induced strain �MFIS� and the magnetocaloric effect
�MCE� observed in magnetic shape memory alloys have at-
tracted considerable attention of researchers.

A MFIS was first found in Ni2MnGa alloys in 1996.1 This
MFIS is brought about by the magnetic-field-induced rear-
rangement of martensite variants and has huge amounts over
9% while the work output stress is less than 5 MPa because
of the limited driving force of the rearrangement. After this
discovery, the MFIS, which is brought about by the
magnetic-field-induced martensitic transition, has been re-
ported on many magnetic shape memory alloys, such as
Ni2MnGa,2 Ni-Mn-In,3–8 Ni-Mn-Sn,9–12 Fe-Mn-Ga �Ref. 13�
alloys, etc. Especially, the MFIS of about 3% due to
magnetic-field-induced reverse martensitic transition re-
ported on Ni45Co5Mn36.7In13.3 and Ni43Co7Mn39Sn11 alloys
attracted much attention on the group of these alloys.11,14 The

Ni-Mn-In- and Ni-Mn-Sn-based alloys, called metamagnetic
shape memory alloys, show the MFIS at room temperature
and yield high level of work output stress over 50 MPa.14–18

On the other hand, a large MCE due to the magnetic-field-
induced martensitic transition in the Ni-Mn-based Heusler
alloys was first reported on Ni-rich Ni2+xMn1−xGa. This phe-
nomenon originates from the magnetostructural transition,
i.e., a direct transition between a paramagnetic austenite
phase to a ferromagnetic martensite phase,19–25 which can be
seen in the phase diagram of Ni2+xMn1−xGa alloys.26–30 Very
recently, a large MCE and a similar transition have been
found also in Ni2Mn1−xCuxGa with x=0.25.31–35 Neverthe-
less, there are only limited works on the martensitic and
magnetic phase transitions in this alloy system.

Along with the experimental studies of these shape
memory alloys, theoretical efforts have been done to under-
stand the phase diagram which is spanned by the martensite
phase, the ferromagnetic phase, and the phase with the coex-
isting martensitic and ferromagnetic states. In the phenom-
enological theories of Ni2+xMn1−xGa,27,29,36,37 the Landau
free energy is expanded in powers of the bulk crystal strains
eij as the order parameters of the martensitic phase transition
and the magnetization components Mi as the order param-
eters of the ferromagnetic phase transition, i , j denoting the
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crystal axes. Vasil’ev et al.27,37 proposed and studied the free
energy which takes into account an anharmonic energy of the
strain and the energy of a coupling between a linear term of
the strain and a quadratic term of the magnetization, in ad-
dition to the usual free energies in the magnetostrain system.
On the other hand, Khovaylo et al.29 also considered the free
energy including the anharmonic energies depending also on
the volume strain, and showed that the cooperation of the
magnetovolume strain and the anharmonic energy plays an
important role in the phase diagram observed in
Ni2+xMn1−xGa. Both the theories gave the scenarios for the
appearance of a variety of phases in this compound. How-
ever, their scenarios of the appearance of the magnetostruc-
tural transition are different from each other and the question
as to what mechanism dominates the phase diagram of the
compound remains to be solved.

In this paper, the phase diagram of Ni2Mn1−xCuxGa is
obtained experimentally by means of the permeability and
differential-scanning-calorimetric measurements. The ob-
tained phase diagram is analyzed by use of the reconstructed
phenomenological free energy. The present analyses show
that both the above scenarios by Vasil’ev et al. and by
Khovaylo et al. are insufficient for understanding the ob-
served phase diagram, but the presence of a biquadratic cou-
pling, together with a higher order coupling, between the
strain and the magnetization can explain successfully the
phase diagram of the magnetic shape memory alloys.

In the following, Secs. II and III, experimental procedures
and results on Ni2Mn1−xCuxGa are described to present its
phase diagram. The subsequent Secs. IV–VI are devoted to
give a phenomenological theory and its analyses to under-
stand the phase diagram of Ni2Mn1−xCuxGa. In Sec. VII, the
phase diagram is calculated numerically by use of the devel-
oped theory and is compared with the observed one. Finally,
concluding remarks are given in Sec. VIII.

II. EXPERIMENTAL PROCEDURE

The polycrystalline Ni2Mn1−xCuxGa �0�x�0.40� were
prepared by repeated arc melting of the appropriate quanti-
ties of the constituent elements, namely, 99.99% pure Ni,
99.99% pure Mn, 99.99% pure Cu, and 99.9999% pure Ga,
in an argon atmosphere. The reaction products with x
=0.05,0.10,0.35,0.40 were pulverized, mixed, sealed in the
evacuated silica tubes, heated at 850 °C for 3 days and then
600 °C for 1 day before being quenched into water. For the
samples with 0.20�x�0.30, the reaction products were
heated at 900 °Cfor 3 days and then 600 °C for 1 day or 2
days. The phase characterization of the samples was carried
out by x-ray powder diffraction measurements using Cu K�
radiation.

The Curie temperature was determined by an ac trans-
former method. The primary and secondary coils were
wound on the sample rod with about 1 mm in diameter. An
ac current of a constant amplitude was let flow in the primary
coil and the secondary voltage, which is directly proportional
to initial permeability �, was recorded as a function of tem-
perature. The amplitude and the frequency of the ac magnetic
field are about 7 Oe and 1 kHz, respectively. The magneti-

zation M data were collected using a commercial supercon-
ducting quantum interference device magnetometer. Thermal
analysis was carried out by differential scanning calorimetric
�DSC� measurement, where the heating and cooling tempera-
ture rate was 10 K/min.

III. EXPERIMENTAL RESULTS

The Heusler L21 structure �space group: Fm3̄m� is com-
prised of four interpenetrating fcc sublattices with A, B, C,
and D sites. The A, B, C, and D sites are located at �0,0,0�,
�1/4, 1/4, 1/4�, �1/2, 1/2, 1/2�, and �3/4, 3/4, 3/4�, respec-
tively, as shown in Fig. 1. In Ni2MnGa, Ni atoms occupy the
A and C sites, and Mn atoms and Ga atoms the B and D
sites, respectively. Figure 2�a� shows the observed x-ray
powder diffraction pattern of the sample with x=0.05 at
room temperature. All the experimental diffraction lines can
be indexed with the cubic structure. The strong sharp �220�-
peak confirms the presence of a single cubic phase. The in-
tensities of the superlattice lines such as �111� and �200�
agree well with the results calculated by assuming the L21
structure. These results ensure that the sample with x=0.05
has a fully ordered L21 structure. The lattice parameter ac of
the sample with x=0.05 is found to be 5.8095 Å. We ob-
served a similar x-ray powder-diffraction pattern at room
temperature for the sample with x=0.20, which indicates that
the sample of Ni2Mn1−xCuxGa with x=0.20 crystallizes in
the L21 structure at room temperature. Figure 2�b� shows the
x-ray powder-diffraction pattern of the sample with x=0.23.
Very recently, we established that the sample with x=0.23
crystallizes in a 14-layered monoclinic �14M� structure
�space group: C2 /m� well below the martensitic transition
temperature. In Fig. 2�b�, �hkl�c and �hkl�m indicate the
Miller indices for the L21 and 14M structures, respectively.
As shown in the figure, the cubic phase with the L21 struc-
ture and the monoclinic phase with the 14M structure coexist
at room temperature in the sample with x=0.23. The lattice

FIG. 1. Unit cell of the Heusler-type structure. The four differ-
ent sites are denoted by A, B, C, and D.
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parameters of this sample were determined as ac
=5.7994 Å for the L21 phase and am=4.2146 Å, bm
=5.5391 Å, cm=29.3166 Å, and �=93.08° for the 14M
phase. Similarly, the x-ray powder-diffraction patterns of the
samples with x=0.25 and 0.27 indicate that the cubic L21
phase and the 14M phase coexist at room temperature though
the fraction of the 14M phase increases with increasing the
concentration x. The x-ray powder diffraction pattern of the
sample with x=0.35 at room temperature is shown in Fig.
2�c�. All the diffraction lines can be indexed by assuming a
D022-like crystal structure with the lattice parameters at and
ct as shown in the inset in Fig. 2�c�. It is noted that this
structure in the case of no lattice distortion and ct=�2at be-
comes the L21 structure itself, where an ac axis is rotated by
45° from an at axis in a ct plane and ac=ct=�2at. The inten-
sities of all the diffraction lines agree well with the results
calculated by assuming the crystal structure as shown in the
inset in Fig. 2�c�. The lattice parameters of this sample were
determined as at=3.8862 Å and ct=6.5360 Å.

