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In the Edwards-Anderson model of spin glasses with a bimodal distribution of bonds, the degeneracy of the
ground state allows one to define a structure called backbone, which can be characterized by the rigid lattice
�RL�, consisting of the bonds that retain their frustration �or lack of it� in all ground states. In this work we
have performed a detailed numerical study of the properties of the RL, both in two-dimensional �2D� and
three-dimensional �3D� lattices. Whereas in 3D we find strong evidence for percolation in the thermodynamic
limit, in 2D our results indicate that the most probable scenario is that the RL does not percolate. On the other
hand, both in 2D and 3D we find that frustration is very unevenly distributed. Frustration is much lower in the
RL than in its complement. Using equilibrium simulations we observe that this property can be found even
above the critical temperature. This leads us to propose that the RL should share many properties of ferromag-
netic models, an idea that recently has also been proposed in other contexts. We also suggest a preliminary
generalization of the definition of backbone for systems with continuous distributions of bonds, and we argue
that the study of this structure could be useful for a better understanding of the low-temperature phase of those
frustrated models.
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I. INTRODUCTION

During the last three decades, the study of spin glasses
�SGs� has attracted the interest of several researchers in both
experimental and theoretical groups. In such magnetic sys-
tem, the disorder and frustrations give rise to a complex be-
havior that it is far from being completely understood. A
fundamental problem is to determine the true nature of the
low-temperature phase. With this purpose, the experimental
and simulations results are commonly analyzed in the frame-
work of two theories: the replica-symmetry breaking �RSB�
or mean-field picture1 and the droplet picture.2 While the
droplet picture predicts a simple scenario with only two pure
states related each other by an up-down symmetry, by using
the formalism of RSB one finds a nontrivial phase space
broken in many ergodic components and with an ultrametric
topology. In spite of the effort put to solve this problem, the
controversy about the phase-space structure of SGs remains
unresolved.

Recently a different approach3–6 has been proposed to
analyze the simulation data of the Edwards-Anderson bimo-
dal �EAB� spin glass model.7 In the same spirit of the droplet
picture, which focuses on the ground state �GS� and their
excitations, in this approach it is assumed that the GS het-
erogeneities play a fundamental role to describe the low-
temperature behavior of SG systems. In the EAB model the
fundamental level is degenerate and the spatial heterogene-
ities are well characterized by the so-called rigid lattice
�RL�.8 This structure is composed by the set of bonds which
do not change its condition �satisfied or frustrated� in all the
configurations of the GS. These bonds are called rigid bonds.
The remaining ones, called flexible bonds, form the flexible
lattice �FL�. In Ref. 4, it was shown that in three-dimensional
�3D� lattices the distributions of domain-wall energies are
very different in these two lattices: while the defect energy

on the RL shows a dependence with the system size typical
of a highly stable phase �similar to the 3D ferromagnetic
Ising model but with a fractal dimension larger than 2�, on
the FL this quantity shows a very different behavior, rather
like a system in an excited state. The total defect energy, that
is, the sum of these two contributions, shows a low stability
with a small �but positive� stiffness exponent.

The same idea has been used to analyze the strong het-
erogeneities observed in the out-of-equilibrium dynamics of
the EAB model. For example, in the 3D EAB model the
mean flipping time probability distribution function presents
two main peaks, corresponding to fast and slow degrees of
freedom.9 For the two-dimensional �2D� and 3D EAB model,
it has been possible to show that these slow and fast peaks
are related to the sets of solidary �S� and nonsolidary �NS�
spins, respectively.3,6 The set S consists of spins which main-
tain their relative orientation in all configurations of the GS
�the remaining spins are denoted NS spins�. The backbone of
the EAB model is characterized both by the bonds of the RL
and by the S spins. In addition, the dynamical heterogeneities
in the violation of the fluctuation-dissipation theorem �FDT�
for the 3D EAB model were studied in the same way.5 Di-
viding the system into sets S and NS, numerical simulations
show that the violation of FDT is the result of two compo-
nents with completely different behaviors: one that tends to
satisfy the FDT relation �set of NS spins�, and another which
presents a violation of this relation similar to coarsening sys-
tems �set of S spins�.

The concept of backbone is also relevant in computer sci-
ence, and, in particular, in the analysis of the K-satisfiability
�K-SAT� problem, a paradigmatic model belonging to the
NP-complete class of problems.10–12 In this case one has to
assign a binary value to a set of variables so as to satisfy the
largest possible number of a given set of clauses. The back-
bone is defined as the set of variables that take the same
values in all optimal assignments. It has been found that the
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phase transition separating satisfiable from unsatisfiable for-
mulas is characterized by the size of the backbone, which
arises as a natural order parameter.10 In addition, the nature
of the change in the backbone size at the transition �continu-
ous or discontinuous� can be used to explain the onset of
exponential complexity that occurs when going from 2-SAT,
a problem solvable in polynomial time, to 3-SAT, an NP-
complete problem.

These studies show that the backbone plays an important
role in the physical behavior of disorder and frustrated sys-
tems. In all the mentioned cases the separation of the systems
in two components is not trivial: the observables evaluated
on the backbone region or their complement behaves very
differently. More surprising is the fact that in the EAB spin
glass model the physics displayed in each one of these com-
ponents looks similar to a ferromagnetic and a paramagnetic
phase of the Ising model, respectively. Given this context, we
think that an exhaustive study of the backbone structure can
give interesting insights to understand the nature of the low-
temperature phases in spin glasses.

In this work we have carried out a systematic study of the
backbone structure of the 2D and 3D EAB spin glass model.
We find that frustration is much lower in the backbone than
in its complement. Using equilibrium simulations we ob-
serve that this property can be found even above the critical
temperature. These findings, together with the results men-
tioned in the previous paragraphs, lead us to propose that a
separate study, in the backbone and its complement, of the
different quantities that characterize the system, could lead to
a better understanding of the low-temperature phase of spin
glasses.

The paper is structured as follows. In Sec. II we present
the EAB model and the algorithm used to calculate the RL
and the S spins. Numerical results that characterize the back-
bone structure are presented in Sec. III. Then, an extensive
discussion is given in Sec. IV to show the importance of
considering the GS topology in spin glasses. Finally conclu-
sions are drawn in Sec. V.

