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Comparing numerically evaluated excitation gaps of dimerized spin-1
2 XXZ chains with the gap formula for

the low-energy effective sine-Gordon theory, we determine coefficients dxy and dz of bosonized dimerization
operators in spin-1

2 XXZ chains, which are defined as �−1� j�Sj
xSj+1

x +Sj
ySj+1

y �=dxy sin��4���x��+¯ and
�−1� jSj

zSj+1
z =dz sin��4���x��+¯. We also calculate the coefficients of both spin and dimer operators for the

spin-1
2 Heisenberg antiferromagnetic chain with a nearest-neighbor coupling J and a next-nearest-neighbor

coupling J2=0.2411J. As applications of these coefficients, we present ground-state phase diagrams of dimer-
ized spin chains in a magnetic field and antiferromagnetic spin ladders with a four-spin interaction. The optical
conductivity and electric polarization of one-dimensional Mott insulators with Peierls instability are also
evaluated quantitatively.
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I. INTRODUCTION

Quantum magnets in one dimension �1D� are a basic class
of many-body systems in condensed matter and statistical
physics �see, e.g., Refs. 1 and 2�. They have offered various
kinds of topics in both experimental and theoretical studies
for a long time. In particular, the spin-1

2 XXZ chain is a
simple though realistic system in this field. The Hamiltonian
is defined by

HXXZ = J�
j

�Sj
xSj+1

x + Sj
ySj+1

y + �zSj
zSj+1

z � , �1�

where Sj
� is � component of a spin-1

2 operator on jth site,
J�0 is the exchange coupling constant, and �z is the aniso-
tropy parameter. This model is exactly solved by integrabil-
ity methods,3,4 and the ground-state phase diagram has been
completed. Three phases appear depending on �z; the anti-
ferromagnetic �AF� phase with a Néel order �Sj

z�=−�Sj+1
z �

��z�1�, the critical Tomonaga-Luttinger liquid �TLL� phase
�−1��z�1�, and the fully polarized phase with �Sj

z�=1 /2
��z�−1�. In and around the TLL phase, the low-energy and
long-distance properties can be understood via effective-field
theory techniques such as bosonization and conformal field
theory �CFT�.1,2,5–7 These theoretical results nicely explain
experiments of several quasi-1D magnets. The deep knowl-
edge of this model is also useful for analyzing plentiful re-
lated magnetic systems, such as spin-1

2 chains with some
perturbations �e.g., external fields,8 additional magnetic
anisotropies,9–12 dimerization13–15�, coupled spin chains,16,17

spatially anisotropic two-dimensional or three-dimensional
spin systems,18–20 etc.

A recent direction of studying spin chains is to establish
solid correspondences between the model �1� and its effec-
tive theory. For example, Lukyanov and his
collaborators21–23 have analytically predicted coefficients of
bosonized spin operators in the TLL phase. Hikihara and
Furusaki24,25 have also determined them numerically in the
same chains with and without a uniform Zeeman term. Using
these results, one can now calculate amplitudes of spin-

correlation functions as well as their critical exponents. Fur-
thermore, effects of perturbations on an XXZ chain can also
be calculated with high accuracy. It therefore becomes pos-
sible to quantitatively compare theoretical and experimental
results in quasi 1D magnet. The purpose of the present study
is to attach a new relationship between the spin-1

2 XXZ chain
and its bosonized effective theory. Namely, we numerically
evaluate coefficients of bosonized dimer operators in the
TLL phase of the XXZ chain. Dimer operators �−1� jSj

�Sj+1
� , as

well as spin operators, are fundamental degrees of freedom
in spin-1

2 AF chains. In fact, the leading terms of both
bosonized spin and dimer operators have the same scaling
dimension 1/2 at the SU�2�-symmetric AF point �z=1 �see
Sec. II�.

In Refs. 24 and 25, Hikihara and Furusaki have used
density-matrix renormalization-group �DMRG� method in an
efficient manner in order to accurately evaluate coefficients
of spin operators of an XXZ chain in a magnetic field. Instead
of such a direct powerful method, we utilize the relationship
between a dimerized XXZ chain and its effective sine-
Gordon theory11,26 to determine the coefficients of dimer op-
erators �defined in Sec. II�, i.e., excitation gaps in dimerized
spin chains are evaluated by numerical diagonalization
method and are compared with the gap formula of the effec-
tive sine-Gordon theory. In other words, we derive the infor-
mation on uniform spin-1

2 XXZ chains from dimerized �de-
formed� chains. Moreover, we also determine the coefficients
of both spin and dimer operators for the spin-1

2 Heisenberg
�i.e., XXX� AF chain with an additional next-nearest-
neighbor �NNN� coupling J2=0.2411J in the similar strategy.
As seen in Sec. III D, evaluated coefficients are more reliable
for the J-J2 model, since the marginal terms vanish in its
effective theory.

The plan of this paper is as follows. In Sec. II, we shortly
summarize the bosonization of XXZ spin chains. Both the
XXZ chain with dimerization and the chain in a staggered
magnetic field are mapped to a sine-Gordon model. We also
consider the AF Heisenberg chain with NNN coupling J2
=0.2411J. In Sec. III, we explain how to obtain the coeffi-
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cients of dimer and spin operators by using numerical diago-
nalization method. The evaluated coefficients are listed in
Tables I and II and Fig. 4. These are the main results of this
paper. For comparison, the same dimer coefficients are also
calculated by using the formula of the ground-state energy of
the sine-Gordon model. We find that the coefficients fixed by
the gap formula are more reliable. We apply these coeffi-
cients to several systems and physical quantities related to an
XXZ chain �dimerized spin chains under a magnetic field,
spin ladders with a four-spin exchange and optical response
of dimerized 1D Mott insulators� in Sec. IV. Finally our re-
sults are summarized in Sec. V.

II. DIMERIZED CHAIN AND SINE-GORDON MODEL

In this section, we explain the relationship between a
dimerized XXZ chain and the corresponding sine-Gordon
theory in the easy-plane region −1��z�1. XXZ chains in a
staggered field and the AF Heisenberg chain with NNN cou-
pling J2=0.2411J are also discussed. The coefficients of
dimer operators are defined in Eq. �7�.

A. Bosonization of spin-1
2 XXZ chain

We first review the effective theory for undimerized spin
chain �1�. According to the standard strategy, XXZ Hamil-
tonian �1� is bosonized as

Heff
XXZ =	 dx
v

2
�K−1��x��2 + K��x��2� − v

	

2�
cos��16���

+ ¯� �2�

in the TLL phase. Here, ��x� and ��x� are dual scalar fields,
which satisfy the commutation relation,

���x�,��x��� = − i
step�x − x�� �3�

with x= ja �a is the lattice spacing�. As we see in Eq. �6�,
cos��16��� is irrelevant in −1��z�1, and becomes mar-
ginal at the SU�2�-symmetric AF Heisenberg point �z=1.
The coupling constant 	 has been determined exactly.23,27

Two quantities K and v denote the TLL parameter and spinon
velocity, respectively, which can be exactly evaluated from
Bethe ansatz:1,28

K =
�

2�� − cos−1 �z�
=

1

4�R2 =
1

2�
, �4a�

v = Ja
��1 − �z

2

2 cos−1 �z
= Ja

sin����
2�1 − ��

. �4b�

Here we have introduced new parameters � and R. The
former is the critical exponent of two-point spin-correlation
functions and used in the discussion below. The latter is
called the compactification radius. It fixes the periodicity of
fields � and � as � /�K�� /�K+2�R and �K���K�
+1 /R. Using the scalar fields � and �, we can obtain the
bosonized representation of spin operators

Sj
z 

a
��

�x� + �− 1� ja1 cos��4��� + ¯ , �5a�

Sj
+  ei����b0�− 1� j + b1 cos��4��� + ¯� , �5b�

where an and bn are nonuniversal constants, and some of
them with small n have been determined accurately in Refs.
21–25. In this formalism, vertex operators are normalized
as21–23

�eiq��x�e−iq��x��� = � a

�x − x��
�Kq2/2�

at �x − x�� � a . �6�

This means that the operator eiq��x� has scaling dimension
Kq2 / �4��.