Figure 3�a� shows the temperature dependence of the ini-
tial permeability � for the sample with x=0.05. The arrows
along the curves in this figure show the heating and cooling
processes. Abrupt changes in � are observed around 230 K
in the cooling and heating processes. These temperature
variations of � are similar to those of Ni2MnGa.26–28 There-
fore, the abrupt changes of � are thought to correspond to a
transition between the martensite phase and the austenite

FIG. 2. X-ray powder-diffraction pattern at room temperature of
�a� Ni2Mn0.95Cu0.05Ga, �b� Ni2Mn0.77Cu0.23Ga, and �c�
Ni2Mn0.65Cu0.35Ga. The inset in �c� shows the crystal structure of
Ni2Mn0.65Cu0.35Ga in the martensite phase, where the symbols rep-
resent the four different sites A, B, C, and D as in Fig. 1.

FIG. 3. Temperature dependences of �a� the initial permeability
� and �b� the magnetization M at 1 kOe for Ni2Mn0.95Cu0.05Ga. The
arrows along the curves in �a� show the cooling and heating pro-
cesses. The arrows with ZFC and FC along the curves in �b� show
the zero-field-cooling and field-cooling processes, respectively.
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phase. The martensitic-transition starting and finishing tem-
peratures TMs and TMf, and the reverse martensitic-transition
starting and finishing temperatures TAs and TAf were defined
as the cross points of the linear extrapolation lines of the �
versus T curves from both higher and lower temperature
ranges as shown in the figure. The abrupt large decrease of �
with increasing temperature corresponds to the transition
from the ferromagnetic state to the paramagnetic state. The
Curie temperature TC was also defined as the cross point of
the linear extrapolation lines from higher and lower tempera-
ture ranges on the � versus T curve. The Curie temperature
is found to be 354.4 K for the sample with x=0.05. More-
over, an anomalous local dip is clearly observed above TMs
and TAs. This dip starts and finishes around Tp=254.8 K on
the � versus T curves in both cooling and heating processes,
which corresponds to a premartensitic transition temperature.
It should be noted that the thermal hysteresis width at the
premartensitic phase transition temperature is negligible.
Wang et al. observed the thermal hysteresis of 10 K at Tp for
the stoichiometric Ni2MnGa �x=0�.28 Fig. 3�b� shows the
temperature dependence of the magnetization M measured in
a zero-field-cooling �ZFC� and a field-cooling �FC� processes
at the applied field of 1 kOe for the sample with x=0.05. The
abrupt change of � in Fig. 3�a� and the abrupt change in M
in Fig. 3�b�, which are related to each other, are ascribed to
the martensitic transition. In addition to the anomalous dip
around Tp on the � versus T curve of this sample, the ob-
served magnetization also gives a dip around Tp, as shown in
Fig. 3�b�. However, the latter dip is tiny in spite of the dis-
tinct dip in the � versus T curve. Similar behavior was ob-
served in the � versus T and M versus T curves in
Ni1.95Cu0.05MnGa.38 Recently, Ohba et al. carried out the
precise crystal structure analysis of Ni2MnGa by using high-
energy synchrotron radiation. According to their result,
Ni2MnGa in the premartensite phase shows a tiny distortion
from the cubic structure in the austenite phase, which results
in its crystal structure with an orthorhombic lattice.39 Figures
4�a� and 4�b� show the temperature dependences of � and M
at 1 kOe for the sample with x=0.15, respectively. Similar �
versus T and M versus T curves were observed also for the
samples with x=0.10 and 0.20. The temperatures TMs, TMf,
TAs, and TAf of the sample with x=0.15, which characterize
the martensitic transition, were determined as shown in Fig.
4�a�. It should be noted that the anomalous local dip as seen
in Fig. 3�a� is not observed on the � versus T curves for the
sample with x=0.15. As shown in Figs. 3�a� and 4�a�, the
martensitic transition temperature increases with increasing
the concentration x. Figures 5�a� and 5�b� show the tempera-
ture dependences of � and M at 1 kOe for the sample with
x=0.23, respectively. Similar � versus T, and M versus T
curves were observed also for the samples with x=0.25, 0.27
and 0.30. As shown in Figs. 5�a� and 5�b�, � and M decrease
abruptly around 300 K, indicating that the magnetic transi-
tion between the ferromagnetic phase and the paramagnetic
phase is the first-order type. We did not observe any anomaly
below TC on the � versus T, and M versus T curves, so that
TM is considered to coincide with TC. The TC�=TM� was
estimated to be 301.2 K for the sample with x=0.23, where
TC was defined to be TC=TM= �TMs+TAf� /2. The tempera-
ture dependences of � and M at 1 kOe for the sample with

x=0.35 are shown in Figs. 6�a� and 6�b�, respectively. The �
versus T, and M versus T curves in Figs. 6�a� and 6�b� are
characteristic of ferromagnets with the ferromagnetic-
paramagnetic second-order phase transition. As mentioned
above, the x-ray powder-diffraction pattern at room tempera-
ture of the sample with x=0.35 shows the martensite phase
with the D022-like crystal structure. To determine the mar-
tensitic transition temperature of the sample with x=0.35, we
carried out the DSC measurements. Figure 7 shows the DSC
curves of the sample with x=0.35 for the heating and cooling
processes. TMs,TMf,TAs and TAf are determined by using the
intersections of the baseline and the tangent lines with the
largest slopes of the DSC peaks as shown in Fig. 7. Similar
DSC curves were observed also for the sample with x
=0.40.

Based on the above experimental results, the martensite-
magnetization phase diagram of Ni2Mn1−xCuxGa �0�x
�0.40� was determined as shown in Fig. 8. In the composi-
tional interval 0�x�0.23, the Curie temperature decreases
from TC�374 K at x=0 to TC=301.2 K at x=0.23. The
martensitic transition temperature TM increases at first with
increasing x. Further increase in x from x=0.10 to x�0.20
does not affect TM significantly, which remains almost con-
stant around TM�258 K. As shown in Fig. 8, TM and TC
merge together in samples with 0.23�x�0.30. With further
increase in x, TM increases with increasing x from 331.3 K at
x=0.30 to 478.5 K at x=0.40. To sum up, the following three

FIG. 4. Temperature dependences of �a� the initial permeability
� and �b� the magnetization M at 1 kOe for Ni2Mn0.85Cu0.15Ga. The
arrows along the curves in �a� show the cooling and heating pro-
cesses. The arrows with ZFC and FC along the curves in �b� show
the zero-field-cooling and field-cooling processes, respectively.
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different concentration regions can be distinguished in the
phase diagram shown in Fig. 8. The first region with x
�0.23 is characterized by TC�TM, i.e., the martensitic tran-
sition in the ferromagnetic state. The second region with
0.23�x�0.30 is characterized by TM=TC, i.e., the coupled
transitions of the martensite and ferromagnetic phases. In
this compositional interval, the ferromagnetism also exhibits
the first-order transition. Finally, the third region with x
�0.30 is characterized by TC�TM, i.e., the ferromagnetic
transition in the martensitic state. It is remarkable that the
phase diagram of Ni2Mn1−xCuxGa presented here has the
characteristics very similar to those of the phase diagram of
Ni2+xMn1−xGa �0�x�0.36�, which was already obtained by
Khovaylo et al.29 and Entel et al.30 In the following, Secs.
IV–VII, we try to understand the appearances of various
phases in these alloys and the phase diagram by use of a
phenomenological theory which improves the existing
theories.27,29

IV. PHENOMENOLOGICAL FREE ENERGY OF THE
SYSTEM WITH THE MARTENSITIC AND
FERROMAGNETIC PHASE TRANSITIONS

As shown in Sec. III, the various phases of
Ni2Mn1−xCuxGa, as well as those of Ni2+xMn1−xGa, are
specified by the tetragonal distortion, the magnetization, and
their coexistence. By assuming that both the distortion and

the magnetization are not subjected to spatial modulations,
we take into account only the bulk crystal strains eii as pos-
sible order parameters of the martensitic phase transition and
also the components of the magnetization Mi as possible
order parameters of the ferromagnetic phase transition, i de-
noting the crystallographical axes, x, y, and z. In the follow-
ing arguments, the off-diagonal strain components eij with
i� j are not contained for simplicity. The Landau free energy
becomes a function of the strains eii and the magnetization
components Mi, which should satisfy the cubic crystal sym-
metry of the Heusler L21 structure in the austenite phase and

FIG. 5. Temperature dependences of �a� the initial permeability
� and �b� the magnetization M at 1 kOe for Ni2Mn0.77Cu0.23Ga. The
arrows along the curves in �a� show the cooling and heating pro-
cesses. The arrows with ZFC and FC along the curves in �b� show
the zero-field-cooling and field-cooling processes, respectively.