II. MODEL AND ALGORITHM

We start by considering the Hamiltonian of the EAB
model,7

H = − �
�i,j�

Jij�i� j , �1�

where the sum runs over the nearest neighbors of either a 2D
�square� or 3D �cubic� lattice of linear dimension L and �i
= �1 are N Ising spin variables. The coupling constants are
independent random variables chosen from a �J bimodal
distribution with zero mean and variance one �i.e., J=1�.
Samples �particular realizations of random-bond distribution�
in 2D were generated with both periodic-free boundary con-
ditions �pfbc� and periodic-periodic boundary conditions
�ppbc� while in 3D only periodic boundary conditions in all
directions were used. Because of the fact that the bonds are
independent variables, for relatively large system sizes only
configurations with half of the bonds of each sign are statis-
tically significant. To preserve this feature for small sizes, we
explicitly enforce the constraint

�
�i,j�

Jij = � 0 for even number of bonds

�1 for odd number of bonds.
� �2�

Specifically, for systems with an odd number of bonds, we
enforce the constraint ��i,j�Jij =1 for half of the samples and
��i,j�Jij =−1 for the other half.13

For the EAB model, which has a degenerate GS, the RL is
defined as the set of bonds which do not change its condition
�satisfied or frustrated� through all the configurations of the
GS. Figure 1 shows the RL of a typical 2D sample of L=8
with ppbc �flexible bonds are not shown�. In 2D, it is only
possible to obtain all the GSs only for small system sizes
because the number of configurations grows exponentially
with L. Thus, only for samples with L�9 we have per-
formed an exhaustive search of all the GSs, using a branch-
and-bound algorithm, in order to obtain the RL.14 For larger
lattice sizes a different approach must be used because for
already L�9 the number of GS configurations becomes
larger than 107.

Recently we have shown that the RL can be obtained by
calculating only NB GS configurations, where NB is the num-
ber of bonds.15 The corresponding algorithm, called rigid
lattice searching algorithm �RLSA� is valid for any lattice
geometry in any dimensions. Assuming that one has a
method for obtaining a GS configuration of the system, the
RLSA can be described as follows: �1� for a given sample, a
GS configuration C is calculated and its energy U is stored.
�2� A bond Jij is chosen at random. �3� The system being in
configuration C, one of the spins joined by the bond Jij, i.e.,
either �i or � j, is flipped. This changes the “condition” of the
bond from satisfied to frustrated or vice versa. �4� Now the
orientation of the spins i and j is frozen, and for this “con-
strained” system a GS configuration C� of energy U� is cal-
culated. The freezing of the spins enforces the constraint that
the bond Jij will have the same condition in all GS configu-
rations. �5� If U��U, then Jij is a rigid bond which is satis-
fied �frustrated� in all GS configurations of the original, un-
constrained, system, if Jij was satisfied �frustrated� in C. The
bond is added to the RL. �6� If U�=U, then Jij is a flexible
bond, and it is added to the FL. �7� The bond Jij is added to

(b)(a)

FIG. 1. �Color online� �a� A typical 2D sample of L=8 with
ppbc. Single and double lines indicate ferromagnetic and antiferro-
magnetic bonds, respectively. �b� The corresponding RL. Solid
�blue� and dot �red� lines indicate rigid bonds which are, respec-
tively, satisfied and frustrated in the GS. The S spins are indicated
with circles �closed and open circles correspond to different spin
orientations�.
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the list of “interrogated” bonds, and the restriction over the
spins �i or � j is lifted. �8� If there are still noninterrogated
bonds, a new bond Jij is chosen among them and the process
is repeated from step 3.

A significant speedup of the algorithm can be obtained if
each time that a new GS configuration of the system is ob-
tained �step 6�, new configurations are explored by perform-
ing single spin flips. There are usually some spins, called free
spins, whose flipping does not change the energy of the state,
leading thus to new GSs. This procedure, called invasion,
allows us to explore a local ensemble of GSs �LEG�,16 that
are related by single spin flips. By comparing the GSs thus
obtained many flexible bonds can be detected. Note that this
procedure gives no information about rigid bonds because
these must keep their condition in all GSs. Although the
speedup given by this procedure is important, the number of
GSs required to obtain the RL remains on the order of NB.

For the procedure presented above we have assumed the
existence of an algorithm that can find any GS configuration
of the systems involved. But for some systems, if the sample
size is not very small, only probabilistic algorithms are avail-
able, i.e., algorithms whose output is a GS configuration with
a probability smaller than 1. In this case the only modifica-
tion of the RLSA is that, in step 5, a bond is classified as
rigid if in n independent runs of the probabilistic algorithm
the condition U��U is obtained. Note that, as in this case
flexible bonds are always correctly classified, the true RL is a
subset of the RL calculated with our algorithm. For lattices
with ppbc we implemented the RLSA using parallel temper-
ing Monte Carlo.17,18 Recently, we have shown that this tech-
nique is a powerful heuristic method for reaching the GS of
the EAB model up to L=30 in 2D and L=14 in 3D.19 As in
the RLSA many independent runs of parallel tempering are
needed, we have obtained the RL of samples up to L=18 in
2D and L=9 in 3D. Parameters used here are the same as in
Ref. 19 and n=10 independent runs were carried out in all
the cases.

For 2D lattices with pfbc it is well known that the prob-
lem of finding the GS can be mapped to a minimum-
weighted perfect matching problem, which can be solved
exactly in polynomial time �i.e., in time proportional to some
power of L�.20 We have used one implementation of the
Blossom algorithm,21 which has allowed us to obtain the GS
of systems with sizes up to L=300. To obtain the RL, how-
ever, we have not used the RLSA because systems with fro-
zen spins cannot be mapped to perfect matching problems.
Then, we have implemented an equivalent algorithm that it is
roughly as follows: �1� A GS configuration C of the system is
calculated and its energy U is stored. All bonds are listed as
unclassified. �2� An unclassified bond Jij is chosen. �3� If
bond Jij is satisfied, we do Jij→−Jij, and if it is frustrated,
we do Jij→2Jij. Note that this increases the energy of the
configurations where the bond is in the same condition as in
C, and decreases the energies of the rest. �4� The GS is
calculated for the modified system and its energy U� stored.
�5� If U��U, bond Jij is classified as flexible, else it is
classified as rigid. �6� Steps 2 to 5 are repeated until all the
bonds have been classified. The procedure, implemented
with the Blossom algorithm, has allowed us to obtain the RL
of samples with system sizes up to L=140.