In addition to the spin operators, the bosonized forms of
the dimer operators are known to be1,2,5,6

�− 1� j�Sj
xSj+1

x + Sj
ySj+1

y �  dxy sin��4��� + ¯ , �7a�

�− 1� jSj
zSj+1

z  dz sin��4��� + ¯ . �7b�

In contrast to the spin operators, the coefficients dxy and dz
have never been evaluated so far. To determine them is the
subject of this paper. It seems to be possible to calculate dxy,z
by utilizing Eq. �5� and operator-product-expansion �OPE�
technique5–7 but it requires the correct values of all the fac-
tors an and bn.25 Therefore, we should interpret that the
dimer coefficients dxy,z are independent of spin coefficients
an and bn.

B. Bosonization of dimerized spin chain

Next, let us consider a bond-alternating XXZ chain whose
Hamiltonian is given as

HXXZ- = J�
j

��1 + �− 1� jxy��Sj
xSj+1

x + Sj
ySj+1

y �

+ ��z + �− 1� jz�Sj
zSj+1

z � . �8�

In the weak dimerization regime of �xy,z��1, the bosoniza-
tion is applicable and the dimerization terms can be treated
perturbatively. From formula �7�, the effective Hamiltonian
of Eq. �8� is

Heff
XXZ- =	 dx
v

2
�K−1��x��2 + K��x��2�

+
J

a
�xydxy + zdz�sin��4��� + ¯� . �9�

Here, we have neglected all of the irrelevant terms including
cos��16���. This is nothing but an integrable sine-Gordon
model �see, e.g., Refs. 11 and 26 and references therein�. The
sin��4��� term has a scaling dimension K, and is relevant
when K�2, i.e., −0.7071��z�1. In this case, an excitation
gap opens and a dimerization �Sj

�Sj+1
� −Sj+1

� Sj+2
� ��0 occurs.

The excitation spectrum of the sine-Gordon model has been
known,11,26 and three types of elementary particles appear; a
soliton, the corresponding antisoliton, and bound states of
the soliton and the antisoliton �called breathers�. The soliton
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and antisoliton have the same mass gap ES. There exist
�4�−1� breathers, in which �A� stands for the integer part of
A. The mass of soliton and nth breather EBn

are related as
follows:

EBn
= 2ES sin� n�

2�4� − 1��, n = 1, . . . ,�4� − 1� . �10�

The breather mass in units of the soliton mass is shown in
Fig. 1 as a function of �z. Note that there is no breather in
the ferromagnetic side �z�0, and the lightest breather with
mass EB1

is always heavier than the soliton in the present
easy-plane regime. Following Refs. 21 and 29, the soliton
mass is also analytically represented as

ES

J
=

v
Ja

2
��

�� 1

8� − 2
�

�� 2

4 − 1/��

� � Ja

v

��xydxy + zdz�
2

��4 − 1/�
4

�
�� 1

4�
� �

2/�4−1/��

.

�11�

In addition, the difference between the ground-state energy
Efree of the free-boson theory �2� with 	=0 per site and that
of the sine-Gordon theory �9�, ESG, has been predicted as21,29

�EGS

J
=

Efree − ESG

J
=

1

4

v
Ja
� Ja

v

ES

J
�2

tan��

2

1

4� − 1
� .

�12�

However, we should note that the above formula is invalid
for the ferromagnetic side �z�0 ���1 /2� since it diverges
at the XY point �z=0 ��=1 /2�.

A similar sine-Gordon model also emerges in spin-1
2 XXZ

chains in a staggered field,

Hstag = HXXZ + �
j

�− 1� jhsSj
z. �13�

The staggered field hs induces a relevant perturbation
cos��4���. Therefore, the resultant effective Hamiltonian is

Heff
stag = Heff

XXZ +	 dx
hs

a
a1 cos��4��� . �14�

If we redefine the scalar field � as �+�� /4, the form of Eq.
�14� becomes equivalent to that of Eq. �9�. Thus, the soliton
gap of the model �14� is equal to Eq. �11� with the replace-
ment of xydxy +zdz→hsa1 /J. Namely, the soliton gap of the
model �14� is given by

ES

J
=

v
Ja

2
��

�� 1

8� − 2
�

�� 2

4 − 1/��� Ja

v

��hsa1�
2J

��4 − 1/�
4

�
�� 1

4�
� �

2/�4−1/��

.

�15�

This type of staggered-field-induced gaps has been observed
in some quasi 1D magnets with an alternating gyromagnetic
tensor or Dzyaloshinskii-Moriya interaction such as Cu
benzoate.9–12,30

Masses of the soliton, antisoliton, and breathers are re-
lated to the excitation gaps of the original lattice systems,
Eqs. �8� and �13�. The soliton and antisoliton correspond to
the lowest excitations which change the z component of total
spin Stot

z =� jSj
z by �1. On the other hand, the lightest

breather is regarded as the lowest excitation with �Stot
z =0. At

the SU�2�-symmetric AF point �z=1, there are three breath-
ers. The soliton, antisoliton, and lightest breather are degen-
erate and form the spin-one triplet excitations �so-called
magnons�. The second lightest breather is interpreted as the
singlet excitation with �Stot=0. In the ferromagnetic regime
�z�0, where any breather disappears, the lowest soliton-
antisoliton scattering state would correspond to the excitation
gap in the sector of �Stot

z =0.

C. J-J2 antiferromagnetic spin chain

In the previous two sections, we have completely ne-
glected effects of irrelevant perturbations in the low-energy
effective theory. However, as already noted, the 	 term be-
comes nearly marginal when the anisotropy �z approaches
unity. In this case, the 	 term is expected to affect several
physical quantities. Actually, such effects have been studied
in both the models �8� �Ref. 15� and �13� �Refs. 9 and 10�.

It is known13 that a small AF NNN coupling J2 decreases
the value of 	 in the SU�2�-symmetric AF Heisenberg chain.
Okamoto and Nomura31 have shown that the marginal inter-
action vanishes, i.e., 	→0 in the following model:

Hnnn = �
j

�JS j · S j+1 + J2S j · S j+2� �16�

with J2=0.2411J. On the J2 /J axis, this model is located at
the Kosterlitz-Thouless transition point between the TLL and

0 0.5 1
0

0.5

1

1.5

2

B1
B2
B3

∆z

E
B
n
/E

S

FIG. 1. �Color online� Ratio of the nth breather mass EBn
to the

soliton mass ES as a function of the XXZ anisotropy �z in the
sine-Gordon model �9� or �14�.
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a spontaneously dimerized phase. From this fact, if we re-
place HXXX with Hnnn in the SU�2�-symmetric models �8�
and �13�, namely, if we consider the following models:

H̃XXX- = Hnnn + �
j

�− 1� jJS j · S j+1, �17a�

H̃stag = Hnnn + �
j

�− 1� jhsSj
z, �17b�

then their effective theories are much closer to a pure sine-
Gordon model. In other words, the predictions from the sine-
Gordon model, such as Eqs. �11� and �15�, become more
reliable.