FIG. 6. Temperature dependences of �a� the initial permeability
� and �b� the magnetization M at 1 kOe for Ni2Mn0.65Cu0.35Ga. The
arrows along the curves in �a� show the cooling and heating pro-
cesses. The arrows with ZFC and FC along the curves in �b� show
the zero-field-cooling and field-cooling processes, respectively.

FIG. 7. DSC curves of Ni2Mn0.65Cu0.35Ga. The arrows along the
curves show the cooling and heating processes.
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also the time-reversal symmetry. In order to describe the va-
riety of the phases appearing in the alloys concerned with,
the Landau free energy needs to be expanded in powers of
the strains eii and the magnetization components Mi up to
their fourth order. The resultant total free energy per unit
volume consists of the three terms as follows:

Ftot = Fela + Fmag + Fmag-ela. �1�

The first term on the right-hand side of this equation, Fela, is
the free energy of the elastic strains eii. In finding the explicit
form of this term, it is convenient to introduce the linear
combinations of the strains eii, which are bases of the irre-
ducible representations of the cubic group, as

e1 =
1
�3

�exx + eyy + ezz� , �2�

e2 =
1
�2

�exx − eyy� , �3�

e3 =
1
�6

�2ezz − exx − eyy� . �4�

A crystal-symmetry consideration gives

Fela =
1

2
�c1e1

2 + c2�e2
2 + e3

2�� +
1

3
�A1e1

3 + A2e1�e2
2 + e3

2�

+ A3e3�e3
2 − 3e2

2�� +
1

4
�I1e1

4 + I2e1
2�e2

2 + e3
2�

+ I3e1e3�e3
2 − 3e2

2� + I4�e2
2 + e3

2�2� , �5�

where the coefficients c1 and c2, the coefficients A1, A2, and
A3, and the coefficients from I1 to I4 can be expressed in

terms of the second-, third-, and fourth-order elastic moduli,
respectively. The coefficients other than A1, A2, A3, and I3
should be positive to stabilize the crystal. The second term in
Eq. �1� is the free energy of the magnetic system, which is
easily found to have the form as

Fmag =
1

2
�−1M2 +

1

4
J1M4 + K1�My

2Mz
2 + Mz

2Mx
2 + Mx

2My
2� .

�6�

Here, �−1 is the inverse of the magnetic susceptibility, J1
originates mainly from the magnetic exchange energy, and
K1 is the magnetic anisotropy constant. The final term in Eq.
�1�, Fmag-ela, is the free energy of the coupling between the
elastic strain and the magnetization. For the sake of the fol-
lowing arguments, this term is expanded in powers of eii up
to its third order and of Mi up to its second order by neglect-
ing other higher order couplings. The crystal symmetry and
the time-reversal symmetry require that this term has the
form as

Fmag-ela = �B1e1 +
1

2
�G1e1

2 + G2�e2
2 + e3

2�	

+
1

3
�P1e1

3	 + P2e1�e2
2 + e3

2� + P3e3�e3
2 − 3e2

2�
M2

+ �B2 +
1

2
G3e1 +

1

3
�P4e1

2 + P5�e2
2 + e3

2�	

	 �e2

1
�2

�Mx
2 − My

2� + e3
1
�6

�2Mz
2 − Mx

2 − My
2�


+ �1

2
G4 +

1

3
P6e1
��e3

2 − e2
2�

1
�6

�2Mz
2 − Mx

2 − My
2�

− 2e2e3
1
�2

�Mx
2 − My

2�
 . �7�

In the above equation, the coefficients B1 and B2, the coeffi-
cients from G1 to G4, and the coefficients from P1 to P6 are,
respectively, the coupling constants between the linear, qua-
dratic, and cubic terms of the elastic strains and the quadratic
terms of the magnetizations. The terms with the coefficients
B1 and B2 cause magnetostrictions in the ferromagnetic state,
and also produce a uniaxial magnetic anisotropy energy in
martensitic states. The terms with the coefficients from G1 to
G4, on the other hand, affect directly both the martensite and
ferromagnetic phases by changing their transition tempera-
tures. Among them, the terms with any of G3, G4, P4, P5, and
P6 also produce uniaxial magnetic anisotropy energies in
martensitic states.

Although we confined ourselves to the case of spatially
uniform order parameters in deriving the above free energies,
there are still too many order parameters eii and Mi. In the
present analyses, we do not exhaust all studies of many pos-
sible phases composed of these order parameters but take
into account only order parameters to understand the ordered
states �except for the premartensite phase� observed in
Ni2Mn1−xCuxGa. Because of this aim, we consider in the

FIG. 8. Phase diagram of Ni2Mn1−xCuxGa �0�x�0.4�. Para
and Ferro mean paramagnetic and ferromagnetic states, respec-
tively. A and M represent the austenite and martensite phases, re-
spectively. Tp is the premartensitic transition temperature. TC and
TM are the Curie temperature and the martensitic transition tem-
perature, respectively. The data of the sample with x=0 were taken
from Ref. 40. Solid lines in the figure are a guide for the eyes.
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following the case where only a tetragonal strain parallel to a
crystallographical axis, say the z axis, can occur below the
martensitic and/or ferromagnetic transition temperature, and
a magnetization appears along a crystallographical axis, say
the i axis, below the Curie temperature, i.e.,

e3 � 0, e1 = e2 = 0, �8�

�M� = M = Mi � 0. �9�

Then, the free energy Ftot given by Eqs. �1�–�9� is reduced to

Ftot =
1

2
c2e3

2 +
1

3
A3e3

3 +
1

4
I4e3

4 +
1

2
�−1M2 +

1

4
J1M4

+ B2e3
���M2 +
1

2
�G2 + G4
����e3

2M2

+
1

3
�P3 + P5
����e3

3M2, �10�

where


��� = �3 cos2 � − 1�/�6 �11�

with �=0 for M �c and �=� /2 for M�c. From Eqs. �5� and
�6�, we see easily that the equilibrium ordered states given by
Eqs. �8� and �9� can be realized under the following condi-
tions:

I4 � 0, J1 � 0, and K1 � 0. �12�

The signs of c2 and �−1 vary depending on temperature,
dominating stabilities of phases.

Here we compare the above free energies given by Eqs.
�1�–�12� with those which were considered by Vasil’ev et
al.27,37 and Khovaylo et al.29 in analyzing the phase diagram
observed for Ni2+xMn1−xGa. Their free energies do not con-
tain the magnetoelastic coupling terms with the coefficients
from G1 to G4 in our free energy given by Eqs. �7� and �10�,
which play an essential role in the interplay of the martensite
and ferromagnetic states in the present theory. In Khovailo et
al.’s theory, the volume strain e1=−A2e3

2 /3c1, which is
caused by an assumed martensitic distortion e3 through a
lattice anharmonic term in Eq. �5�, plays an essential role in
the interplay of the martensitic and ferromagnetic states.
They showed that substitution of this volume strain e1 into
the term of B1e1M2 in Eq. �7� creates a term
−�A2B1 /3c1�e3

2M2. We notice, however, that this quantity is
further written as �A2 /3��e1f /e3�e3

3, where e1f=−�B1M2 /c1�
is the volume magnetostriction with magnitudes of orders
around 10−4 �Refs. 29 and 41� but e3 is the martensitic dis-
tortion of orders 10−1
10−2. This suggests that the contribu-
tion of this volume-strain mechanism to the e3

2M2 term is
considerably small compared with lattice anharmonic terms.
As will be shown in Sec. VII by numerical calculations,
however, the effect of the lattice anharmonic energy should
be comparable with that of the e3

2M2 term for obtaining an
agreement between the theory and the experiments. In Eq.
�10�, therefore, all effects of the volume strain e1 were al-
ready neglected. On the other hand, the term with B2 in Eq.
�10� was the origin of the interplay of the two states in
Vasil’ev et al.’s theory27 but was neglected in Khovailo et

al.’s theory.29 In the present theory, this term causes a mag-
netic anisotropy energy under martensitic distortions, rather
than the interplay of the two states, as will be seen in the
following sections. The final term with P3 and P5 in Eq. �10�,
which was not taken into account in the former theories, is
necessary for an overall understanding of the observed phase
diagrams.