This algorithm is based on the following reasoning. If we
want to find the rigidity of bond Jij, the set of all 2N possible
spin configurations can be split into two subsets: set AF,
containing all the configurations where this bond is frus-
trated, and set AS, containing all configurations where this
bond is satisfied. The energy of the lowest configurations
within each set are denoted UF and US, respectively. Let us
suppose now that the GS configuration C of the system �with
energy U� belongs to set AF and U=UF. Then, we modify
the bond Jij in such a way �see below� that for all configu-
rations of AF the energy is raised by the same quantity �.
Thus, the lowest energy configurations of this set are the
same as in the original system, but with energy UF

� =UF+�.
In turn, the lowest energy of the configurations belonging to
set AS is lowered by the amount �, i.e., US

�=US−�.
Now, if bond Jij is flexible, we have U=UF=US and

therefore the GS energy of the modified system will satisfy
U�=US−�=U−�. On the other hand, if bond Jij is rigid, we
have UF�US. In this case, the new GS energy is either U�

=US−� or U�=UF+�. But note that in any of these cases, we
have U��U−�. Thus, to know whether a bond is rigid or
not it is enough to check if the GS energy of the modified
system satisfies U�=U−� �flexible bond� or U��U−� �rigid
bond�.

If the GS configuration C belongs to set AS, the preceding
reasoning is exactly the same. The only feature that depends
on whether the GS configuration belongs to set AS or AF, is
the modification of the bond to produce a new system with
an associated value of �. Note, however, that the method
works for any value of �. The values we have chosen are as
follows: if the GS configuration belongs to set AF we do
Jij→2Jij, resulting in �=1 whereas if the GS configuration
belongs to set AS we do Jij→−Jij, resulting in �=2. As the
smallest energy gap between consecutive levels is 2J, these
choices of � guarantee that if the bond is rigid then the new
GS energy will be larger than or equal to the GS energy of
the original system, and if it is flexible it will be strictly
smaller. Thus, as stated in step 5 of the algorithm above, a
comparison between the GS energies of the modified and
original systems is enough to determine whether the bond is
flexible or not.

III. NUMERICAL RESULTS

In this section we present the main topological character-
istics of the backbone for 2D and 3D lattices. First, we ana-
lyze the distribution of backbone sizes and, by extrapolating,
we calculate the fraction of rigid bonds and S spins in the
thermodynamic limit. Next, the percolation process dis-
played for finite lattice sizes is studied in detail to infer the
structure of the backbone of macroscopic samples. We con-
clude by showing the behavior of the contributions of the RL
and FL to the mean energy per bond.

A. Solidary spins

As mentioned above, the backbone can be characterized
by the set of S spins which preserve their relative orienta-
tions in all configurations of the GS. It is evident that the
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spins joined by bonds of the RL are S spins. But, remarkably,
there are samples where some solidary spins are “isolated,”
in the sense that they are not connected to the RL. To see
how this is possible, let us consider the sample shown in Fig.
2�a�. We have obtained its RL, as well as the set of all sol-
idary spins, by exploring all the GSs of the system, using a
branch-and-bound algorithm. Figure 2�b� shows that the RL
is composed by four islands. One of the solidary spins, de-
noted by a star in Fig. 2�b�, is outside of RL. As mentioned
in the preceding section, the set of GS configurations can be
divided in several disjoint subsets called LEGs. A LEG is
defined by the requirement that their configurations are con-
nected by paths of single spin flips. Within each LEG, the
bonds that do not change their status form a “partial” RL.
The intersection of the partial rigid lattices gives rise to the
“global” RL. Figure 2 shows the partial RL of the four pos-
sible LEGs for that sample. Note that the spin denoted with a
star belongs to the four partial RL. In other words, it is con-
nected by four different paths to the global RL island iden-
tified with a dashed line, and is therefore “solidary” with it.

Fortunately, analyzing many samples up to sizes of L=8
in 2D and L=4 in 3D, we have concluded that the situation
exemplified in Fig. 2 is very rare and should not be signifi-
cant for larger lattice sizes: only 0.1% and 1% of samples in,

respectively, 2D and 3D lattices have isolated solidary spins
�and less than 5 of these spins in each case�, and we have not
found indications that these percentages increase with in-
creasing L. Therefore, in the following we consider as S
spins only those that are linked by the RL. This is necessary
because our RLSA can only find sets of rigid bonds.

In a recent work, a bond-diluted version of the 3D EAB
has been studied close to the bond-percolation threshold of
the lattice.22 The critical density of nonzero bonds separating
the paramagnetic from the SG phase in the GS, was deter-
mined by analyzing the correlation function between two
external spins put in both ends of the sample. In the thermo-
dynamic limit, the authors find that these external spins are
perfectly correlated �solidary� up to the critical density. In
other words, they change from solidary to nonsolidary at the
SG threshold. From this work, however, it is difficult to infer
whether the RL also percolates at the same critical density.
Nevertheless, if the RL percolation threshold is lower, the
mechanism shown in Fig. 2 would provide an explanation of
why the externals spins keep solidary in absence of a perco-
lating rigid structure. It could thus play an important role in
this kind of systems.

B. Size of the backbone

For the 2D EAB model with ppbc, the RL was calculated
for 104 samples for each size between L=3 and L=12, 5
�103 for L=14, 2�103 for L=16 and 103 for L=18. We
define the parameter h as the fraction of rigid bonds. Figure
3 shows the distribution function of h, D�h�, for some of
these sizes. Note that the curves get sharper as L is increased:
the standard deviation seems to decrease as L−0.55�1� and, as
shown in the inset of Fig. 3, the mean value converges
quickly to h=0.531�2� �we have carried out a linear fit of
points corresponding to the larger sizes�.

(f)(e)

(c)

(b)

(d)

(a)

FIG. 2. �Color online� �a� A 2D sample of L=8 with ppbc. �b�
The corresponding RL formed by four islands. Symbols are as in
Fig. 1. The spin denoted by a star is solidary with the set of spins
contained inside the closed dash line. �c�–�f� Partial RLs for the four
LEGs in which are broken all configurations of the GS.
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FIG. 3. �Color online� Distribution function D�h� for the frac-
tion of rigid bonds, for the 2D EAB model. Curves for samples with
ppbc of sizes L=8, 10, 12, 14, and 16, and for samples with pfbc of
sizes L=10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 are shown �the
curves are sharper for increasing L�. The inset shows the mean
values of h as function of 1 /L for both types of boundary
conditions.
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Figure 3 also shows the distribution D�h� for the 2D EAB
model with pfbc. In this case 104 samples were calculated for
each size up to L=50, 7�103 for L=60, 5�103 for L=70,
3�103 for L=80, 1.5�103 for L=90, 103 for sizes between
L=100 and L=120, and 5�102 for L=130 and L=140 �the
distributions shown in Fig. 3 are for sizes between L=10 and
L=100 only�. In this case the standard deviation seems to
decrease as L−0.56�1� but, as the inset of Fig. 3 shows, the
mean value converges very slowly. This is probably due to
finite-size effects caused by the free boundary condition. By
fitting the points corresponding to the larger sizes, we con-
jecture that the mean value converges to h=0.55�2�, which is
above the value obtained for the ppbc �from now on, the
error bars are omitted for clarity when they are equal or
smaller than the symbol size�.