III. COEFFICIENTS OF DIMER AND SPIN OPERATORS

From the discussions in Sec. II, one can readily find a way
of extracting the values of dxy,z and a1 in Eqs. �5� and �7� as
follows. We first calculate some low-energy levels in Stot

z

= �1 and Stot
z =0 sectors of the models �8�, �13�, and �17� by

means of numerical diagonalization method. Since all
Hamiltonians �8�, �13�, and �17� commute with Stot

z =� jSj
z, the

numerical diagonalization can be performed in the Hilbert
subspace with each fixed Stot

z . In order to extrapolate gaps to
the thermodynamic limit with reasonable accuracy, we use
appropriate finite-size scaling methods32–35 for spin chains
under periodic boundary condition �total number of sites L
=8,10, . . . ,28,30�. Second, the coefficients dxy,z and a1 of
the spin-1

2 XXZ chain and the J-J2 chain are determined via
the comparison between the sine-Gordon gap formula �11�
and numerically evaluated spin gaps for various values of
xy,z and hs. In this procedure, �as already mentioned� the
energy difference between the lowest �i.e., ground state� and
the second lowest levels of the Stot

z =0 sector �gap with
�Stot

z =0� and that between the ground-state level and the
lowest level of the Stot

z = �1 sector �gap with �Stot
z = �1� are,

respectively, interpreted as the breather �or soliton-
antisoliton scattering state� and soliton masses in the sine-
Gordon scheme.

A. TLL phase and numerical diagonalization

In this section, we focus on the TLL phase of uniform
spin-1

2 XXZ chains �1� and test the reliability of our numeri-
cal diagonalization. The low-energy properties are described
by Eq. �2�, which is a free boson theory �i.e., CFT with
central charge c=1� with some irrelevant perturbations. Gen-
erally, the finite-size scaling formula for the excitation spec-
trum in any CFT has been proved32,33 to be

�EO � EO − E0 =
2�v
La

�O� + ¯ . �18�

Here E0 and EO are, respectively, the ground-state energy
and the energy of an excited state generating from a primary
field O in the given CFT. Remaining quantities �O�, v, and
La are the scaling dimension of the operator O, the excita-
tion velocity and the system length, respectively. In the case
of the spin chain �1�, the bosonization formula �5� indicates

that Ee�i��� and Ee�i�4�� correspond to the excitation energies
in the Stot

z = �1 and Stot
z =0 sectors, respectively. The irrel-

evant perturbations can also contribute to the finite-size cor-
rection to excitation energies. From the U�1� and transla-
tional symmetries of the XXZ chain �1�, one can show that
the finite-size gap �E�Stot

z =�1 has no significant modification
from the perturbations while the correction to �E�Stot

z =0 is

proportional to L1−�ei2�4���. Therefore, the following finite-
size scaling formulas are predicted:

�E�Stot
z =�1 

2�v
La

1

4K
+ ¯ , �19a�

�E�Stot
z =0 

2�v
La

K + c0L1−4K + ¯ �19b�

with c0 being a nonuniversal constant. Here we have used
�ein����=n2 / �4K� and �ein�4���=n2K. At the
SU�2�-symmetric AF point �z=1, �E�Stot

z =�1=�E�Stot
z =0

��Esu2 holds and the marginal 	 term modifies the scaling
form of the spin gap. The marginal term is known to yield a
logarithmic correction as follows:34

�Esu2 
2�v
La

�1

2
+

c1

ln L
+

c2

�ln L�2 + ¯� . �20�

Here c1,2 are nonuniversal constants.
As an example, numerically evaluated gaps with �Stot

z

= �1 and �Stot
z =0 in the case of �z=0.6 are, respectively,

represented as circles and triangles in Fig. 2�a�. Circles are
nicely fitted by the solid curve �E�Stot

z =�1 /J=8.019�10−4

+2.977 /L. This result is consistent with the fact that an easy-
plane anisotropic XXZ model is gapless in the thermody-
namic limit and that the exact coefficient of the 1 /L term is
2�v / �4JK�=3 at �z=0.6. Similarly, triangles can be fitted by
�E�Stot

z =0 /J=1.312�10−3+5.982 /L−4.764 /L1.8376, where
1.8376=1–4K. The factor 5.982 of the 1 /L term is very
close to 2�vK / �Ja�=6.040. The spin gap at
SU�2�-symmetric point is also represented in Fig. 2�b�. Fol-
lowing formula �20�, we can correctly determine the fitting
curve �Esu2 /J=2.173�10−4+4.965 /L−2.203 / �L ln L�
+1.200 / �L�ln L�2�, in which the factor of the second term is
nearly equal to �v / �Ja�=4.935. These results support the
reliability of our numerical diagonalization. We note that a
more precise finite-size scaling analysis for AF Heisenberg
model has been performed in Ref. 36.

B. Dimer coefficients of XY model

Next, let us move onto the evaluation of excitation gaps in
dimerized XXZ chains. In this case, since the system is not
critical, the above finite-size scaling based on CFT cannot be
applied. Instead, we utilize Aitken-Shanks method35 to ex-
trapolate our numerical data to the values in the thermody-
namic limit.

In this section, we consider a special dimerized XY chain
with �z=z=0. It is mapped to a solvable free fermion sys-
tem through Jordan-Wigner transformation. Therefore, our
numerically determined coefficients in Eq. �7� can be com-
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pared with the exact value. The lowest energy gap with
�Stot

z = �1, which corresponds to the soliton mass ES, is ex-
actly evaluated as

�E�Stot
z =�1/J = xy . �21�

Comparing Eq. �21� with Eq. �11�, we obtain the exact coef-
ficient

dxy = 1/� = 0.3183 �22�

at the XY case �z=z=0. The exact solution also tells us that
the excitation gap with �Stot

z =0 is

�E�Stot
z =0/J = 2xy . �23�

This is consistent with the sine-Gordon prediction that any
breather disappears and the relation EB1

=2ES holds just at
the XY point �z=0.

Figure 3 shows the comparison between the energy gap
calculated by numerical diagonalization with Aitken-Shanks
process and Eq. �21� �or Eq. �23��. Except for �E�Stot

z =0 in the

weak dimerized regime xy �0.1, numerically calculated
gaps coincide well with the exact value. We have found that
when xy,z becomes smaller, the precision of Aitken-Shanks
method is decreased due to a large size dependence of gaps.