V. FREE ENERGY FOR THE PHASE DIAGRAM IN THE
TEMPERATURE-CONCENTRATION PLANE

In order to derive the phase diagram in the temperature
T-concentration x plane observed on Ni2Mn1−xCuxGa, we
need to know the T and x dependences of the coefficients in
the free energy given by Eq. �10�. As in the usual Landau
theory, it is assumed that the coefficients c2 and �−1 depend
linearly on temperature T and vanish, respectively, at char-
acteristic temperatures TM�x� and TC�x� at each concentration
x, and that the other coefficients are all independent of T.
Then, c2 and �−1 are expressed as

c2 =
cm

TM�1�
�T − TM�x�	 , �13�

�−1 =
cf

TC�0�
�T − TC�x�	 , �14�

where cm and cf are defined to be positive constants indepen-
dent of T and x. TM�x� is a latent second-order transition
temperature of the martensitic distortion, and TC�x� is a la-
tent or sometimes real second-order transition temperature of
the ferromagnetic state, when the martensitic and ferromag-
netic states appear spontaneously by themselves. Otherwise,
TM�x� and/or TC�x� can be negative.

Also for the concentration x dependences of the coeffi-
cients in Eq. �10�, we make the assumption that only c2 and
�−1 depend on x through TM�x� and TC�x� but other coeffi-
cients are all independent of x. Here, the simplest x depen-
dences of TM�x� and TC�x� are employed as follows:

TM�x� = TM�0� + �TM�1� − TM�0�	x , �15�

TC�x� = TC�0� + �TC�1� − TC�0�	x . �16�

The observed phase diagram shown in Fig. 8 directly shows
that TM�x� at high concentrations and TC�x� at low concen-
trations are positive in Ni2Mn1−xCuxGa.

To make easier the treatment of the free energy, we mea-
sure the various quantities in their suitable units as follows:

t = T/TC�0� , �17�

tm�x� = TM�x�/TC�0� = tm�0� + �tm�1� − tm�0�	x , �18�

tc�x� = TC�x�/TC�0� = 1 + �tc�1� − 1	x , �19�

ē3 = e3/�cm/I4, �20�

M̄ = M/�cf/J1 �21�

and
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F̄tot�ē3,M̄� = Ftot�e3,M�/�cf
2/J1� . �22�

After Eqs. �17�–�22� are substituted into Eq. �10�, Eq. �10�
has a simple form as

F̄�ē3,M̄� =
1

2
�t − tc�x�	M̄2 +

1

4
M̄4 + r� 1

2tm�1�
�t − tm�x�	ē3

2

+
2

3
aē3

3 +
1

4
ē3

4
 + �b +
1

2
gē3 +

1

3
pē3

2�ē3M̄2, �23�

where the new coefficients were defined as follows:

r = �cm/cf�2�J1/I4� , �24�

a = �1/2�cmI4�A3, �25�

b = �1/cf��cm/I4B2
��� , �26�

g = �cm/cfI4��G2 + G4
���� �27�

and

p = �1/cf��cm/I4�3/2�P3 + P5
���� . �28�

The values of b ,g and p depend on the direction of the
magnetization but are regarded as constants when any mag-
netic reorientation does not occur in the t-x plane. The crite-
rion for this assumption is discussed in Appendix A, where
the magnetic easy axis and the condition for occurrence of a
magnetic reorientation are given.

VI. ORDER PARAMETERS IN THE VARIOUS PHASES

As seen in Fig. 8, Ni2Mn1−xCuxGa, as well as
Ni2+xMn1−xGa, exhibits the five different phases in the t-x
plane, i.e., the paramagnetic and austenite phase labeled I,
the paramagnetic and martensite phase labeled II, the ferro-
magnetic and austenite phase labeled III, the ferromagnetic
and martensite phase labeled IV, and the premartensite phase
labeled V. In this section, the order parameters in these
phases are described.

A. Phase II

Equation �23� gives the free energy of the system in the
phase II as

F̄II�ē3,0� = r� 1

2tm�1�
�t − tm�x�	ē3

2 +
2

3
aē3

3 +
1

4
ē3

4
 . �29�

By minimizing this free energy with respect to ē3, the equi-
librium order parameter ē3 in this phase is shown to be given
by

ē3 = − a − sgn a�a2 − ��t − tm�x�	/tm�1�� . �30�

It is noticed that ē3 and a have opposite signs.

B. Phase III

In this phase, any pure martensitic distortion, i.e., the dis-
tortion which persists without the aid of the magnetization

M̄, does not occur, but the magnetization can induce the
magnetostriction. When the free energy given by Eq. �23�
except for the terms of ē3

3 and ē3
4 is minimized with respect to

ē3, the magnetostriction is found to be approximately given
by

ē3 = −
bM̄2

�r/tm�1�	�t − tm�x�	 + gM̄2
. �31�

Then, the free energy of the phase III as a function of M̄
becomes

F̄III�ē3,M̄� =
1

2
�t − tc�x�	M̄2 +

1

4
�1 −

2b2tm�1�
r�t − tm�x�	
M̄4.

�32�

This free energy gives the equilibrium M̄ as

M̄ =� �tc�x� − t	�t − tm�x�	
t − tm�x� − �2/r�b2tm�1�

�33�

at temperatures t sufficiently higher than �tm�x�
+ �2 /r�b2tm�1��.

C. Phase IV

The free energy given by Eq. �23� itself is minimized with

respects to both ē3 and M̄. First, the equilibrium M̄ under a
nonvanishing ē3 is obtained to be

M̄ = �tc�x� − 2b − gē3
2 − �2/3�pē3

3 − t . �34�

When this equation is substituted into Eq. �23�, the free en-
ergy of the system in the phase IV is expressed in terms of
only ē3 as

F̄IV�ē3,M̄� = −
1

4
��t − tc�x�	 + 2bē3 + gē3

2 +
2

3
pē3

3
2

+ r� 1

2tm�1�
�t − tm�x�	 +

2

3
aē3 +

1

4
ē3

2
ē3
2.

�35�

The equilibrium ē3 is found by solving �F̄IV�ē3 ,M̄� /�ē3=0.
Because of the presence of the terms with b and p, however,
its exact solution is too complicated, so that the equilibrium
ē3 is given only for b= p=0 as follows:

ē3 = −
r

r − g2�a + sgn a

	�a2 − � r − g2

r
�� 1

tm�1�
�t − tm�x�	 −

g

r
�t − tc�x�	
� .

�36�

As seen from this equation, ē3 diverges as r→g2. This means
that another term of ē3

6, which is not contained in the free
energy in Eq. �23�, is needed to stabilize the phase IV when
r approaches to g2. This case is out of the scope of our
analyses.
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D. Phase V

As seen in Fig. 3�b�, the magnetization is hardly affected
by the transition from the phase III into the phase V although
a tiny dip is observed in the temperature dependence of the
magnetization. This implies that another order parameter oc-
curs to coexist with the main order parameter of the uniform
magnetization. In the premartensite phase of Ni2MnGa, pho-
non softenings in the dispersion curve of the TA2 mode have
been already found by neutron scattering experiments.42,43

On the basis of this observation, Vasil’ev et al.37 tried to
analyze this phase by considering a long-period lattice struc-
ture. Since, however, the extra order parameter in this phase
has not yet been settled, this phase is left to be open also in
the present analyses.

As the result, our task becomes to find the temperature of
the transition from the phase N into the phase N� �N, N�=I,
II, III, and IV�, tc,N↔N��x�. In Appendix B, some phase
boundary lines are analytically derived in order to see their
properties and to obtain guides to numerical calculations.