A similar behavior is observed in Fig. 4 for the distribu-
tion function F�p�, where p is the fraction of S spins. The
mean values of this quantity for systems with both types of
boundary conditions are shown in the inset. As before, using
a linear fit of points corresponding to the larger sizes, we
observe a quick convergence to p=0.678�6� for samples with
ppbc and a very slow convergence to a slightly larger value
p=0.69�1� for samples with pfbc. Larger sample sizes with
pfbc should be studied to determine more accurate values of
fractions h and p in the thermodynamic limit.

The same analysis has been carried out for the 3D EAB
model with ppbc. The RL was calculated for 104 samples for
sizes L=3 and 4, 6�103 for L=5, 3�103 for L=6, 103 for
L=7 and 8, and 2�102 for L=9. Figures 5 and 6 show,
respectively, the distributions D�h� and F�p� for sizes L=4,
6, 8 and 9. As for 2D systems, in this case the curves seem to
get sharper for larger L, and the standard deviation seems to
decrease as L−0.42�1� for D�h� and L−0.68�2� for D�p�. Although
the lattice sizes are small, using a linear fit of points corre-
sponding to the larger sizes, we can see in the insets that the
mean values seem to converge to h=0.57�1� and p
=0.77�1�.

Previous numerical results show that the relative back-
bone size is slightly larger in 3D as compared to 2D. How-

ever, the most important difference between these two di-
mensionalities will arise in the internal structure of their
respective backbones as we will show in the next subsection.
In particular, we do a detailed study of the percolation pro-
cess exhibited by the backbone in the case of finite-size lat-
tices.

C. Percolation of the backbone

A simple way of determining if the backbone percolates is
to calculate the percolation probability for different lattice
sizes and to extrapolate it to infinite L. Let us define QL

U �QL
I �

as the probability that the RL of the set of samples of size L
percolates along at least one lattice direction �percolates si-
multaneously along all independent lattice directions�.23 To
conclude that the backbone percolates, these quantities
should converge to 1 in the thermodynamic limit. Using the
algorithm of Hoshen-Kopelman24 we have calculated QL

U and
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FIG. 4. �Color online� Distribution function F�p� for the fraction
of solidary spins, for the 2D EAB model. The lattice sizes used are
the same as in Fig. 3. The inset shows the mean values of p as a
function of 1 /L for samples with both types of boundary conditions.
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FIG. 5. Density distribution function D�h� for the 3D EAB
model. Curves of sizes L=4, 6, 8, and 9 are shown �the curves are
narrower for increasing L�. The inset shows the mean values of h as
a function of 1 /L.
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FIG. 6. Density distribution function F�p� for the 3D EAB
model. The lattice sizes used are the same as in Fig. 5. The inset
shows the mean values of p as function of 1 /L.
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QL
I for both 2D and 3D RLs. Figure 7 shows the percolation

probabilities as function of 1 /L. Whereas for 3D the results
suggest that a percolation scenario can be likely, for 2D sys-
tems the curves do not show a clear tendency. Therefore, we
have followed a different strategy to address this question in
each case.

Following the line of reasoning given in Refs. 25 and 26,
we have studied the percolation probabilities as functions of
the variable h �analog to the bond concentration in random
percolation�. For each linear lattice size L, we define RL

U�h�
�RL

I �h�� as the probability that the RLs having a fraction of
rigid bonds between h and h+�h, percolates along at least
one lattice direction �percolates simultaneously along all in-
dependent lattice directions�.

1. 2D lattices

Figure 8 shows the functions RL
U�h�, RL

I �h�, and RL
A�h�

��RL
U�h�+RL

I �h�� /2, for three different lattice sizes of the 2D
EAB model with ppbc. To obtain these curves, we have used
a bin width of �h=0.1 up to L=6 and �h=0.05 for larger
sizes, and the value of each one of these probabilities for
samples with a fraction of rigid bonds between h and h
+�h, was assigned to the midpoint of the interval, i.e., to
h=h+�h /2. Error bars were calculated using a bootstrap
method.27 The behavior of the curves in Fig. 8 suggests that
the RL could be thought as the result of a bond-percolation
process on a 2D lattice.28 The curves for RL

I �h� and RL
A�h�

probabilities seem to cross at a concentration threshold hc.
On the other hand, although the curves for RL

U�h� apparently
cross, this is hard to observe in Fig. 8 because of large finite-
size effects.

To calculate a more precise value for the percolation
threshold, we perform a standard analysis of the data.23 First,
each set of points is fitted with an error function using a
least-mean-square method. Then, the bond concentration at
which the slope of the fitting curve is largest is taken as an
effective threshold hc

X�L�, where X denotes the percolation

criterion used: U, I, or A. The hc
X�L� are expected to follow

the law29

hc
X�L� = hc + CXL−1/	, �3�

where CX is a nonuniversal constant and 	 is the critical
exponent associated to the correlation length. The inset in
Fig. 8 shows the effective thresholds as function of L−1/	,
where we have used the value of 	=4 /3 of the 2D random
percolation29 �a justification of this choice is given below�.
To calculate an estimate of hc, we extrapolate toward the
thermodynamic limit by means of a linear fit. For hc

I�L� and
hc

A�L� we obtain the limits 0.58�1� and 0.58�3�, respectively.
As before, these quantities do not agree with the extrapolated
value for hc

U�L�, 0.49�2�, probably because the percolation
criterion U is more sensitive to finite-size effects.

Thus, the results obtained for small samples with ppbc
suggest the existence of a critical concentration hc	0.58 in
2D. Note that this value is different from the concentration
threshold of the random-bond percolation in the square lat-
tice, 
c=0.5,29 which was to be expected because the bonds
of the RL are not independently and randomly placed on the
lattice. Another important difference is that in the rigid bond
percolation process the concentration of rigid bonds cannot
be freely varied for very large system sizes because the dis-
tribution D�h� tends to a delta function. The simulations for
the 2D samples with ppbc described above seem to indicate
that this delta function is placed at h=0.531�2�, which would
imply that the RL does not percolate in the thermodynamic
limit. However, the closeness of the values obtained and the
small sizes considered do not allow us to discard the possi-
bility that the delta function is in fact placed at hc.