C. Dimer coefficients of XXZ model

In the easy-plane region −1��z�1, any generic analyti-
cal way of determining the coefficients in Eq. �7� has never
been known except for the above special point �z=z=0. To
obtain dxy �respectively, dz�, we numerically calculate exci-
tation gaps at the points xy �z�=0.05,0.1, . . . ,0.3 with fix-
ing z�xy�=0. Although both �E�Stot

z =0 and �E�Stot
z =�1 are

applicable to determine dxy,z in principle, we use only the
latter gap since it more smoothly converges to its
thermodynamic-limit value via Aitken-Shanks process, com-
pared to the former. In fact, Eq. �19� suggests that �E�Stot

z =0

is subject to effects of irrelevant perturbations and therefore
contains complicated finite-size corrections. Coefficients dxy
�dz� can be determined for each xy �z� from Eq. �11�. Since
the field theory result �11� is generally more reliable as the
perturbation xy,z is smaller, we should compare Eq. �11�
with excitation gaps determined at sufficiently small values
of xy,z. However, the extrapolation to thermodynamic limit
by Aitken-Shanks method is less precise in such a small
dimerization region mainly due to large finite-size
effects.14,15 Therefore, we adopt coefficients dxy,z extracted
from the gaps at relatively large dimerization xy�z�=0.1 and
0.3, and they are listed in Table I: the values outside �inside�
parentheses are the data for xy�z�=0.3 �0.1�. The anisotropy
dependence of the same data dxy,z is depicted in Fig. 4. The
data in Table I and Fig. 4 are the main result of this paper.
The difference between dxy�z� outside and inside the paren-
theses in Table I could be interpreted as the “strength” of
irrelevant perturbations neglected in the effective sine-
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FIG. 2. �Color online� �a� Numerically evaluated gaps with

�Stot
z = �1 �circles� and �Stot

z =0 �triangles� for
XXZ chains with �z=0.6 and finite length L. The solid curve
8.019�10−4+2.977 /L �dashed curve 1.312�10−3+5.982 /L
−4.764 /L1.8376� is determined by fitting the circles �triangles�. �b�
Gaps of finite-size Heisenberg chains with �z=1. The solid curve is
�Esu2 /J=2.173�10−4+4.965 /L−2.203 / �L ln L�+1.200 / �L�ln L�2�.
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Gordon theory or the “error” of our numerical strategy. The
neglected operators must bring a renormalization of coeffi-
cients dxy,z, and the error would become larger as the system
approaches the Heisenberg point since �as already men-
tioned� the 	 term becomes marginal at the point.

We here discuss the validity of the numerically deter-
mined dxy,z in Table I and Fig. 4. Table I shows that in the
wide range −0.3��z�0.9, the difference �error� between
dxy,z outside and inside the parentheses is less than 8%. As

expected, one finds that the error gradually increases when
the anisotropy �z approaches unity. Similarly, the error is
large in the deeply ferromagnetic regime �z�−0.3. This is
naturally understood from the fact that as �z is negatively
increased, the dimerization term sin��4��� becomes less rel-
evant and effects of other irrelevant terms is relatively
strong. Indeed, for �z�−0.7071 �K�2�, the dimerization
does not yield any spin gap and our method of determining
dxy,z cannot be used. Furthermore, it is worth noting that the
spin gap is convex downward as a function of dimerization
xy,z in the ferromagnetic side �z�0, and the accuracy of the
fitting therefore depreciates.

In addition to coefficients dxy,z, let us examine dimeriza-
tion gaps and the quality of fitting by Eq. �11�. Excitation
gaps for �z=0.6 are shown in Fig. 5 as an example. Remark-
ably, both soliton-gap curves �11� with the values dxy,z out-
side and inside the parentheses in Table I fit the numerical
data �E�Stot

z =�1 in the broad region 0�xy�z��0.3 with rea-
sonable accuracy. The former solid curve is slightly better
that the latter. The breather gaps �E�Stot

z =0 and corresponding
fitting curves are also shown in Fig. 5. This breather curve is
determined by combining the solid curve �11� and the
soliton-breather relation �10�. It slightly deviates from nu-
merical data, especially, in a relatively large dimerization
regime 0.15�xy�z�. As mentioned above, this deviation
would be attributed to irrelevant perturbations. The
breather-soliton mass ratio EB1

/ES �see Eq. �10�� in the sine-
Gordon model �9� and the numerically evaluated
�E�Stot

z =0 /�E�Stot
z =�1 are shown in Fig. 6. These two values

are in good agreement with each other in the wide parameter
region −0.5��z�1, although their difference becomes
slightly larger in the region 0.5��z�1, which includes the
point �z=0.6 in Fig. 5. Gaps �E�Stot

z =�1 for dimerized XXZ

TABLE I. Dimer coefficients �dxy and dz�, TLL parameter K, compactification radius R, spinon velocity v
of spin-1

2 XXZ chain. Dimerization-induced gaps are also listed in the final column. The final line is the result
for the J-J2 chain �16�. The same data of dxy,z are also shown in Fig. 4.

�z dxy dz K R v / �Ja� Soliton gap ES /J

1 0.228 �0.204� 0.110 �0.097� 0.5 0.3989�=1 /�2�� 1.571�=� /2� 3.535�xydxy +zdz�0.6667

0.9 0.278 �0.261� 0.141 �0.131� 0.5838 0.3692 1.518 3.268�xydxy +zdz�0.7061

0.8 0.297 �0.284� 0.154 �0.146� 0.6288 0.3557 1.465 3.147�xydxy +zdz�0.7293

0.7 0.309 �0.299� 0.165 �0.159� 0.6695 0.3448 1.410 3.057�xydxy +zdz�0.7516

0.6 0.318 �0.310� 0.174 �0.169� 0.7094 0.3349 1.355 2.986�xydxy +zdz�0.7748

0.5 0.324 �0.318� 0.182 �0.177� 0.75 0.3257 1.299 2.934�xydxy +zdz�0.8

0.4 0.327 �0.323� 0.188 �0.185� 0.7924 0.3169 1.242 2.902�xydxy +zdz�0.8281

0.3 0.328 �0.325� 0.193 �0.191� 0.8375 0.3082 1.184 2.893�xydxy +zdz�0.8602

0.2 0.328 �0.325� 0.197 �0.196� 0.8864 0.2996 1.124 2.918�xydxy +zdz�0.8980

0.1 0.324 �0.323� 0.200 �0.200� 0.9401 0.2910 1.063 2.991�xydxy +zdz�0.9434

0 0.318 �0.318� 0.202 �0.203� 1 0.2821�=1 /�4�� 1 3.141�xydxy +zdz�
−0.1 0.309 �0.311� 0.202 �0.204� 1.068 0.2730 0.9353 3.431�xydxy +zdz�1.073

−0.2 0.297 �0.302� 0.200 �0.204� 1.147 0.2634 0.8685 4.008�xydxy +zdz�1.172

−0.3 0.278 �0.289� 0.194 �0.203� 1.241 0.2533 0.7990 5.308�xydxy +zdz�1.317

−0.4 0.252 �0.273� 0.184 �0.199� 1.355 0.2423 0.7263 9.214�xydxy +zdz�1.550

−0.5 0.213 �0.248� 0.163 �0.191� 1.5 0.2303 0.6495 33.25�xydxy +zdz�2

J-J2 model 0.364 �0.361� 0.188 �0.182� 0.5 0.3989 1.174 3.208�xydxy +zdz�0.6667
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FIG. 4. �Color online� XXZ-anisotropy ��z� dependence of

dimer coefficients dxy and dz. Filled �Open� circles represent dxy

determined from dimerization gap at �xy ,z�= �0.3,0��=�0.1,0��.
Similarly, filled �open� triangles show dz determined from dimeriza-
tion gap at �xy ,z�= �0,0.3��=�0,0.1��.
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chains with several values of both xy and z are plotted in
Fig. 7. It shows that the numerical data are quantitatively
fitted by the single gap formula �11�. All of the results in
Figs. 5–7 indicate that a simple sine-Gordon model �9� can
describe the low-energy physics of the dimerized spin chain
�8� with reasonable accuracy in the wide easy-plane regime.
This also supports the validity of our numerical approach for
fixing the coefficients dxy,z.