VII. NUMERICAL CALCULATIONS OF THE
PHASE DIAGRAM

In this section, the phase diagram in the t-x plane is cal-
culated numerically to compare the theory and the experi-
ments on Ni2Mn1−xCuxGa. In the numerical calculations, the
values of some parameters are chosen so as to give an agree-
ment between the theory and experiments. At first, Eqs. �B1�
and �B2� are compared with the observed tc,I↔II�x� and
tc,I↔III�x� in Fig. 8 to result in

tc�1� = 0.11, �37�

tm�1� =
3.46

1 + �8/9�a2 , �38�

tm�0� = − 3.68 + tm�1� . �39�

Under these conditions, we investigate the contribution of
the b term to the phase diagram. This b term is known to be
able to cause the magnetostructural transition without the g
term.27 The inset in Fig. 9 shows the phase diagram calcu-
lated for a chosen set of the values as r=0.32, b=−0.08, a
=−0.7, and g= p=0. As seen from this figure, b has a large
magnitude to give rise to the magnetostructural transition in
a wide region of concentration. Moreover, the calculated
phase boundary line between the phases III and IV is termi-
nated at a critical concentration xc and disappears below this
xc, being in disagreement with the observed phase diagram.
Such the terminal point at xc can appear for large magnitudes
of b because the phases III and IV have the same crystallo-
graphical and magnetic symmetries for b�0.37 On the other

hand, it is derived from Eq. �23� that ē3f / ē3 and bM̄2 /r can
have similar orders, where ē3f and ē3 are a pure magneto-
striction in a ferromagnetic state in the absence of the elastic
softening by the martensitic transition and the martensitic
distortion itself, respectively. If ē3f
10−4 as in usual ferro-

magnets, and ē3
10−1 and M̄2 /r
100 as in the calculation

given below are assumed, b is estimated to be of the order of
10−3, which is much smaller than those of a ,g and p in the
following calculations. From these considerations, we as-
sume that the b term can be neglected in determining the
phase diagram of Ni2Mn1−xCuxGa. As the result, the remain-
ing parameters whose values can be chosen are r ,a ,g and p.

Before calculating the phase diagram of the real alloy
system, some phase diagrams were calculated for model al-
loy systems in order to see the roles of the various terms in
Eq. �23�. Figure 10 shows the g dependence of the phase
diagram, which was calculated for r=0.324 and a= p=0 un-
der the fixed conditions Eqs. �37�–�39�. As seen in this fig-
ure, the region of the phase IV is expanded or narrowed for
a negative or a positive value of g, respectively. This is be-
cause the martensitic and ferromagnetic states are attractive
or repulsive to each other, depending on the sign of g. All
transitions are of the second order and any magnetostructural
transition between the phases I and IV does not occur. When
the a term becomes nonvanishing, the phase diagram is dras-
tically changed as shown in Fig. 11. This figure shows the
phase diagram calculated with a=−0.7 under the same val-
ues of the other parameters as those in Fig. 10. As seen from
this figure, the transition temperatures tc,I↔II are considerably
raised by the anharmonic a term, and the crossing point of
the phase boundary lines between the phases I and II and
between the phases I and III is shifted toward a low concen-
tration. When g�0, the magnetostructural transition occurs
near the crossing point of the two phase boundary lines. In

FIG. 9. Calculated phase diagram in the temperature
t-concentration x plane of Ni2Mn1−xCuxGa with the experimental
data. The solid lines are the calculated results obtained by use of the
parameter values given in the text. The symbols are the experimen-
tal data taken from Fig. 8. A and M represent the austenite and
martensite phases, respectively. The phase boundary line between
the phases III�Ferro-A� and IV�Ferro-M� was obtained by neglect-
ing the observed premartensite phase, whose boundaries are shown
by the broken lines as a guide for the eyes. The inset shows the
phase diagram calculated on the assumption that the magnetostric-
tion is responsible for the magnetostructural transition. The black
circle represents the terminal point of the phase boundary between
the phases III�Ferro-A� and IV�Ferro-M�. For the used values of the
parameters, see the text.
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the case of g�0, on the other hand, the phase diagram be-
comes complicated near this crossing point and a reentrant
ferromagnetism can occur with increasing t in a narrow con-
centration region around the concentration corresponding to
the crossing point. Such the reentrant ferromagnetism has
been already found in Ni2Mn1+xSn1−x,

44 Ni2Mn1−xIn1−x,
45 and

Ni50−xCoxMn50−yIny,
46 being studied in a more detail else-

where. The phase transitions between the phases I and II,
those between the phases I and IV, and those between the
phases III and IV are of the first order because of the pres-
ence of the a term. �See Appendix B.� Therefore, the occur-
rence of the magnetostructural transition is considered to re-
sult from the cooperation of the attractive interaction
between the martensite and ferromagnetic states and the first-
order transition caused by the lattice anharmonicity. As seen
from this figure, the transition temperatures tc,II↔IV in the
martensite phase are drastically raised from the ferromag-

netic transition temperatures in the absence of the martensitic
distortion by the attractive interaction between the two states,
and tc,II↔IV becomes only weakly dependent on x. Moreover,
the transition temperature tc,III↔IV depends linearly on x, as
expected from Eq. �B7�. These phase diagrams do not fully
agree with the observed phase diagram of Ni2Mn1−xCuxGa
shown in Fig. 8. This disagreement between the calculated
and observed phase diagrams can be dissolved by taking into
account the term with p�0 in the free energy given by Eq.
�23�, as seen just below.

In the main panel of Fig. 9, we show the calculated phase
diagram of Ni2Mn1−xCuxGa and compare this phase diagram
with the observed one shown in Fig. 8. The chosen values of
the parameters are as follows:

r = 0.324, a = − 0.706, g = − 0.547, and p = 0.572.

�40�

As seen in this figure, the agreement between the calculated
and observed phase diagrams is satisfactory �except for the
appearance of the premartensite phase�. The term with g
gives an attraction between the martensitic and ferromag-
netic states, while the term with p gives a repulsion between
the two states. The repulsion by the latter term becomes
stronger with the larger martensitic distortions at higher con-
centrations x so that the martensitic state suppresses more
strongly the appearance of the ferromagnetic state at higher
concentrations x. This is the reason for that the calculated
transition temperature tc,II↔IV decreases with increasing x as
observed. Equations �18� and �38�–�40� give

tm�x� = − 1.28 + 3.68x . �41�

This shows that tm�x� becomes negative for x�0.348. There-
fore, the observed martensitic states with high transition tem-
peratures at low concentrations are stabilized by the attrac-
tive interaction between the martensitic and ferromagnetic
states in addition to the lattice anharmonic energy.

In order to see explicitly the properties of each phase and
its transition, we show in Fig. 12 the temperature depen-
dences of the order parameters which were calculated by use
of the same parameter values as those given by Eq. �40�. As
seen in this figure, the martensitic distortions ē3 vanish al-
ways discontinuously at the martensitic transition tempera-

tures tc,I↔II, tc,III↔IV, and tc,I↔IV. The magnetizations M̄, on
the other hand, vanish continuously at tc,I↔III and tc,II↔IV so
that the magnetic transitions at these temperatures are of the

second order. However, the magnetizations M̄ also change
discontinuously at tc,III↔IV and tc,I↔IV. From Eqs. �17�, �22�,
and �23�, we see that the increase in the total entropy by a
transition from the phase N to the phase N� with increasing
temperature t is given by the sum of the entropy increase in
the ferromagnetic system, 
Sf, and that of the martensitic
system, 
Sm, as


S = 
Sf + 
Sm, �42�


Sf =
cf

2

2J1TC�0�
��M̄N�2 − �M̄N��

2� , �43�

FIG. 10. Calculated phase diagrams in the temperature
t-concentration x plane for model alloy systems. The phase dia-
grams were calculated for the three different values of g under a
=b= p=0 and Eqs. �37�–�39�. The lines 1, 2 and 3 are obtained for
g=−0.2, 0, and 0.08, respectively. A and M represent the austenite
and martensite phases, respectively. For each value of g, the dia-
gram is spanned by the four phases I�Para-A�, II�Para-M�, III�Ferro-
A�, and IV�Ferro-M�.