Eventually, the situation should be clearer when consider-
ing 2D samples with pfbc because larger system sizes are
available. Unfortunately we show below that the analysis
leads to a similar conclusion. Figure 9 shows the functions
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RL
U�h�, RL

I �h� and RL
A�h� for four different sizes. We have used

a bin width ranged from �h=1 /30 �samples with L=20� to
�h=1 /50 �samples with L�60�. The differences between
Figs. 8 and 9 are evident. In this case the crossing of the
RL

I �h� curves happens at a very low value of probability. This
is not surprising since samples with pfbc are very aniso-
tropic: for a given sample, the percolation probability in the
lattice direction x �where periodic boundary conditions are
used� is larger than in the lattice direction y �where free
boundary conditions are imposed�. In fact, RL

x�h�	RL
U�h� and

RL
y�h�	RL

I �h�. Inset in Fig. 9 shows the effective thresholds
as function of L−1/	 �again we have used 	=4 /3�. By ex-
trapolating toward the thermodynamic limit we obtain the
limits 0.56�1�, 0.562�5�, and 0.56�2� for, respectively, hc

U�L�,
hc

I�L�, and hc
A�L�. This critical concentration of hc	0.56 is

very close to the mean value of h=0.55�2� for 2D samples
with pfbc. Then, a similar scenario to the one previously
found for the samples with ppbc is obtained: even though hc
is slightly above the asymptotic mean value of h, they are so
close that they fall within the error bar of each other. There-
fore, from this study no definite conclusion can be drawn for
the 2D cases, and the evidence seems to indicate that the
sample size needed for achieving a definite answer on the
percolation of the backbone is orders of magnitude larger
than the ones available to us. Note that for the 2D EAB
model finite-size effects also affect the determination of
many other quantities. For instance, to be reasonably sure
that the stiffness exponent of the defect energy vanishes,
samples of up to L=480 had to be analyzed.30

Now, we deal with the problem of determining the uni-
versality class of the percolation process and the main char-
acteristics of the RLs internal structure. Because it is neces-
sary to analyze large samples, in most of the cases we have
restricted the study to samples with pfbc. In the fits described
above we have supposed that 	=4 /3, i.e., that the universal-

ity belongs to the 2D random percolation. A first indication
that this is in fact the case, is that the linear fits in inset of
Fig. 9 intersect very close to the ordinate axis, for 	=4 /3.
But 	 can be evaluated using the following expression:29


dRL
X

dh
�

max
� L1/	. �4�

In Fig. 10 we show the maximum of this derivative for the
three types of percolation probability as functions of L. Only
samples with pfbc were used. Due to the finite-size effects
displayed in this figure, we have chosen to fit the data using
a simple scaling function with an additional correction term,

f�L� = a + bL1/	, �5�

where a and b are constants. The values of 1 /	 obtained for
the percolation criterion U, I, and A are, respectively, 0.7�2�,
0.9�3�, and 0.6�2�. Although the error bars are large, these
values are compatible with the 2D random percolation uni-
versality class. For comparison, we show in Fig. 10 the re-
sults obtained for the random-bond percolation in the square
lattice �only criterion A is shown�. Using the same scaling
function and samples up to L=100 we obtain 1 /	=0.74�2�.31

To characterize the topology of the backbone, we turn
now to D, the fractal dimension of the percolating cluster. It
is defined by

Sperc � LD, �6�

where Sperc represents the mean number of elements �in this
case rigid bonds� which form the spanning cluster. We have
calculated Sperc for the samples that have a percolating clus-
ter, for three different ranges of h: one centered in h=0.56,
the percolation threshold calculated for the EAB model with
pfbc, and other two ranges centered in h=0.55 and h=0.53,
the mean values of h calculated for samples with pfbc and
ppbc, respectively. We plot in Fig. 11 Sperc as a function of L
for these ranges and again, for comparison, the results ob-
tained for the random-bond percolation in the square lattice
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at 
c=0.5. In all the cases we fitted the data with the scaling
function, Eq. �5�. The values obtained for the fractal dimen-
sion are shown in Fig. 11. It can be noticed that all these
values are compatible with D=91 /48	1.896, the fractal di-
mension of the percolating cluster in the 2D random perco-
lation universality class.29

In Fig. 12 we show the cluster number distribution �i.e.,
the number of clusters of size s�, ns, for the same three
ranges of h previously studied and for the 2D random-bond
percolation in the square lattice at 
c=0.5. At the critical
bond concentration it is expected that this distribution fol-
lows a power law

ns � s−
, �7�

where 
 is a critical exponent. By fitting all the curves in Fig.
12, we obtain different values of 
 which are very close to


=187 /91	2.05, the corresponding exponent for the 2D
random percolation universality class.29

2. 3D lattices

Even though Fig. 7 suggests that for 3D systems the back-
bone percolates, we have carried out the same analysis as for
2D systems to confirm this observation. Figure 13 shows the
curves of RL

I versus h for three lattices sizes. The other per-
colation criteria have not been included because, as Fig. 8
shows for 2D systems with ppbc, they are much more sensi-
tive to finite-size effects which are rather large for the small
systems analyzed. The inset in Fig. 13 shows the effective
thresholds hc

I�L� as function of L−1/	 for all available system
sizes. Similarly to the 2D case we have chosen 	=0.9, the
value of 3D random percolation �this choice is justified
below�.29 In the thermodynamic limit we obtain a critical
threshold of hc=0.33�2�, which is much smaller than the
mean fraction of rigid bonds, h=0.57�1� �see inset in Fig. 13
for a comparison�. In addition, note that as in 2D, the RL
percolates at a larger concentration value than the corre-
sponding one for the random-bond percolation in the simple
cubic lattice, 
c	0.2488.32

To determine the universality class of the percolation pro-
cess we proceed as for the 2D case. Figure 14 shows the data

for �
dRL

X

dh �max, fitted by the function given in Eq. �5�. The value
obtained for the exponent is 1 /	=1.0�1�, which is compat-
ible with the value for random percolation. The large error in
the value of the exponent is justified by the small sizes used.
Note that errors of the same amount are obtained in the case
of random percolation in 3D if the exponent is calculated
using the same criterion for systems of the same sizes �see
Fig. 14�.

