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We show that two tight-binding electrons that repel may form a bounded pair in two dimensions. The paired
states form a band with energies that scale like the strength of the interaction potential. By applying an electric
field we show that the dynamics of such states is that of a composite particle of charge 2e. The system still
sustains Bloch-type states so that if the two bands overlap single and paired states might coexist allowing for
a bosonic fluid component that, if condensed, would decrease the resistance at low temperatures. The presence
of two bands allows for new oscillations whose experimental detection would permit a direct measurement of
the interaction potential strength.
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I. INTRODUCTION

Bound states are normally associated with basins of at-
traction, and it is always surprising to find them in the pres-
ence of a repulsive interaction. The most remarkable case is
the pairing of electrons in normal superconductors, mediated
by lattice distortions. A new kind was recently observed for
ultracold rubidium atoms in an optical lattice,1 where the
binding arises from pure quantum interference. The pairs
were shown to be stable, thus suggesting that they might
form a superfluid phase if the composite is a boson.

The effect was originally predicted for a one-dimensional
string.2–5 The eigenstates decay exponentially in the relative
coordinate while in the center-of-mass coordinate they are
extended over the whole lattice. In higher dimensions one
can argue that paired states may exist as well. To see this,
consider two particles that repel moving in a two-
dimensional �2D� lattice. Together, the pair combine four
spatial degrees of freedom, thus allowing that it be formally
described as a single particle moving in a four-dimensional
�4D� lattice. A particle-particle interaction appears then as an
interface potential in four dimensions, which decays to both
sides of the hyperplane x1=x2 and y1=y2, where �x1 ,y1� and
�x2 ,y2� are Cartesian coordinates for the particles position in
real 2D space. Surface states bounded to the interface are
then expected even if the potential locally rises, as would
occur under particle-particle repulsion. Since the interface
represents matching coordinates for the two particles in 2D
such surface states are paired states in the lattice. A similar
argument applies in three dimensions.

We find the 2D case particularly interesting since the on-
set of pairing could be relevant to high-temperature super-
conductors where transport is related to conducting sheets,
and to certain 2D experimental probes for which the physics
is still controversial.6–16 It is believed that in the latter case
localization due to disorder on the conducting sheet should
produce a divergent resistivity as the temperature is lowered
but this behavior was not observed at all electron densities in
metal-oxide-semiconductor field-effect transistors. In fact, a
metal-insulator transition was found in low-density 2D
samples as the density is slightly increased.8 An early predic-
tion invoked the strongly interacting nature of a low-density
electron fluid9,10 while more recent theories study the effect

of formation of a Wigner solid13 or a superconducting
phase,14 a strong spin-orbit interaction,15 and a few classical
effects,16 none of which has received consensus for describ-
ing the physics at the root of the transition.17

As we shall show, paired singlet states are predicted to
exist in 2D for repelling particles in a lattice. In Sec. II we
define the model and show that the density of states reveals
the presence of two bands of different character, one corre-
sponding to a Bloch particle in 4D and one describing a 2D
surface state. In Sec. III we show that the dynamics of such
surface state is that of a composite boson of charge 2e, our
main finding, and in Sec. IV we discuss our results.

II. MODEL

Consider for definiteness two interacting tight-binding
electrons in 2D in a uniform external field. The associated
Hamilton operator for such system reads,

H = ��
x,y

�
s

�cx,y+1,s
† cx,y,s + cx,y,s

† cx,y+1,s + cx+1,y,s
† cx,y,s

+ cx,y,s
† cx+1,y,s� + eEa

n̂ · R�

�2
�
x,y

�
s

cx,y,s
† cx,y,s

+ U�
x,y

cx,y,↑
† cx,y,↑cx,y,↓

† cx,y,↓, �1�

where cx,y,s
† and cx,y,s are the creation and annihilation opera-

tors for one electron located at the site �x ,y� with spin s
= ↑ ,↓, � the usual hopping energy parameter, R� the sum of
position vectors, e the charge of the electron, E and n̂ the
electric field magnitude and direction, respectively, and a the
lattice parameter. The last term represents a two-body Hub-
bard contact-interaction potential U. We assume that the in-
teraction is strongly screened and may be ignored for
particle-particle separations beyond a lattice constant and
discuss only the singlet state.3

In the Wannier representation, the time-dependent wave
function for the pair in a singlet state may be expanded as
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���t�� = �
x1,y1