FIG. 11. Calculated phase diagrams in the temperature
t-concentration x plane for model alloy systems. The phase dia-
grams were calculated for the three different values of g under a
=−0.7, b= p=0, and Eqs. �37�–�39�. The lines 1, 2 and 3 are ob-
tained for g=−0.2, 0, and 0.08, respectively. A and M represent the
austenite and martensite phases, respectively. For each value of g,
the diagram is spanned by the four phases I�Para-A�, II�Para-M�,
III�Ferro-A�, and IV�Ferro-M�.
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Sm =
cm

2

2I4TM�1�
��ē3,N�2 − �ē3,N��

2� , �44�

where M̄N and ē3,N are the order parameters in the phase N.
Equations �43� and �44� prove that a discontinuous change of
one of the two order parameters accompanies a discontinu-
ous change in the entropy, and therefore the first-order tran-
sition, of the system with that order parameter. As the result,
the transitions of the martensitic system at tc,I↔II, tc,III↔IV,
and tc,I↔IV, and also those of the ferromagnetic system at
tc,III↔IV and tc,I↔IV are of the first order. Such the first-order
transition of the ferromagnetic system is forced by the first-
order transition of the martensitic system with the anhar-
monic energy through the attractive interaction between the
two systems. The calculated continuous and discontinuous

transitions of M̄ are consistent with the observations shown
in Figs. 3�b�, 4�b�, 5�b�, and 6�b�. It is mentioned here that
the phase boundary line between the phases III and IV in the
main panel of Fig. 9 was calculated by neglecting the appear-
ance of the premartensite phase V below x�0.1.

Finally, it is noticed that the observed magnetization M̄
decreases below tc,III↔IV as shown in Fig. 4�b�, contrary to

the calculated result that M̄ increases below this transition
temperature as seen in Fig. 12. This disagreement can be
explained as follows. In a martensitic state with a large dis-
tortion, the uniaxial magnetic anisotropy energy given by Eq.
�A10� becomes so large that the magnetization directs to the
direction of the tetragonal distortion. When martensitic vari-
ants are distributed in the phase IV, magnetic domains with
different directions are inevitably distributed. Nevertheless,
magnetizations are not saturated to equilibrium magnetiza-
tions in measuring magnetizations under a small magnetic
field, H=1 kOe. In fact, the magnetization of the end mem-

ber of this alloy system, Ni2MnGa, which was determined by
applying magnetic fields up to 10 T, increases with the tran-
sition from the phase V to the phase IV.47,48

VIII. CONCLUDING REMARKS

Magnetization and initial permeability measurements
were carried out on the ferromagnetic shape memory alloys
Ni2Mn1−xCuxGa �0�x�0.4�. On the basis of the experimen-
tal results, the magnetic phase diagram of Ni2Mn1−xCuxGa
�0�x�0.4� was determined. The obtained phase diagram
reveals that its characteristics, such as an inversion between
TC and TM with increasing x and the appearance of the mag-
netostructural transition, are very similar to those in the
phase diagram of Ni2+xMn1−xGa, except for the different con-
centration regions for the appearances of the magnetostruc-
tural transitions in the two alloy systems. The observed fact
that the phase diagram is robust in spite of different constitu-
ent atoms in alloys may be suggestive in identifying the ori-
gin of the martensitic transition. Since both the substitutions
of Cu and Ni for Mn in these alloys increase the values of the
average number of valence electron per atom e /a, the simi-
larity of the two phase diagrams does not contradict with an
assumption that the martensitic transition has its origin in
band electrons, as in the mechanism of the band Jahn-Teller
effect.49–51 However, the concentrations for the appearances
of the magnetostructural transitions in Ni2Mn1−xCuxGa are
higher than those in Ni2+xMn1−xGa in spite of the fact that Cu
supplies valence electrons more than that of Ni. This result
may imply that a simple picture on the basis of the rigid-
band theory no longer holds.

In order to understand the phase diagram observed for
Ni2Mn1−xCuxGa, we restudied the phenomenological theo-
ries on Ni2+xMn1−xGa by Vasil’ev et al.27,37 and by Khovaylo
et al.29 and found that these theories should be improved by
taking into account the energy of the higher order couplings
between the strain and the magnetization. This improvement
resolved the disagreements between the theories and the ex-
perimental results that Vasil’ev et al.’s theory27,37 gives a
terminal point on the phase boundary line between the
phases III and IV, and the phase transitions between the two
phases vanish at low concentrations and that Khovaylo et
al.’s theory29 seems to need an extraordinary large magneto-
volume strain. As the result, we could obtain the satisfactory
agreement between the calculated and observed phase dia-
grams for Ni2Mn1−xCuxGa. The present theory confirms the
followings: The magnetostructural transition can appear
when the biquadratic coupling between the strain and the
magnetization favors the coexistence of the strain and the
magnetization and the martensitic transition is of the first
order because of the presence of the lattice anharmonicity.
The phase IV at low concentrations is realized by both the
magnetoelastic coupling and the lattice anharmonicity al-
though the martensitic distortion cannot appear spontane-
ously by itself. Since the magnetization and the martensitic
distortion couples strongly to each other, the magnetizations
are forced to change discontinuously on the phase boundary
lines between the phases III and IV, and between the phases
I and IV by the discontinuous changes in the martensitic

FIG. 12. Calculated temperature dependences of the order pa-
rameters at three different concentrations x. The solid lines are the

calculated magnetizations M̄ while the broken lines are the calcu-
lated distortions ē3. The lines 1 were obtained for x=0.1 in the
concentration region where the first order transition between the
phases III and IV occurs. The lines 2 were obtained for x=0.25 in
the concentration region where the magnetostructural transition oc-
curs. The lines 3 were obtained for x=0.35 in the concentration
region where the second-order transition occurs between the phases
II and IV. The used values of the parameters are same as those for
the phase diagram in the main panel of Fig. 9.
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distortions on these lines. Further, it can be expected that one
of an external stress and a magnetic field can affect consid-
erably both the martensitic distortion and the magnetization
through this strong coupling. This phenomenon becomes
most conspicuous for alloys in which both the martensitic
and ferromagnetic systems exhibit the first order transitions
as the result of their strong coupling.

In conclusion, the phase diagram in the temperature-
concentration plane was obtained experimentally for the
Heusler-type alloy Ni2Mn1−xCuxGa. It was found that this
compound system also exhibits both the martensite phase,
the ferromagnetic phase, and the coexisting phase of the mar-
tensitic and ferromagnetic states and that the overall feature
of this phase diagram is very similar to that of
Ni2+xMn1−xGa. The observed phase diagram was explained,
except for the appearance of the premartensite phase, on the
basis of the phenomenological theory, which improved the
existing theories by taking account of the higher order cou-
plings between the strain and the magnetization.
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APPENDIX A: MAGNETIC EASY AXIS AND CONDITION
FOR OCCURRENCE OF MAGNETIC REORIENTATION

Let us consider a state in which the lattice is subjected to
the tetragonal distortion along the c axis and the magnetiza-
tion is in the �010� plane. Then, we have

M̄z = M̄ cos �, M̄x = M̄ sin �, and M̄y = 0, �A1�

where � is the angle between the c axis and the magnetiza-
tion. By use of Eqs. �6� and �23�, the energy giving rise to the

magnetic anisotropy, F̄A���, is shown to be expressed by

F̄A��� = k1M̄z
2M̄x

2 + �bē3 +
1

2
gē3

2 +
1

3
pē3

3�M̄2 �A2�

with

k1 = K1/J1. �A3�

Here, b, g, and p, which are given by Eqs. �26�–�28�, depend
on � as

b = b2
��� , �A4�

g = g2 + g4
��� �A5�

and

p = p3 + p5
��� , �A6�

where

b2 = �1/cf��cm/I4B2, �A7�

g� = �cm/cfI4�G�, �� = 2,4� �A8�

and

p� = �1/cf��cm/I4�3/2P�, �� = 3,5� . �A9�

Substitution of Eqs. �A4�–�A6� and �11� into Eq. �A2� gives

F̄A��� =
3
�6

�b2ē3 +
1

2
g4ē3

2 +
1

3
p5ē3

3�M̄2 cos2 �

+ �1/4�k1M̄4 sin2�2�� , �A10�

where terms independent of � were neglected.
From Eq. �A10�, we see that the magnetic easy axis is the

c axis under k1�0, when the condition

�b2 +
1

2
g4ē3 +

1

3
p5ē3

2�ē3 � 0 �A11�

is satisfied. This is just the case where we have studied in the
text. If a change in ē3, which depends on temperature t and
concentration x, violates the condition �A11�, a reorientation
of the magnetization from the c axis to the a axis occurs at ē3
satisfying

b2 +
1

2
g4ē3 +

1

3
p5ē3

2 = 0. �A12�

Such a magnetic reorientation has not been investigated ex-
perimentally on Ni2Mn1−xCuxGa.