Figure 15 shows the data for the size of the percolating
cluster as a function of L, which allows us to obtain the
fractal dimension of the backbone, using Eq. �6�. Data are
shown for two ranges of h: around the mean value of h and
around the critical value obtained in Fig. 13. In this last case
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the value obtained for the fractal dimension is D=2.4�1�,
which is very close to D=2.53, the corresponding value for
3D random percolation at the percolation threshold.29 For the
range of h centered at the mean value, the fractal dimension
obtained is also very close to D=3, the random percolation
value for a bond concentration 
�
c. To gauge the influence
of finite size effects, we have included in the figure the data
obtained for random-bond percolation in the cubic lattice for
the same system sizes, for concentrations 
=
c	0.2488 and

=0.3.

Even though the evidence shown above seems to indicate
that the RL is in the same universality class as random per-
colation, the data for the distribution of cluster sizes, shown
in Fig. 16, do not fit into this picture. At the percolation
threshold calculated above for the RL, we obtain 
=1.7�1�
which is clearly different from the accepted value, 
=2.2
�Ref. 29� and even from the value obtained when calculated
over the same small sizes used for the RL. Furthermore, for
h close to the asymptotic mean value, which is well above

the percolation threshold, we find that the data for ns still
seem to follow a power law, with a similar exponent 

=1.6�1�. It is well known, however, that this is not the case
for random percolation above the threshold, not even when
concentration is very close to it.

D. Average energy

In this section we study the contribution of the backbone
to the energy of the system. Let us define u�T�, uRL�T�, and
uFL�T� as the average energies per bond at temperature T of,
respectively, the whole system, the RL and the FL. uRL�T�
and uFL�T� are calculated by restricting the Edwards-
Anderson Hamiltonian to the bonds and spins that belong to
each region, and dividing by the corresponding number of
bonds. For the 2D EAB model with ppbc, we have calculated
these energies using a parallel tempering algorithm,17,18 with
m=40 replicas of the system for temperatures decreasing
from T=8.0 all the way to T=0.2. 2000 samples of size L
=16 were equilibrated using 106 parallel tempering steps
�PTS�, where a PTS consists of m�N elementary steps of
standard Monte Carlo �Metropolis� and only one replica ex-
change. The energy averages were performed using the same
number of PTS. The resulting energies are shown in Fig. 17.
The values at T=0 are the GS energies calculated as in the
previous section using parallel tempering �but without equili-
brating to make the algorithm faster�. For comparison, the
figure also shows the energy per bond for the ferromagnetic
Ising model, with L=16. As 2D EAB systems with pfbc are
much harder to equilibrate, we have only calculated the en-
ergies per bond for the case of T=0, using a Blossom algo-
rithm.

The most interesting feature is that, whereas for high tem-
peratures all the energies coincide, when the temperature is
progressively lowered the curves separate, with uFL�T�
�u�T��uRL�T�. We have checked that this happens not only
on the average, but it is also true for single samples, as the
histograms of these three energies for T=0 shown in the

2 3 4 5 6 7 8 9 10
1

10

Random percolation

I : 1/ν = 0.9(1)

EAB model

I : 1/ν = 1.0(1)

3D

L

(d
R

L
/
d
h
) m

a
x

I

FIG. 14. �Color online� �
dRL

I

dh �max as function of L for the 3D
EAB model �circles� and for the random-bond percolation model in
the simple cubic lattice �triangles�.

2 3 4 5 6 7 8 9 10

10
1

10
2

10
3

10
4

EAB model

D = 2.4(1) : Range h = 0.30 - 0.36

D = 2.9(1) : Range h = 0.54 - 0.60

Random percolation

D = 2.55(2) : ρ = ρ
c

= 0.2488

D = 2.99(1) : ρ = 0.3

S
p
e
rc

L

3D

FIG. 15. �Color online� Mean size of the percolating cluster as a
function of L for the 3D EAB model �full symbols� and for the
random-bond percolation model in the simple cubic lattice �open
symbols�. The used ranges or concentrations are indicated in the
figure.

10
0

10
1

10
2

10
-6

10
-5

10
-4

10
-3

10
-2

Random percolation

τ = 2.1(1)

n
s

EAB model

τ = 1.7(1)

τ = 1.6(1)

s

3D

FIG. 16. �Color online� Cluster number distribution for 3D
samples of the EAB model with L=8 and for the random-bond
percolation in the simple cubic lattice with L=8. Symbols are the
same as in Fig. 15.

GROUND-STATE TOPOLOGY OF THE EDWARDS-… PHYSICAL REVIEW B 82, 214401 �2010�

214401-9



inset of Fig. 17 confirm. This is an indication that frustration
is not distributed homogeneously in the system; instead, it is
concentrated mainly in the FL. Note also that the decrease in
uFL�T� is not monotonous but it displays a minimum at finite
temperature. On the other hand, the energy of the RL does
decrease monotonously to its minimum at T=0, uRL�0�
	0.9 �indicating that the fraction of frustrated bonds inside
the RL is of only 	5%�. Interestingly, this value can be
considered as the GS energy for the rigid lattice: it is the
value that is obtained when all the bonds and spins that do
not belong to the RL are eliminated and the GS of the result-
ing system is calculated. We have checked that this happens
for all the samples analyzed. If, on the other hand, the same
is done for the FL, we have checked that uFL�0� is always
much larger than the GS energy of the new system where
bonds and spins that do not belong to the FL are eliminated.
It can therefore be said that the FL is in an excited phase.4

We have carried out similar calculations for the 3D EAB
model with L=8, using 1000 samples which were equili-
brated using 106 PTS with m=60 replicas, for temperatures
between T=6 and T=0.2. Figure 18 shows that the main
features of the curves of the three energies are the same as
for the 2D case. Note also that the separation of the curves
happens at temperatures well above the critical one Tc
	1.12.33 uRL�0� decreases to a value of uRL�0�	−0.8, indi-
cating that the fraction of frustrated bonds inside the RL is of
only 	10%.

The fact that the RL displays very little frustration sug-
gests that its behavior can be associated to certain extent to a
ferromagnetic phase. To see this, it is useful to consider what
happens to the RL when a gauge transformation is applied.
This transformation, which leaves the Hamiltonian invariant,
consists in flipping one spin, as well as flipping the sign of
the surrounding bonds, and repeating these steps until all
spins have the same direction.34 Figure 19�a� shows the larg-

est cluster of the RL of the same 2D sample as in Fig. 1, and
Fig. 19�b� shows the result of the gauge transformation. Note
that the frustrated bonds are conserved, but all of them were
mapped to antiferromagnetic bonds. Satisfied bonds on the
other hand are mapped to ferromagnetic bonds. Thus, using
the results given above, the transformed structures have an
average concentration of antiferromagnetic bonds of x
=0.05 and x=0.1, respectively, for the 2D and 3D EAB
model. It is instructive to compare the transformed backbone
with the Edwards-Anderson model for a bimodal distribution
Ji,j =x��Ji,j +1�+ �1−x���Ji,j −1�, �also known as random-
bond Ising model�. This model has a ferromagnetic phase for
low concentrations up to xc=0.104�1� and xc=0.222�5� in
2D and 3D, respectively.35,36 Note that these concentrations
are larger �almost by a factor of 2� than the ones we have
found for the RL both in 2D and 3D. This suggests that the
backbone could be considered as a ferromagnetic component
embedded in the spin glass. This analogy, however, is not
complete because in the transformed structure the antiferro-
magnetic bonds cannot be necessarily considered as random
since the frustrated bonds of the RL are correlated. Further-
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more, for this analogy to be meaningful, the RL should be a
percolating structure. Thus, the analogy is better for 3D than
for 2D systems, where we have shown that there is no solid
evidence of percolation.