�
x2,y2

fx1,y1;x2,y2
�t��x1,y1,s1;x2,y2,s2� , �2�

where the sum runs over all lattice sites, fx1,y1;x2,y2
�t� is the

amplitude for an electron with spin s1 to be at �x1 ,y1�, and
another with spin s2�s1 to be at �x2 ,y2�, while the ket
�x1 ,y1 ,s1 ;x2 ,y2 ,s2� represents such state. The amplitude
obeys the Schrödinger equation of motion,

i�
d

dt
fx1,y1;x2,y2

= − � f̃ x1,y1;x2,y2
+ �eEaX + U�x1,x2

�y1,y2
�fx1,y1;x2,y2

, �3�

where f̃ is the sum of amplitudes of all nearest neighbors to
the site �x1 ,y1 ,x2 ,y2� in the lattice and X= �x1+y1+x2
+y2� /�2 in units of the lattice constant. We have assumed
that the electric field is along the diagonal x1=y1 and x2
=y2.

By making the replacement,

fx1,y1;x2,y2
= eikx�x1+x2�eiky�y1+y2�g�x2 − x1,y2 − y1� ,

the associated eigenvalue equation in the absence of an ex-
ternal field becomes

Eg�u,v� = − 2��cos kxa�g�u − 1,v� + g�u + 1,v�	

+ cos kya�g�u,v − 1� + g�u,v + 1�	


+ �u,0�v,0Ug�u,v� , �4�

where now u=x2−x1 and v=y2−y1. One can easily check
that g�u ,v�=�u,0�v,0 is an eigenvalue of this equation at the
lowest band edge kx=0=ky, of eigenvalue E=U. This solu-
tion represents extreme pairing, when one particle is pre-
cisely on top of the other.

In the absence of interaction solutions of Eq. �4� are plane
waves in a Bloch band, with eigenvalues E=−4��cos kxa
+cos kya�, where k� = �kx ,ky� is the center-of-mass wave num-
ber. The band remains when the repulsive interaction is
turned on while additional states appear at positive energy.
This is seen in Fig. 1, where the density of states obtained by
numerical diagonalization of the eigenvalue equation for sev-
eral positive values of the parameter U is shown. Data cor-
respond to a finite lattice with N=49 plaquettes using peri-
odic boundary conditions. The bell shaped curve represents
the density of states of a single particle in 4D, the analog
problem in this case, while a 2D-like density-of-states profile
representing surface states in 4D moves away as U grows.
Note that the lower edge of this band is at E=U as expected.

III. EVIDENCE FOR BOUNDED PAIRS

To confirm the presence of two different kinds of states,
we have calculated the average distance between particles

dj = a �
x1,x2

�
y1,y2

��x1 − x2�2 + �y1 − y2�2�fx1,y1;x2,y2

j �2 �5�

on a finite 2D sample of N plaquettes using periodic bound-
ary conditions. Here j labels the eigenstate considered. The
results are shown in Fig. 2, where the quantity dj is shown as

a function of sample size both for states in the B band as well
as states in the U band. We see that the average separation of
the particles is essentially null for states in the U band for all
cell sizes, as is expected for a bounded pair. For states in the
Bloch band the separation is finite with a value that grows
linearly with N1/2 as expected for extended states in two
dimensions.

A more dramatic confirmation that repelling electrons in a
lattice form bounded pairs is found when the electric field is
turned on and the time evolution of a given initial state is
followed by solving Eq. �3�. It is well known that charged
particles in a lattice experience Bloch oscillations in the pres-
ence of the field with a frequency proportional to the particle
charge.18 To find out if such oscillations are present we stud-
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FIG. 1. Density of states of two interacting electrons in a 2D
lattice of 49 sites. For U=0, it is that of a single tight-binding
particle in 4D. When U�0 a new subband emerges, moving to
higher energies as U is increased.

FIG. 2. Average mean distance of Bloch and U states plotted for
different lattice sizes and a contact potential U=50�. The mean
separation in a Bloch state �B band� grows linearly with the edge
size while for the U band it stays near zero as expected for paired
states.

D. SOUZA AND F. CLARO PHYSICAL REVIEW B 82, 205437 �2010�

205437-2



ied the time evolution of the average position along the x
axis of each particle,