D. Dimer coefficients of SU(2)-symmetric models

At the SU�2�-symmetric AF point, the 	 term in the ef-
fective Hamiltonian �2� becomes marginal and induces loga-
rithmic corrections to several physical quantities. Such a
logarithmic fashion often makes the accuracy of numerical
methods decrease. Instead of numerical approaches, using
the asymptotic form of the spin-correlation function37 and
OPE technique,5,6 Orignac15 has predicted

dxy = 2dz =
2

�2��

2
�1/4

= 0.2269 �24�

at the SU�2�-symmetric point. Substituting Eq. �24� into Eq.
�11�, the spin gap in a SU�2�-symmetric AF chain with

dimerization xy =z��HXXX-� is determined as

�Esu2/J = 1.7232/3. �25�

The marginal term, however, produces a correction to this
result. It has been shown in Ref. 15 that the spin gap in the
model HXXX- is more nicely fitted with

�Esu2/J =
1.7232/3

�1 + 0.147 ln�0.1616


��1/2 , �26�

from the renormalization-group argument. As can be seen
from Eq. �26�, the logarithmic correction is not significantly
large for the spin gap. We may therefore apply the way based
on the sine-Gordon model in Sec. III C even for the present
AF Heisenberg model. The resultant data are listed in the
first line of Table I. Evaluated coefficients dxy
=0.228�0.204� and dz=0.110�0.097� are fairly close to the
results of Eq. �24�. This suggests that the effect of the mar-
ginal operator on the spin gap is really small. We should also
note that dxy =2dz is approximately realized, which is re-
quired from the SU�2� symmetry. The numerically calculated
spin gap �Esu2, Eq. �26�, and the curve of the gap formula
�11� are shown in Fig. 8�a�. It is found that even the curve
without any logarithmic correction can fit the numerical data
within semiquantitative level. At least, parameters dxy,z at the
SU�2�-symmetric point can be regarded as effective coupling
constants when we naively approximate a dimerized Heisen-
berg chain as a simple sine-Gordon model.

As discussed in Sec. II C, logarithmic corrections vanish
in the J-J2 model �16� due to the absence of the marginal
operator. As expected, Fig. 8�b� shows that the spin gap
�Esu2 is accurately fitted by the sine-Gordon gap formula
�11� in the wide range 0��0.3. Therefore, the coefficients
dxy,z of the J-J2 model �the final line of Table I� are highly
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reliable. Remarkably, the difference between the values out-
side and inside the parentheses is much smaller than that of
the Heisenberg model �the first and last line of Table I�. Here,
to determine dxy,z of the J-J2 model, we have used its spinon
velocity v=1.174Ja, which has been evaluated in Ref. 38.

E. Coefficients of spin operator

In this section, we discuss the spin-operator coefficient a1
in Eq. �5�. Although a1 for the easy-plane XXZ model has
been evaluated analytically21–23 and numerically,24,25 those
for the SU�2�-symmetric Heisenberg chain and the J-J2
model have never been studied. The existent data also help
us to check the validity of our method. From the bosoniza-
tion formula �5�, the z-component spin-correlation function
has the following asymptotic form:

�Sj
zSj�

z � = −
1

4�2��j − j��2
+

A1
z�− 1� j−j�

�j − j��1/� + ¯ , �27�

in the easy-plane TLL phase. The amplitude A1
z is related to

a1 as

A1
z = a1

2/2. �28�

Lukyanov and his collaborators21,22 have predicted

A1
z =

2

�2� �� �

2 − 2�
�

2���� 1

2 − 2�
��

1/�

� exp�	
0

� dt

t
� sinh��2� − 1�t�

sinh��t�cosh��1 − ��t�
−

2� − 1

�
e−2t�� .

�29�

The same amplitude has been calculated by using DMRG in
Refs. 24 and 25.

In order to determine a1, we use XXZ models in a stag-
gered field �13�. Following the similar way to Sec. III C, we
can extract the coefficient a1 by fitting numerically evaluated
gaps of the model �13� through the sine-Gordon gap formula
�15�. We numerically estimate the gaps at hs /J=0.01, 0.02,
. . ., 0.09, 0.1, 0.2, and 0.3 via Aitken-Shanks method. The
results are listed in column �C� of Table II. Similarly to the
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case of dimerization, we adopt spin gaps at relatively large
staggered fields hs /J=0.1 and 0.3 to determine the coeffi-
cients a1. The value outside �inside� the parentheses in Table
II corresponds to a1 fixed at hs /J=0.1 �0.3�. Note that the
XY model in a staggered field is solvable through Jordan-
Wigner transformation, and as a result the coefficient a1 is
exactly evaluated as

a1 = 1/� = 0.3183. �30�

The table clearly shows that the values at hs /J=0.1 are closer
to those of the previous prediction in Refs. 21–25. We em-
phasize that our results gradually deviate from the analytical
prediction from Eq. �29� as the system approaches the
SU�2�-symmetric point. The same property also appears in
the DMRG results in Refs. 24 and 25. Actually, A1

z in Eq.
�29� diverges when �z→1. However, the bosonization for-
mula �5� for spin operators must be still used even around
�z=1. Thus we should realize that the relation �28� is broken
and a1 remains to be finite at the SU�2�-symmetric point.
Figure 9 represents the numerically evaluated gaps
�E�Stot

z =�1, and three fitting curves fixed by a1 �A� and a1 �C�
outside and inside the parentheses in Table II. Our coefficient
a1 successfully fits the numerical data semiquantitatively in
the wide regime 0.01�hs /J�0.3 while the curve of a1 �A�
is valid only in an extremely weak staggered-field regime 0
�hs /J�0.01. This implies that when �z is near unity, the
field theory description based on Eqs. �28� and �29� is valid
only in a quite narrower region for the present staggered-
field case compared to the case of dimerized spin chain. On
the other hand, Fig. 9 also suggests that if we use a1 �C� in
Table II as the effective coefficient of bosonized spin opera-
tor instead of a1 �A� and �B�, the XXZ chain in a staggered
field �13� may be approximated by a simple sine-Gordon
model in wide region 0.01�hs /J�0.3.

At the SU�2�-symmetric point �z=1, a logarithmic cor-
rection to staggered-field-induced gaps is expected to appear
due to the marginal perturbation. This makes it difficult to
extract the value a1 within the present sine-Gordon frame-

work. According to the prediction in Ref. 15 based on the
asymptotic form of spin-correlation function,37 a1 is given by

a1 =
1

�
��

2
�1/4

= 0.3564 �31�

at the SU�2�-symmetric point, where a1=b0 is imposed. The
spin gap in AF Heisenberg chains in a staggered field �Hstag

with �z=1� is thus determined as

�E�Stot
z =�1/J = 1.777�hs/J�2/3. �32�

A more correct gap formula including the logarithmic correc-
tion has been developed in Refs. 9 and 10 as follows:

TABLE II. Spin-operator coefficients a1 of spin-1
2 XXZ chain and the J-J2 chain. Values in column �A�,

�B�, and �C� correspond to the analytical prediction from Refs. 21–23, the result by DMRG in Refs. 24 and
25, and ours, respectively.