IV. DISCUSSION

In this section we use the results obtained in this and
previous works, to try to understand the role that the back-
bone plays in the behavior of some spin glass systems, and in
general in disordered and frustrated systems.

Because of the fact that the determination of the GS of the
EAB model is an NP-hard problem, in this work all numeri-
cal studies were restricted to relatively small samples. Nev-
ertheless, the results obtained suggest that whereas in 2D
there is no evidence that the RL percolates, in 3D percolation
of the RL seems to be the most probable scenario. Taking
into account the fact that in 2D the critical temperature is
vanishing whereas for 3D it is known that Tc�0, it can be
conjectured that the properties of the low-temperature phase
must be strongly correlated with the properties of the back-
bone �characterized by the RL, in this work�.

The spatial distribution of frustration found in EAB sys-
tems is also very interesting. We have observed that frustra-
tion is not homogeneously distributed in the system: it is
mostly concentrated in the FL, whose energy per bond
uFL�T� is thus much larger than the corresponding energy of
the RL, uRL�T�. Moreover, Figs. 17 and 18 show that uFL�T�
has a minimum value for nonvanishing T and that in 3D at
T=0 it takes a value that is close to the energies of the whole
system in the paramagnetic phase �in the 2D case the value
coincides with the energy of the system for T	1.3�. This
suggests that the FL can be thought as a subsystem in an
excited state.4 This impression is supported by the fact that,
when considered as an isolated system, the GS energy of the
FL is smaller than uFL�T�. Furthermore, this also suggests
that the behavior of the FL is closely related to that of a
paramagnet, even at vanishing temperatures.

When compared with the ferromagnetic phase of the
random-bond Ising model at low concentrations of antiferro-
magnetic bonds, the low frustration that we find in the RL
seems to indicate that the RL could share many of the prop-
erties of a ferromagnet �even though in 3D there is no spon-
taneous magnetization of the backbone, for T�Tc, the clus-
ters of S spins align in one of two possible directions�. It
must be said, however, that this is only a conjecture, because,
as mentioned in the previous section, one cannot be sure that
the gauge transformation maps a typical distribution of frus-
trated bonds to a typical distribution of random bonds in the
random-bond Ising model, because of the correlations that
arise between frustrated bonds of the RL.

Recently, the fact that the RL and the FL have very dif-
ferent properties has also been verified in other contexts.3,5,6

For instance, the size dependence of the defect energy in 3D
shows that the RL has a very large stability �stiffness expo-
nent �RL=2.59�2��, comparable with that of a ferromagnet
�stiffness exponent �=2 for the Ising model in 3D�. This
large stability must also be compared to the stability of the
system as a whole, which is much lower ��	0.2�.37 This

arises as a compensation between the large stability of the
RL and the instability of the FL. The relevance of the sepa-
ration of the system in RL and FL can also be appreciated in
the out of equilibrium dynamics. It has been observed that
the distribution of spin mean flipping times has two peaks,
corresponding to groups of fast and slow spins.9 But a de-
tailed analysis of the contributions of the RL and FL reveals
that most of the slow spins belong to the RL and most of the
fast spins belong to the FL.3,6

Further evidence of the different roles that the RL and FL
play in the physics of the system is obtained in the study of
the violation of the FDT.5 Whereas inside the RL a coarsen-
inglike behavior is observed, the FL asymptotically follows
the FDT �a behavior characteristic of a paramagnetic phase�.
All these results support the idea that in the EAB model the
system can be divided into two regions that have very differ-
ent properties: one behaves mostly like a ferromagnet �RL�
whereas the other behaves more like a paramagnet �FL�.

Evidently, the characterization of the backbone given in
this and other works can only be applied to systems having a
degenerate GS. But, in general, systems with a continuous
distribution of bonds have at most one GS �or two if we
allow a global spin flip�, where the RL would encompass the
whole system. To extend the notion of backbone to such
systems a more general definition of rigidity should be given.
In particular the “rigidity” of each bond should be associated
to a parameter taking a continuum of values, instead of only
two �rigid-flexible� as in the EAB.

One possible generalization is as follows. For a bond Jij
we define its rigidity rij =Uij

� −U, where U is the GS energy
of the sample and Uij

� is the lowest energy for which the
condition of the bond Jij is frustrated �satisfied� if it is satis-
fied �frustrated� in the GS. As shown below, this seems to be
a very reasonable generalization. The algorithm to find the
rigidity of each bond is very similar to the RLSA: after find-
ing the GS of the system, one of the spins i and j is flipped,
and then both are “frozen” and the lowest energy of the
constrained system is calculated. This gives Uij

� , the energy
of the lowest excited state where the bond Jij is in a different
condition than in the GS.

We have performed a preliminary study of the distribution
of rigidities for different bond distributions in the Edwards-
Anderson model �a more complete analysis will be presented
elsewhere�. First, note that in the 3D EAB model the rigidity
r can only take four values: 0 �bonds that belong to the FL�,
4, 8 or 12 �bonds belonging to the RL�. In 2D bonds in the
RL can only have r=4 or r=8. Figure 20�a� shows the dis-
tribution of these values for 3D samples with L=6, for which
the average rigidity is r̄	2.45.

Figure 20�a� shows that the concept of rigidity allows us
to detect the heterogeneity inside of the RL. Nevertheless, it
is interesting to notice that also the FL is not a homogeneous
lattice. In fact, a flexible bond which changes its condition
�satisfied or frustrated� in only a few GS configurations is
expected to have a more rigid behavior than flexible bonds
that changed in many GS configurations. A study of the het-
erogeneous character of the FL could be carried out by uni-
form sampling of the GS using, for example, the algorithm
proposed in Ref. 38.