Ri
x�t� = a �

x1,y1

�
x2,y2

�fx1,y1;x2,y2
�t��2xi, �6�

where i=1,2 is the particle index and a similar equation for
the coordinate y. The numerical work was done using a half
implicit numerical method which is second-order accurate
and unitary.19 The positions were indeed found to oscillate,
not simply performing Bloch-type oscillations but a more
complex pattern depending on initial conditions. Figure 3
shows the power spectrum for a 2D lattice of N=81 sites and
an electric field energy F=eEa=10�, set rather large in order
to avoid reflections from the edges in our reduced numerical
sample. In the absence of interactions only the Bloch fre-
quency �=F ��=1� has any weight, as seen in Fig. 3�a�. We
next set the interaction strength at U=100�, a large value
appropriate to have a U band well separated from the ex-
tended states. For an initial condition with zero amplitude
save for points far from the interaction region x1=x2, y1
=y2, the situation is unchanged. But for an initial condition
with unit amplitude in sites over the interaction hyperplane
in the 4D space of coordinates �x1 ,y1 ,x2 ,y2�= �r ,s ,r ,s�,
r ,s=4,5 ,6, and either r or s=5 when r�s, representing a
portion of the hyperplane and a few nearby points, we see a
Bloch oscillation with twice the Bloch frequency, with a
power spectrum as shown in Fig. 3�b�. We interpret this new
frequency as arising from motion of a composite particle of
charge 2e in an electric field, thus confirming that the pair
behaves dynamically as a stable composite in the absence of
dissipation. Additional interaction-induced oscillations ap-
pear near U+F and U−F, shown in more detail in the inset.
These latter oscillations, seen also in 1D systems, are the

result of pure correlated electron transport.20 We note that
our numerical results show that the features just described
persist as the interaction strength enters the region U��,
only that hybridization of bounded and independent states
makes the power spectrum more complex.

IV. DISCUSSION

In summary, we have shown that two interacting electrons
moving in a lattice in 2D have singlet paired states grouped
in a band, with the dynamics of a composite particle of
charge 2e. Our results were obtained for a highly screened
contact repulsive potential, yet studies in 1D show that a
Coulomb tail does not destroy the pairing2 in the singlet
state. Although the specific treatment refers to electrons in a
lattice, the main results may be extended to other systems
such as atoms in an optical lattice.1

In order to understand the origin of the paired states we
recall that ordinary Bloch states may be thought of as atomic
states that hybridize with lattice neighbors, forming a tunnel-
ing network capable of sustaining extended states that are
grouped in bands. Similarly, the paired eigenstates may be
described as a high-energy two-electron single well state that
forms a band of extended states owing to pair tunneling
throughout the lattice. The Hubbard model captures the es-
sence of this picture but details such as possible molecular
two-electron extended states may arise if a finite range inter-
action is included.

The energy of the paired states scales like the interaction
strength U. If this latter quantity is on the order of the band-
width, such states may lie partly or wholly within the band of
extended states, allowing pairs to form in the ground state if
there are enough electrons in the sample. The paired states
equal in number the extended states since they correspond to
single-particle surface states over a 2D planar interface in a
4D lattice. We thus speculate that if condensation of such
pairs indeed occurs then a transition to low resistance should
take place as the density is increased, as is actually observed
in experiment.11

Our model yields a pair whose dynamics is that of a stable
composite of charge 2e. Such stability may be reduced by
dissipation mechanisms such as phonon excitation. In a static
periodic potential such as that generated by an optical lattice
phonons are not present, and a pair of energy �U�8�
above the band center is expected to be stable since its decay
into a band state is forbidden by energy conservation. Under
an external field F, transitions between extended and local-
ized states give rise to oscillations. If the associated frequen-
cies �+=U+F and �−=U−F were accessible to experiment,
then the sum �++�−=2U would yield a direct measure of
the interaction strength in the 2D sample.
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FIG. 3. Frequency spectrum of the average position of each
particle in a 2D lattice of 81 sites and an external field of strength
F=10�. �a� is in the absence of interactions and �b� is for a Hubbard
interaction strength U=100�. The inset shows details near the Hub-
bard frequency. Frequencies are in units of �.

PAIRED STATES OF INTERACTING ELECTRONS IN A… PHYSICAL REVIEW B 82, 205437 �2010�

205437-3



1 K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Den-
schlag, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller,
Nature �London� 441, 853 �2006�.

2 F. Claro, J. F. Weisz, and S. Curilef, Phys. Rev. B 67, 193101
�2003�.

3 J. F. Weisz and F. Claro, J. Phys.: Condens. Matter 15, 3213
�2003�.

4 L. Jin, B. Chen, and Z. Song, Phys. Rev. A 79, 032108 �2009�.
5 S. M. Mahajan and A. Thyagaraja, J. Phys. A 39, L667 �2006�.
6 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ra-

makrishnan, Phys. Rev. Lett. 42, 673 �1979�.
7 B. L. Altshuler, A. G. Aronov, and P. A. Lee, Phys. Rev. Lett.

44, 1288 �1980�.
8 S. V. Kravchenko, G. V. Kravchenko, J. E. Furneaux, and V. M.