�z a1 �A� a1 �B� a1 �C� � v / �Ja� Soliton gap ES /J

1 0.4724 �0.4325� 1 1.571 3.535�a1hs /J�0.6667

0.9 0.7049 0.64 0.5327 �0.4830� 0.8564 1.518 3.268�a1hs /J�0.7061

0.8 0.6069 0.587 0.5226 �0.4808� 0.7952 1.465 3.147�a1hs /J�0.7293

0.7 0.5464 0.54 0.5019 �0.4693� 0.7468 1.410 3.057�a1hs /J�0.7516

0.6 0.5008 0.499 0.4771 �0.4530� 0.7048 1.355 2.986�a1hs /J�0.7748

0.5 0.4629 0.4626 0.4505 �0.4338� 0.6667 1.299 2.934�a1hs /J�0.8

0.4 0.4297 0.4297 0.4235 �0.4127� 0.6310 1.242 2.902�a1hs /J�0.8281

0.3 0.3994 0.3995 0.3966 �0.3903� 0.5970 1.184 2.893�a1hs /J�0.8602

0.2 0.3712 0.3713 0.3701 �0.3670� 0.5641 1.124 2.918�a1hs /J�0.8980

0.1 0.3443 0.3443 0.3440 �0.3430� 0.5319 1.063 2.991�a1hs /J�0.9434

0 0.3183 0.3183 0.3183 �0.3183� 0.5 1 3.141�a1hs /J�
J-J2 model 0.4693 �0.4668� 1 1.174 3.208�a1hs /J�0.6667
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FIG. 9. �Color online� Spin gaps �E�Stot
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XXZ models in a staggered field at �z=0.9. Solid and dashed-
dotted curves are determined from the gap formula �15� with a1

outside and inside the parentheses in Table II, respectively. The
dashed curve is given by formula �15� with a1 in Refs. 21–23 �i.e.,
a1 determined from Eq. �29��.
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�E�Stot
z =�1/J = 1.85�hs/J�2/3�ln�J/hs��1/6. �33�

In Fig. 10�a�, the numerically evaluated spin gaps, Eq. �33�,
and the fitting curve with a1 outside the parentheses in col-
umn �C� are drawn. One finds that both curves agree well
with the numerical data in the weak-field regime 0�hs /J
�0.1 while they start to deviate from the data in the
stronger-field regime. This suggests that even at the
SU�2�-symmetric point, a simple sine-Gordon description for
the model �13� is applicable in the relatively wide region 0
�hs /J�0.1, if the coefficient a1 outside the parentheses in
column �C� is adopted.

In the same way as the final paragraph in Sec. III D, we
can accurately determine the coefficient a1=b0 for the J-J2
model since the marginal perturbation vanishes. The data are
listed in the final line in Table II. One sees from Fig. 10�b�
that the spin gap �E�Stot

z =�1 is fitted by the gap formula �15�
quite accurately. In addition, the difference between the val-
ues outside and inside the parentheses is significantly small.

F. Coefficients determined from ground-state energy

Instead of the gap formula �11�, the formula for ground-
state energy �12� can also be utilized to determine dimer

coefficients dxy,z. Let us here define �EGS�EGS
−EGS�xy ,z�, where EGS is the ground-state energy of the
XXZ chain �1� per site and EGS�xy ,z� is that of the bond-
alternating XXZ chain �8�. If the dimerization parameter is
small enough �xy,z��1, �EGS is expected to agree well with
�EGS in Eq. �12�. In this case, we can extract the values of
dxy,z from the relation �EGS=�EGS.

To extrapolate the thermodynamic-limit value of
EGS�xy ,z�, we use Aitken-Shanks method for the results of
finite-size numerical diagonalization, and the method works
well since the bond-alternating chains are gapful. On the
other hand, EGS includes a large finite-size correction, as
shown in Sec. III A. Therefore, instead of numerically evalu-
ated EGS, we use its exact value fixed by Bethe ansatz39

EGS

J
=

1

4
cos � −

1

2
sin2 �	

−�

� d	

cosh��	�
1

cosh�2�	� − cos �
,

�34�

where ��cos−1 �z. At the limit of �→0, we obtain the
ground-state energy for the Heisenberg model,

�EGS

J
�

�→0
=

1

4
− ln 2. �35�

Black points in Fig. 11 show �EGS determined from Eq.
�34� and numerically evaluated EGS�xy ,z� for the cases of
�z=1, 0.9, 0.6, and 0.3. The solid curve in the panel �a� of
this figure represents formula �12� with dxy�z� determined
from �EGS at �xy ,z�= �0.05,0��=�0,0.05��. Solid curves in
the panels �b�–�d� are also formula �12� with dxy obtained in
the same way. For comparison, we also draw dashed-dotted
curves of formula �12� with the coefficients in Table I. In the
SU�2� case of the panel �a�, the ground-state energy formula
with a logarithmic correction

�EGS

J
=

0.27284/3

1 + 0.147 ln�0.1616


� , �36�

which is predicted in Ref. 15, is also plotted as a dashed
curve. As pointed out in Ref. 15, we find that even the curve
including the correction deviates from the numerical data for
�0.1. On top of this isotropic case, Fig. 11 shows that the
accuracy of the fitting curves becomes worse as the aniso-
tropy �z decreases. This is a natural result from the fact that
formula �12� is broken down at the XY point with �z=0 and
�=1 /2. The deviation between the numerical data and the
curve also becomes larger for �0.1 in the easy-plane re-
gion except for the case around �z=0.9. This sharply con-
trasts with the firm correspondence between dimerization
gap and the sine-Gordon gap formula �11� �see, e.g.,
Figs. 3–8�. We therefore determine the coefficients dxy�z� by
using the numerical data �EGS for small dimerization param-
eters �xy ,z�= �0.05,0��=�0,0.05�� or �xy ,z�= �0.1,0�
�=�0,0.1��. They are summarized in Table III. There exists a
large difference between dxy,z in Tables I and III, especially,
in strongly easy-plane region.

In the remaining part of this section, we discuss the rea-
son why �EGS fairly deviate from the analytic prediction
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FIG. 10. �Color online� Spin gaps �E�Stot

z =�1 �circles� of �a� the
Heisenberg and �b� the J-J2 models �17b� in a staggered field. Solid
and dashed curves represent Eqs. �15� and �33�, respectively. We
have used a1 outside the parentheses in column �C� of Table II.
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�EGS in contrast to the case of the dimerization gap in Secs.
III B–III D. First, the sine-Gordon theory is just a perturba-
tive low-energy effective theory for dimerized spin chains,
while �EGS would be subject to high-energy states as well as
low-energy ones. Therefore, it is expected that formula �12�
can be applicable only in an extremely weak dimerization
regime. In fact, we find from Fig. 11 that solid and dashed-
dotted curves seem to become close to each other in an ex-
tremely weak dimerization regime xy ,�0.05. Hence, we
conclude that it is dangerous to apply the sine-Gordon for-
mula of the ground-state energy to the original spin chains
with moderate dimerization. Second, the ground-state energy
difference �EGS is always a convex-downward function of
xy,z in the whole region 0��z�1. This convex property
generally makes the accuracy of fitting decrease as the case
of the dimerization gap in the ferromagnetic region �z�0.
Moreover, as mentioned above, formula �12� becomes in-
valid in the vicinity of both �z=1 and �z=0. From these
arguments, coefficients dxy,z and a1 obtained from low-lying
excitation gaps are more reliable.