To understand what changes when continuous distribu-
tions of bonds are considered, it is useful to choose a distri-
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bution that has the EAB as a limit case. One obvious choice
is a distribution that consists on the superposition of two
Gaussian function of width �variance� � centered at J=1 and
J=−1. We call this the EAB-� model. For 0���1 it is
reasonable to expect that, even though it has only one GS
configuration, the properties of the system will not be very
different from the corresponding ones for the EAB model.
Figure 20�b� shows that for �=0.02 the rigidity distribution
is very similar to the one obtained for the EAB, with four
peaks centered at r=0, 4, 8, and 12. For this value of � the
sharpness of the peaks still allows us to divide the system
into four well-defined components. This, in turn, makes it
possible to define a backbone for this continuous distribution
of bonds. When � is increased, the peaks become necessarily
less sharp �see Fig. 20�b��. The average rigidity, however,
keeps almost constant: we have r̄	2.47 for �=0.02 and r̄
	2.66 for �=0.1.

It is interesting to see what happens when the rigidity of
the EAG model is analyzed. Figure 21 shows that P�r� is not
very different from the rigidity distributions displayed in Fig.
20�b� for �=0.1. Here the average rigidity is r̄	2.31. The
inset of Fig. 21 is a map plot of the probability that a bond
with value J has rigidity r. The rectangular shape of the map
plot shows that the strength of the bond is only very weakly
related to its rigidity. For example, bonds having �J��1.5

have the same probability of having r=4. Note that the same
situation arises in the EAB where the RL and the FL have
identical proportions of ferromagnetic and antiferromagnetic
bonds. Thus, we see that neither the strength nor the sign of
a bond alone can account for its rigidity.

On the other hand, we argue that the rigidity of bond Jij is
a quantity that can give an idea of the “effective interaction”
between spins i and j, in systems with quenched disorder, as
the 3D EAB. This conjecture is supported by the fact that in
the out-of-equilibrium dynamics of this system it is
observed3,6 that nonsolidary spins flip as if they were embed-
ded in a paramagnetic phase, which indicates that the effec-
tive interaction between them is very small. For solidary
spins, on the other hand, the effective interaction seems to be
much stronger because they flip much less often.

Even though the numerical results described in this paper
were obtained for the EAB model, the generalization ad-
vanced in the previous paragraphs seems to indicate that the
concept of backbone can be used in other disordered and
frustrated systems. This structure could be obtained by thor-
oughly studying and comparing the configurations of the
fundamental state as well as of the first excited levels.

As mentioned before, we think that the idea of separately
studying the contribution of the backbone to the different
physical quantities of a system could be very useful for a
better understanding of the low-temperature phase of spin
glasses. In particular, it could shine some light on the long
standing controversy between the droplet picture and the
RSB picture. The droplet picture postulates that below the
critical temperature a spin glass is essentially like a ferro-
magnet, in the sense that it should have a trivial energy land-
scape. If this picture was correct, it could be thought that
what is happening is that the backbone �which, as we have
shown, can be considered as analogous to a ferromagnet� is
dominating the physics of the system, at very low tempera-
tures.

Also, for the out-of-equilibrium dynamics of the
Edwards-Anderson model the RSB picture predicts a con-
tinuous violation of the FDT, associated to the existence of
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FIG. 20. �Color online� Rigidity distribution P�r� for �a� the 3D
EAB model and �b� the 3D EAB-� model with �=0.02 and 0.1. In
both cases we have analyzed 103 samples of systems with L=6.
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many ergodic components.39–41 Evidences of this have been
found not only in numerical simulations of the 3D EAB
model42,43 but also in recent experiments,44 which lends
strong support for the RSB picture. But it has also been
found5 that when the system is separated into RL and FL the
physical behavior of these components is very different from
the one observed for the whole system. The FL curve is in
perfect agreement with the FDT �as happens for a paramag-
net� whereas for the RL the behavior found is similar to a
coarsening process, which is typical of ferromagnetic mate-
rials. It is the combination of these two behaviors that gives
rise to a violation of the FDT similar to what is predicted by
the RSB picture.

It must be said that the idea that there is a special com-
ponent of the system that is responsible for the singular be-
havior of spin glasses at low temperature is not new.45 In
particular, an intuitive picture, based on the existence of fer-
romagnetic clusters, has been proposed to explain several
experimental results.46 It postulates that the size of the clus-
ters is inversely proportional to the temperature. More spe-
cifically, it assumes that the ferromagnetic clusters are com-
posed by those spins joins by bonds that satisfy Ji,j �T. As a
consequence, there appears a critical temperature at which
the largest cluster percolates, resulting in the divergence of a
correlation length. This picture, however, is essentially dif-
ferent to the one we propose in this paper. In our case, the
ferromagneticlike clusters which form the backbone are only
weakly related to the strength of its bonds, and depend in-
stead on the structure of the GS and the first excited levels of
the system. Another important difference is that the clusters
are not independent, because there is an effective interaction
between them, given by their embedding in a structure analo-
gous to an excited phase.

V. CONCLUSIONS

In this work we have carried out a detailed analysis of the
properties and topology of the backbone of the Edwards-
Anderson model with a bimodal distribution of bonds. The
backbone is characterized by the RL, the structure formed by
the bonds that do not change their condition in the different
GS configurations of the system, and by the S spins, the set
of spins which maintain the same relative orientation in these

same configurations. We find that whereas in the thermody-
namic limit there is a strong evidence that the backbone per-
colates in 3D, in 2D our results indicate that the most prob-
able scenario is that this structure does not percolate. The
results are consistent with the fact that only for the 3D EAB
there is a positive critical temperature. We also find that the
frustration present in the RL is much smaller than the frus-
tration of its complement, the FL. This leads to the conjec-
ture that, at least at low enough temperatures, the RL and the
FL could share many of the properties of a ferromagnet and
a paramagnet, respectively. This conjecture has also been
suggested in other contexts.3,5,6

In this paper the concept of RL is crucially dependent on
the degeneracy of the GS of the system, and therefore applies
only to models where the bonds can take only discrete val-
ues. However, as mentioned in the previous section, the idea
of the separation of the system into two components with
very different properties can be generalized to system with
continuous distribution of bonds. We argue that the study of
the separate contribution of these components to the different
observables could lead to a deeper understanding of the low-
temperature phase of disordered and frustrated systems. In
this sense, further work is being carried out to understand the
properties of the backbone of continuous systems, as well as
its influence on the probability distribution functions of the
spin and link overlap and on the emergence of rare clusters
in the paramagnetic phase of spin glasses �Griffiths
singularities�.47
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