Pudalov, and M. DIorio, Phys. Rev. B 50, 8039 �1994�; S. V.
Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, and V.
M. Pudalov, and M. DIorio, ibid. 51, 7038 �1995�; S. V.
Kravchenko, D. Simonian, M. P. Sarachik, W. Mason, and J. E.
Furneaux, Phys. Rev. Lett. 77, 4938 �1996�.

9 A. M. Finkel’stein, Z. Phys. B: Condens. Matter 56, 189 �1984�;
C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev. B
30, 527 �1984�; C. Castellani, C. D. DiCastro, and P. A. Lee,
ibid. 57, R9381 �1998�.

10 Q. Si and C. M. Varma, Phys. Rev. Lett. 81, 4951 �1998�.
11 V. Dobrosavljevic, E. Abrahams, E. Miranda, and S. Chakra-

varty, Phys. Rev. Lett. 79, 455 �1997�.
12 S. Chakravarty, L. Yin, and E. Abrahams, Phys. Rev. B 58, R559

�1998�.
13 S. Chakravarty, S. Kivelson, C. Nayak, and K. Voelker, Philos.

Mag. B 79, 859 �1999�.
14 P. Phillips, Y. Wan, I. Martin, S. Knysh, and D. Dalidovich,

Nature �London� 395, 253 �1998�; D. Belitz and T. R. Kirk-
patrick, Phys. Rev. B 58, 8214 �1998�; J. S. Thakur and D.
Neilson, ibid. 58, 13717 �1998�.

15 Y. Lyanda-Geller, Phys. Rev. Lett. 80, 4273 �1998�.
16 S. He and X. C. Xie, Phys. Rev. Lett. 80, 3324 �1998�; B. L.

Altshuler and D. L. Maslov, ibid. 82, 145 �1999�; S. Das Sarma
and E. H. Hwang, Phys. Rev. Lett. 83, 164 �1999�.

17 For a review see S. V. Kravchenko and M. P. Sarachik, Rep.
Prog. Phys. 67, 1 �2004�.

18 E. E. Mendez, F. Agulló-Rueda, and J. M. Hong, Phys. Rev. Lett.
60, 2426 �1988�.

19 A. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys. 35,
177 �1967�.

20 See Ref. 2, Eq. �6�. A Fourier expansion of this expression yields
oscillations at frequencies U+F and U−F.

D. SOUZA AND F. CLARO PHYSICAL REVIEW B 82, 205437 �2010�

205437-4

http://dx.doi.org/10.1038/nature04918
http://dx.doi.org/10.1103/PhysRevB.67.193101
http://dx.doi.org/10.1103/PhysRevB.67.193101
http://dx.doi.org/10.1088/0953-8984/15/19/321
http://dx.doi.org/10.1088/0953-8984/15/19/321
http://dx.doi.org/10.1103/PhysRevA.79.032108
http://dx.doi.org/10.1088/0305-4470/39/47/L01
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1103/PhysRevLett.44.1288
http://dx.doi.org/10.1103/PhysRevLett.44.1288
http://dx.doi.org/10.1103/PhysRevB.50.8039
http://dx.doi.org/10.1103/PhysRevB.51.7038
http://dx.doi.org/10.1103/PhysRevLett.77.4938
http://dx.doi.org/10.1007/BF01304171
http://dx.doi.org/10.1103/PhysRevB.30.527
http://dx.doi.org/10.1103/PhysRevB.30.527
http://dx.doi.org/10.1103/PhysRevB.57.R9381
http://dx.doi.org/10.1103/PhysRevLett.81.4951
http://dx.doi.org/10.1103/PhysRevLett.79.455
http://dx.doi.org/10.1103/PhysRevB.58.R559
http://dx.doi.org/10.1103/PhysRevB.58.R559
http://dx.doi.org/10.1080/13642819908214845
http://dx.doi.org/10.1080/13642819908214845
http://dx.doi.org/10.1038/26179
http://dx.doi.org/10.1103/PhysRevB.58.8214
http://dx.doi.org/10.1103/PhysRevB.58.13717
http://dx.doi.org/10.1103/PhysRevLett.80.4273
http://dx.doi.org/10.1103/PhysRevLett.80.3324
http://dx.doi.org/10.1103/PhysRevLett.82.145
http://dx.doi.org/10.1103/PhysRevLett.83.164
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1088/0034-4885/67/1/R01
http://dx.doi.org/10.1103/PhysRevLett.60.2426
http://dx.doi.org/10.1103/PhysRevLett.60.2426
http://dx.doi.org/10.1119/1.1973991
http://dx.doi.org/10.1119/1.1973991