IV. APPLICATIONS

In this section, we apply the results of Sec. III to some
magnetic systems. We demonstrate that several physical
quantities related to spins or dimerizations can be calculated
accurately from the data in Tables I and II.

A. Dimerized spin chains in a uniform field

We first consider a spin-1
2 dimerized

XXZ chain in a magnetic field. The Hamiltonian is defined as

H-H = HXXZ- − H�
j

Sj
z �37�

with xy = and z=�z. As we have already explained, a
spin gap opens in the zero-field case. However, a magnetic
field H�0 induces the Zeeman splitting, and the gap of the
magnon excitation with Sz=1 �−1� decreases �increases� as
�E�Stot

z =�1�H. When H becomes larger than the value of the
zero-field spin gap, the Sz=1 magnon condensation takes
place and a field-induced TLL phase emerges with an incom-
mensurate Fermi wave number kF=�−2��Sj

z�. Therefore,
the curve of the spin gap as a function of dimerization  is
directly interpreted as the ground-state phase boundary of the
model �37�, if the vertical axis �spin gap� is replaced with the
strength of the magnetic field H. It is shown in Fig. 12.

The critical point between the dimerized and TLL phases
can be determined from experiments with varying H. Com-
paring the experimentally obtained critical field Hc and the
phase diagram of Fig. 12 in quasi-1D-dimerized spin-1

2 com-
pounds, one can evaluate the strength of the dimerization .

B. Two-leg spin ladder with a four-spin interaction

We next consider an SU�2�-symmetric two-leg spin-1
2 AF

ladder with a four-spin exchange, whose Hamiltonian is
given by

TABLE III. Dimer coefficients dxy,z of spin-1
2

XXZ chain obtained from ground-state energy difference �EGS.
The data outside �inside� the parentheses are fixed by the energy at
xy,z=0.05 �0.1�. The final line is the result for the J-J2 model.

�z dxy dz EGS−EGS�xy ,z�

1 0.226 �0.239� 0.107 �0.113� 1.148�xydxy +zdz�1.333

0.9 0.261 �0.265� 0.131 �0.134� 1.331�xydxy +zdz�1.412

0.8 0.275 �0.274� 0.143 �0.144� 1.484�xydxy +zdz�1.459

0.7 0.283 �0.278� 0.152 �0.151� 1.673�xydxy +zdz�1.503

0.6 0.285 �0.278� 0.159 �0.156� 1.924�xydxy +zdz�1.550

0.5 0.284 �0.273� 0.162 �0.158� 2.280�xydxy +zdz�1.6

0.4 0.276 �0.264� 0.163 �0.157� 2.827�xydxy +zdz�1.656

0.3 0.262 �0.248� 0.159 �0.132� 3.766�xydxy +zdz�1.720

0.2 0.236 �0.221� 0.149 �0.140� 5.705�xydxy +zdz�1.796

0.1 0.188 �0.174� 0.123 �0.114� 11.72�xydxy +zdz�1.887

0

J-J2 0.342 �0.334� 0.173 �0.171� 1.265�xydxy +zdz�1.333
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FIG. 11. �Color online� �a� Ground-state energy difference �EGS

for the SU�2�-symmetric case with �z=1 and xy =z=, obtained
from numerical diagonalization �black circles�. Solid and dashed-
dotted curves represent Eq. �12� with dxy�z� determined from the
relation �EGS=�EGS at �xy ,z�= �0.05,0� �=�0,0.05�� and with
those in Table I, respectively. Dashed curve is Eq. �36� including the
logarithmic correction. In the panels �b�–�d�, black circles are �EGS

for �z=0.9, 0.6, and 0.3, respectively, under the condition z=0.
Solid and dashed-dotted curves are respectively Eq. �12� with dxy

obtained through �EGS=�EGS at xy =0.05 and with that in Table I.
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Hlad = �
j

�
r=1,2

JSr,j · Sr,j+1 + �
j

J�S1,j · S2,j

+ �
j

J4�S1,j · S1,j+1��S2,j · S2,j+1� . �38�

The symbol r denotes the chain index. Three quantities J
�0, J�, and J4, respectively, stand for the intrachain-,
interchain- and four-spin coupling constants. There are at
least two kinds of physical origin of the four-spin term J4.
The first is that optical phonon modes with a spin-Peierls
type coupling can cause a negative J4.40 The second is that
the higher-order expansion of hopping terms in half-filled
electron ladders with a strong on-site Coulomb repulsion.41,42

In fact, the cyclic exchange term defined on each plaquette in
the ladder contains a positive J4 term, which is known to
have scaling dimension one and be most relevant in all the
four-spin couplings of the cyclic term in the weak rung-
coupling regime J� �J�� , �J4�.

The model �38� has been analyzed by some groups.40,43,44

There appear four kinds of competing phases: the rung-
singlet, Haldane, columnar-dimer, and staggered dimer
phases.18,20 In particular, the ground-state phase diagram in
the region of J��0 and J4�0 has been numerically com-
pleted in Ref. 44.

Here, we show that the data in Tables I and II allow us to
construct the phase diagram of the model �38� in the weak
rung-coupling regime with reasonable accuracy. From the
bosonization, the low-energy effective Hamiltonian of Eq.
�38� reads

Heff
lad =	 dx �

q=�

v
2

�K−1��x�q�2 + K��x�q�2�

+
1

a
�J�

ā2

2
− J4

�3d�2

2
�cos��8��+�

+
1

a
�J�

ā2

2
+ J4

�3d�2

2
�cos��8��−�

+
1

a
J�ā2 cos��2��−� + ¯ . �39�

Here we have defined boson fields ��= ��1��2� /�2 and
��= ��1��2� /�2, where �r and �r are dual fields of the rth
chain �see Sec. II A�. In Eq. �39�, we have extracted only the
most relevant part of the rung couplings. The SU�2� symme-
try requires the relations v=�Ja /2, K=1 /2, a1=b0� ā, and
dxy =2dz�2d. Due to this symmetry, three vertex terms in
Eq. �39� have the same scaling dimension one. The ��+ ,�+�
sector is equivalent to a sine-Gordon model. A Gaussian-type
transition is expected at J�ā2−J4�3d�2=0 if other irrelevant
perturbations are negligible. On the other hand, the ��− ,�−�
sector is a self-dual sine-Gordon model,45 which is known to
yield an Ising-type transition due to the competition between
cos��8��−� and cos��2��−�. The transition occurs as the
strength of two coupling constants becomes equal, namely,
�J�ā2+J4�3d�2� /2= �J�ā2�. Since we have already obtained
the values of ā and d �see Tables I and II�, we can draw the
phase-transition curves in the J�-J4 space in the weak rung-
coupling regime, which are shown in Fig. 13. The two tran-
sition curves are represented as

J4 = � ā

3d
�2

J�  2.05J�, �40a�

J4 = − 3� ā

3d
�2

J�  − 6.15J�. �40b�

Each phase is characterized by the locked boson fields and
their position: In the columnar �staggered� dimer phase, �+
and �− are, respectively, pinned at �� /8 and 0 �0 and �� /8�
and �−1� j�S1,j ·S1,j+1+S2,j ·S2,j+1�� �sin��2��+�cos��2��−��

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

δ

H
/J

Field-induced
TL liquid phase

Dimer phase

∆z=1.0
∆z=0.9
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∆z=0

∆z=-0.3

FIG. 12. Ground-state phase diagram of the dimerized spin
chains under a magnetic field H, Eq. �37�. Each curve represents the
phase boundary between the dimer and field-induced TLL phases.