APPENDIX B: ANALYSES OF THE PHASE BOUNDARY
LINES

The phase boundary lines are briefly analyzed on the basis
of Eq. �23�. The analyses are done along a parallel way to
those in Refs. 27 and 29.

1. Phase boundary line between the phases I and II

Since the transition between the phases I and II is of the

first order, ē3 and tc,I↔II�x� should satisfy F̄II�ē3 ,0�=0 and

�F̄II�ē3 ,0� /�ē3=0, where F̄N�ē3 ,M̄� is the free energy in the
phase N. These equations give

tc,I↔II�x� = tm�x� + �8/9�a2tm�1� . �B1�

2. Phase boundary line between the phases I and III

When �b� is sufficiently small and the ferromagnetic tran-
sition is of the second order, the transition temperature in this
case becomes tc�x� itself so that

tc,I↔III�x� = 1 + �tc�1� − 1�x . �B2�

3. Phase boundary line between the phases II and IV

When �b� is again sufficiently small, the ferromagnetic
transition is of the second order in the martensite phase. This
gives
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tc,II↔IV�x� = tc�x� − 2bē3 − gē3
2 − �2/3�pē3

3, �B3�

where ē3, which is given by Eq. �30�, also depends on
tc,II↔IV�x�. This equation for tc,II↔IV�x� can be solved analyti-
cally for b= p=0 as follows:

tc,II↔IV�x� = tm�x� − �tm�1�/�g − tm�1�	2�

	��tc�x� − tm�x� − 2ga2	�g2 − tm�1�	 + 2g2a2

− 2ga�a2tm�1�2 + �tc�x� − tm�x�	�g − tm�1�	� .

�B4�

4. Phase boundary line between the phases III and IV

The transition of ē3 is discontinuous for a�0 even in the
presence of the magnetization. On this phase boundary,
therefore, the following equations should be satisfied.

�

� ē3

F̄IV�ē3,M̄IV� = 0, and
�

�M̄IV

F̄IV�ē3,M̄IV� = 0,

�B5�

F̄III�0,M̄III� = F̄IV�ē3,M̄IV� , �B6�

where M̄III is given by Eq. �33�. Elimination of ē3 and M̄IV
from Eqs. �B5� and �B6� can be done only for b= p=0, which
gives tc,III↔IV�x� as

tc,III↔IV�x� = �1/�r − gtm�1�	�

	��rtm�0� − gtm�1�	 +
8

9
� r2

r − g2�a2tm�1�

+ �r�tm�1� − tm�0�	 − gtm�1��tc�1� − 1	�x� .

�B7�

5. Phase boundary line between the phases I and IV

Also on this phase boundary line, the equilibrium ē3 and

M̄IV should satisfy Eq. �B5� but

F̄IV�ē3,M̄IV� = 0. �B8�

Elimination of ē3 and M̄IV from Eqs. �B5� and �B8� can be
done analytically only for b= p=0 and tc�x�� tm�x�. Then,
tc,I↔IV�x� is found to be expressed by Eq. �B7� with tc,I↔IV�x�
replacing tc,III↔IV�x� and a2� replacing a2, where � is defined
by

� = �1/2�1 − ��2���1 − 9��

+ sgn�1 − ���1 + 9� + 27�1 + ���2� �B9�

with

� = tm�1�2�r − g2�/�r − gtm�1��2. �B10�

1 K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V.
Kokorin, Appl. Phys. Lett. 69, 1966 �1996�.

2 Y. Ma, A. Awaji, K. Watanabe, M. Matsumoto, and N. Koba-
yashi, Solid State Commun. 113, 671 �2000�.

3 K. Oikawa, W. Ito, Y. Imano, Y. Sutou, R. Kainuma, K. Ishida,
S. Okamoto, O. Kitakami, and T. Kanomata, Appl. Phys. Lett.
88, 122507 �2006�.

4 T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and
A. Planes, Phys. Rev. B 73, 174413 �2006�.

5 V. K. Sharma, M. K. Chattopadhyay, and S. B. Roy, J. Phys.:
Condens. Matter 20, 425210 �2008�.

6 W. Ito, K. Ito, R. Y. Umetsu, R. Kainuma, K. Koyama, K. Wa-
tanabe, A. Fujita, K. Oikawa, K. Ishida, and T. Kanomata, Appl.
Phys. Lett. 92, 021908 �2008�.

7 R. Y. Umetsu, Y. Kusakari, T. Kanomata, K. Suga, Y. Sawai, K.
Kindo, K. Oikawa, R. Kainuma, and K. Ishida, J. Phys. D: Appl.
Phys. 42, 075003 �2009�.

8 R. Y. Umetsu, W. Ito, K. Ito, K. Koyama, A. Fujita, K. Oikawa,
T. Kanomata, R. Kainuma, and K. Ishida, Scr. Mater. 60, 25
�2009�.

9 T. Krenke, E. Duman, M. Acet, E. W. Wassermann, X. Moya, L.
Mañosa, and A. Planes, Nature Mater. 4, 450 �2005�.

10 T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and
A. Planes, Phys. Rev. B 72, 014412 �2005�.

11 R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa,
A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, and T. Ka-
nomata, Appl. Phys. Lett. 88, 192513 �2006�.

12 D. L. Schlagel, W. M. Yuhasz, K. W. Dennis, R. W. McCallum,
and T. A. Lograsso, Scr. Mater. 59, 1083 �2008�.

13 T. Omori, K. Watanabe, R. Y. Umetsu, R. Kainuma, and K.
Ishida, Appl. Phys. Lett. 95, 082508 �2009�.

14 R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto,
O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida,
Nature �London� 439, 957 �2006�.

15 Y. D. Wang, Y. Ren, E. W. Huang, Z. H. Nie, G. Wang, Y. D.
Liu, J. N. Deng, L. Zuo, H. Choo, P. K. Liaw, and D. E. Brown,
Appl. Phys. Lett. 90, 101917 �2007�.

16 Y. D. Wang, E. W. Huang, Y. Ren, Z. H. Nie, G. Wang, Y. D.
Liu, J. N. Deng, H. Choo, P. K. Liaw, D. E. Brown, and L. Zuo,
Acta Mater. 56, 913 �2008�.

17 R. Kainuma, K. Oikawa, W. Ito, Y. Sutou, T. Kanomata, and K.
Ishida, J. Mater. Chem. 18, 1837 �2008�.

18 H. E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y. I. Chumlyakov,
and H. J. Maier, Adv. Funct. Mater. 19, 983 �2009�.

19 F. Hu, J. Sun, G. Wu, and B. Shen, J. Appl. Phys. 90, 5216
�2001�.

20 F. X. Hu, B. G. Shen, J. R. Sun, and G. H. Wu, Phys. Rev. B 64,
132412 �2001�.

21 L. Pareti, M. Solzi, F. Albertini, and A. Paoluzi, Eur. Phys. J. B
32, 303 �2003�.

22 J. Marcos, L. Mañosa, A. Planes, F. Casanova, X. Batlle, A.
Labarta, and B. Matínez, J. Phys. IV 115, 105 �2004�.

23 A. Aliev, A. Batdalov, S. Bosko, V. Buchelnikov, I. Dikshtein, V.
Khovailo, V. Koledov, R. Levitin, V. Shavrov, and T. Takagi, J.

MARTENSITIC TRANSITION, FERROMAGNETIC… PHYSICAL REVIEW B 82, 214423 �2010�

214423-13

http://dx.doi.org/10.1063/1.117637
http://dx.doi.org/10.1016/S0038-1098(99)00569-4
http://dx.doi.org/10.1063/1.2187414
http://dx.doi.org/10.1063/1.2187414
http://dx.doi.org/10.1103/PhysRevB.73.174413
http://dx.doi.org/10.1088/0953-8984/20/42/425210
http://dx.doi.org/10.1088/0953-8984/20/42/425210
http://dx.doi.org/10.1063/1.2833699
http://dx.doi.org/10.1063/1.2833699
http://dx.doi.org/10.1088/0022-3727/42/7/075003
http://dx.doi.org/10.1088/0022-3727/42/7/075003
http://dx.doi.org/10.1016/j.scriptamat.2008.08.022
http://dx.doi.org/10.1016/j.scriptamat.2008.08.022
http://dx.doi.org/10.1038/nmat1395
http://dx.doi.org/10.1103/PhysRevB.72.014412
http://dx.doi.org/10.1063/1.2203211
http://dx.doi.org/10.1016/j.scriptamat.2008.07.039
http://dx.doi.org/10.1063/1.3213353
http://dx.doi.org/10.1038/nature04493
http://dx.doi.org/10.1063/1.2712509
http://dx.doi.org/10.1016/j.actamat.2007.10.045
http://dx.doi.org/10.1039/b713947k
http://dx.doi.org/10.1002/adfm.200801322
http://dx.doi.org/10.1063/1.1410890
http://dx.doi.org/10.1063/1.1410890
http://dx.doi.org/10.1103/PhysRevB.64.132412
http://dx.doi.org/10.1103/PhysRevB.64.132412
http://dx.doi.org/10.1140/epjb/e2003-00102-y
http://dx.doi.org/10.1140/epjb/e2003-00102-y
http://dx.doi.org/10.1016/j.jmmm.2003.12.1363


Magn. Magn. Mater. 272-276, 2040 �2004�.
24 A. Planes, L. Mañosa, X. Moya, J. Marcos, M. Acet, T. Krenke,

S. Aksoy, and E. F. Wassermann, Adv. Mater. Res. 52, 221
�2008�.

25 A. Planes, L. Mañosa, and M. Acet, J. Phys.: Condens. Matter
21, 233201 �2009�.

26 M. Matsumoto, T. Takagi, J. Tani, T. Kanomata, N. Muramatsu,
and A. N. Vasil’ev, Mater. Sci. Eng., A 273-275, 326 �1999�.

27 A. N. Vasil’ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V.
G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T.
Takagi, and J. Tani, Phys. Rev. B 59, 1113 �1999�.

28 W. H. Wang, J. L. Chen, S. X. Gao, G. H. Wu, Z. Wang, Y. F.
Zheng, L. C. Zhao, and W. S. Zhan, J. Phys.: Condens. Matter
13, 2607 �2001�.

29 V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov,
M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N.
Vasiliev, Phys. Rev. B 72, 224408 �2005�.

30 P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A.
Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, J.
Phys. D: Appl. Phys. 39, 865 �2006�.

31 M. Khan, I. Dubenko, S. Stadler, and N. Ali, J. Appl. Phys. 97,
10M304 �2005�.

32 A. M. Gomes, M. Khan, S. Stadler, N. Ali, I. Dubenko, A. Y.
Takeuchi, and A. P. Guimarães, J. Appl. Phys. 99, 08Q106
�2006�.

33 S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I.
Dubenko, A. Y. Takeuchi, and A. P. Guimarães, Appl. Phys.
Lett. 88, 192511 �2006�.

34 C. Jiang, J. Wang, P. Li, A. Jia, and H. Xu, Appl. Phys. Lett. 95,
012501 �2009�.

35 B. R. Gautam, I. Dubenko, J. C. Mabon, S. Stadler, and N. Ali,
J. Alloys Compd. 472, 35 �2009�.

36 A. T. Zayak, V. D. Buchelnikov, and P. Entel, Phase Transitions
75, 243 �2002�.

37 A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo,
and É. I. Éstrin, Phys. Usp. 46, 559 �2003�.

38 T. Kanomata, T. Nozawa, D. Kikuchi, H. Nishihara, K. Koyama,
and K. Watanabe, Int. J. Appl. Electromagn. Mech. 21, 151
�2005�.

39 T. Ohba, N. Miyamoto, K. Fukuda, T. Fukuda, T. Kakeshita, and
K. Kato, Smart Mater. Struct. 14, S197 �2005�.

40 P. J. Brown, J. Crangle, T. Kanomata, M. Matsumoto, K.-U.
Neumann, B. Ouladdiaf, and K. R. A. Ziebeck, J. Phys.: Con-
dens. Matter 14, 10159 �2002�.

41 J. Kanamori, in Magnetism, edited by G. T. Rado and H. Suhl
�Academic Press, New York, 1963�, Vol. 1, p. 127.

42 A. Zheludev, S. M. Shapiro, P. Wochner, A. Schwartz, M. Wall,
and L. E. Tanner, Phys. Rev. B 51, 11310 �1995�.

43 X. Moya, D. González-Alonso, L. Mañosa, A. Planes, V. O.
Garlea, T. A. Lograsso, D. L. Schlagel, J. L. Zarestky, S. Aksoy,
and M. Acet, Phys. Rev. B 79, 214118 �2009�.

44 T. Kanomata, K. Fukushima, H. Nishihara, R. Kainuma, W. Ito,
K. Oikawa, K. Ishida, K.-U. Neumann, and K. R. A. Ziebeck,
Mater. Sci. Forum 583, 119 �2008�.

45 T. Kanomata, T. Yasuda, S. Sasaki, H. Nishihara, R. Kainuma,
W. Ito, K. Oikawa, K. Ishida, K.-U. Neumann, and K. R. A.
Ziebeck, J. Magn. Magn. Mater. 321, 773 �2009�.

46 W. Ito, Y. Imano, R. Kainuma, Y. Sutou, K. Oikawa, and K.
Ishida, Metall. Mater. Trans. A 38, 759 �2007�.

47 V. V. Khovailo, V. Novosad, T. Takagi, D. A. Filippov, R. Z.
Levitin, and A. N. Vasil’ev, Phys. Rev. B 70, 174413 �2004�.

48 P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak,
Philos. Mag. B 49, 295 �1984�.

49 M. Kataoka, Phys. Lett. 80A, 35 �1980�; Phys. Rev. B 28, 2800
�1983�.

50 M. Kataoka and N. Toyota, Phase Transitions 8, 157 �1987�.
51 W. Weber and L. F. Mattheiss, Phys. Rev. B 25, 2270 �1982�.

KATAOKA et al. PHYSICAL REVIEW B 82, 214423 �2010�

214423-14

http://dx.doi.org/10.1016/j.jmmm.2003.12.1363
http://dx.doi.org/10.4028/www.scientific.net/AMR.52.221
http://dx.doi.org/10.4028/www.scientific.net/AMR.52.221
http://dx.doi.org/10.1088/0953-8984/21/23/233201
http://dx.doi.org/10.1088/0953-8984/21/23/233201
http://dx.doi.org/10.1016/S0921-5093(99)00381-0
http://dx.doi.org/10.1103/PhysRevB.59.1113
http://dx.doi.org/10.1088/0953-8984/13/11/316
http://dx.doi.org/10.1088/0953-8984/13/11/316
http://dx.doi.org/10.1103/PhysRevB.72.224408
http://dx.doi.org/10.1088/0022-3727/39/5/S13
http://dx.doi.org/10.1088/0022-3727/39/5/S13
http://dx.doi.org/10.1063/1.1847131
http://dx.doi.org/10.1063/1.1847131
http://dx.doi.org/10.1063/1.2164415
http://dx.doi.org/10.1063/1.2164415
http://dx.doi.org/10.1063/1.2202751
http://dx.doi.org/10.1063/1.2202751
http://dx.doi.org/10.1063/1.3155199
http://dx.doi.org/10.1063/1.3155199
http://dx.doi.org/10.1016/j.jallcom.2008.05.021
http://dx.doi.org/10.1080/01411590290023139
http://dx.doi.org/10.1080/01411590290023139
http://dx.doi.org/10.1070/PU2003v046n06ABEH001339
http://dx.doi.org/10.1088/0964-1726/14/5/004
http://dx.doi.org/10.1088/0953-8984/14/43/313
http://dx.doi.org/10.1088/0953-8984/14/43/313
http://dx.doi.org/10.1103/PhysRevB.51.11310
http://dx.doi.org/10.1103/PhysRevB.79.214118
http://dx.doi.org/10.4028/www.scientific.net/MSF.583.119
http://dx.doi.org/10.1016/j.jmmm.2008.11.079
http://dx.doi.org/10.1007/s11661-007-9094-9
http://dx.doi.org/10.1103/PhysRevB.70.174413
http://dx.doi.org/10.1080/13642817408246515
http://dx.doi.org/10.1016/0375-9601(80)90447-8
http://dx.doi.org/10.1103/PhysRevB.28.2800
http://dx.doi.org/10.1103/PhysRevB.28.2800
http://dx.doi.org/10.1080/01411598708209374
http://dx.doi.org/10.1103/PhysRevB.25.2270