J4
Staggered dimerIsing transition

Haldane
c=3/2 or 1st-order

g
(c=1/2)

J⊥⊥⊥⊥Rung-singlet

/
transition

Columnar dimer

FIG. 13. �Color online� Ground-state phase diagram of the spin
ladder �38� in the weak rung-coupling regime. There are two tran-
sition curves, J42.05J� and J4−6.15J�. The former is c=3 /2
or first-order type while the latter is in the Ising universality class
with c=1 /2 �see the text�.
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�0 ��−1� j�S1,j ·S1,j+1−S2,j ·S2,j+1�
� �cos��2��+�sin��2��−���0�. In the rung-singlet
�Haldane� phase, �− is pinned instead of �− and ��+�
=�� /8�0�, which corresponds to a nonzero “even”-�“odd”-
�type nonlocal string order parameter.16,17,46

It has been shown in Ref. 16 that Eq. �39� can be fermi-
onized. The resulting Hamiltonian consists of three copies of
massive Majorana fermions and another one �For detail, see,
e.g., Refs. 5, 6, and 16�. The mass of the Majorana triplet Mt
and that of the remaining one Ms are given by

Mt � J�ā2 − J4�3d�2, �41a�

Ms � 3J�ā2 + J4�3d�2. �41b�

The transition curves in Fig. 13 are identified with Mt=0 and
Ms=0. At Ms=0, the low-energy physics is governed by the
gapless singlet fermion which is equivalent to a critical Ising
chain in a transverse field. The transition at Ms=0 therefore
belongs to the Ising universality class with central charge c
=1 /2. On the other hand, three copies of massless Majorana
fermions, which appear at Mt=0, are equivalent to an SU�2�2
Wess-Zumino-Witten �WZW� theory5–7 with central charge
c=3 /2. Thus, the transition at Mt=0 is expected to be a c
=3 /2 �first order� type if the marginal current-current
interaction16,18,20 omitted in Eq. �39� is irrelevant �relevant�.
In Ref. 44, the transition has been proved to be described by
a SU�2�2 WZW theory at least in the region of J�J� ,J4
�0. This suggests that the marginal term is irrelevant there.
The Majorana fermion with the mass Mt corresponds to a
spin-triplet excitation �magnon�, and another fermion with
mass Ms is a spin-singlet excitation, which is believed to be
continuously connected to two-magnon bound state observed
in the strong rung-coupling regime.

Finally, we note that in the extremely weak rung-coupling
limit, the coupling constants of vertex operators in Eq. �39�
would be less valid since coefficients ā and d are determined
from gaps induced by relatively large staggered field �hs /J
=0.1 or 0.3� and dimerization �xy,z=0.1 or 0.3�, respectively.
The true transition curves might somewhat deviate from our
prediction �40�. Our result is expected to be more reliable in
a moderate rung-coupling regime. In fact, a numerical study
in Ref. 44 has shown that the phase boundary is located at
J4 /J��2 around J� /J=0.25 �see Fig. 6 in Ref. 44�, being
consistent with Eq. �40a�. We stress that our coefficients ā
and d provides an easy way of estimating the phase boundary
although it is a rough approximation compared with other
sophisticated strategies such as DMRG and renormalization-
group calculations. If we replace the intrachain term in Eq.
�38� with two J-J2 chains �16�, the intrachain marginal inter-
action omitted in Eq. �39� disappears. In this case, the pre-
diction from the effective theory �39� becomes more reliable
even in the weak rung-coupling limit J� /J ,J4 /J→0. From
the data of the J-J2 model in Tables I and II, two transition
curves in the modified ladder are

J4  0.69J�, �42a�

J4  − 2.08J�. �42b�

C. Optical response of dimerized spin chains

Optical responses in Mott insulators including multifer-
roic compounds have been investigated intensively. Quite re-
cently, the authors in Ref. 47 have theoretically studied the
optical conductivity in a 1D ionic-Hubbard-type Mott insu-
lator with Peierls instability, whose strong-coupling limit is
equal to a spin-1

2 dimerized Heisenberg chain, HXXX-. The
results in Ref. 47 would be relevant to, for example, organic
Mott insulators such as TTF-BA.48 In this system, the uni-
form electric polarization P along the 1D chain is shown to
be proportional to the dimer operator

P = ga�
j

�− 1� jS j · S j+1, �43�

where g is the coupling constant between the polarization
and dimer operators. Therefore, P can be bosonized as

P  3dg	 dx sin��4���x�� + ¯ �44�

with dxy =2d and dz=d. From Eq. �44�, one can calculate P
and related observables by means of the bosonization for the
dimerized spin chain. It has been shown that the spin-singlet
excitation, i.e., the breather with mass EB2

, is observed as the
lowest-frequency sharp peak in the optical conductivity mea-
surements. Since the mass EB2

is evaluated from the sine-
Gordon theory as

EB2
/J = �3ES/J = 2.9242/3, �45�

we can extract the value of  from the peak position of the
optical conductivity. The exact expectation value of vertex
operators in the sine-Gordon model has been predicted in
Ref. 21. According to it, the polarization density is calculated
to be

�P�/L = �A/3�3/2�ESa/v�1/23dg �46�

with A3.041 and L being the chain length. This provides
an experimental way of estimating the coupling constant g,
which is usually difficult to determine in other multiferroic
compounds.

V. CONCLUSIONS

We have numerically evaluated coefficients of bosonized
dimer and spin operators in spin-1

2 XXZ model �1� and J-J2
model �16�, by using the correspondence between the exci-
tation gap of deformed models with dimerization �or with
staggered Zeeman term� and the gap formula for the sine-
Gordon theory. This is a new strategy relying on a solid
relationship between the lattice models and their low-energy
effective theories. Our numerical approach is relatively easy
compared with another method based on DMRG, developed
in Refs. 24 and 25, although the accuracy is expected to be
better in the latter method. The obtained coefficients are
summarized in Tables I and II and Fig. 4. In addition to these
coefficients, we have pointed out a dangerous nature of ap-
plying the correlation amplitude �29� as coefficients of
bosonized spin operators near the SU�2�-symmetric point
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�z=1 in Sec. III E. Furthermore, we have also used the for-
mula for ground-state energy of sine-Gordon model to cal-
culate the same dimer coefficients in Sec. III F. We conclude
that the excitation-gap formula �11� is more suitable than the
ground-state energy formula �12� for determining coeffi-
cients of bosonized operators.

Physical quantities associated with dimer and spin opera-
tors can be evaluated accurately by utilizing the dimer and
spin coefficients. As examples, we have determined ground-
state phase diagrams of dimerized spin chains in a uniform
field and a two-leg spin ladder with a four-spin interaction in
Sec. IV. In addition, we have shown how to estimate the
electromagnetic coupling constant and the strength of the
dimerization from the optical observables in a ferroelectric
dimerized spin chain. These applications clearly indicate
high potential of the data in Tables I and II.

An interesting future direction is to apply a similar
method to other 1D systems including fermion and boson
models. Our method in this paper can be applied to lattice
systems which have a well-established low-energy effective
theory, in principle.
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