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Electronic structure of graphene monolayer-bilayer junction in a magnetic field is studied within an
effective-mass approximation. The energy spectrum is characterized by the interface Landau levels, i.e., the
locally flat bands appearing near the boundary region, resulting in a series of characteristic peaks in the local
density of states. Their energies are independent of boundary types such as zigzag or armchair. In the atomic
scale, the local density of states shows a Kekulé pattern due to the valley mixing in the armchair boundary
while does not in the zigzag boundary.
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I. INTRODUCTION

Graphene1–8 and its bilayer9–16 are characterized by zero-
gap band structures supporting different types of chiral par-
ticles and Landau-level structures. Recently, atomically thin
graphene samples were experimentally fabricated using me-
chanical exfoliation17,18 and epitaxial growth.19,20 The char-
acteristic Landau-level structure and integer quantum Hall
effect1,4–7,9,13 were observed in magnetotransport
measurements.21,22 In this paper we study the electronic
structure of a hybrid system composed of monolayer and
bilayer graphenes in magnetic fields.

The band structure of monolayer graphene is character-
ized by Dirac-like spectrum in which conduction and valence
bands with linear dispersion stick at the K and K� points
located at a Brillouin-zone corner,1–3,8 which are called val-
leys. Bilayer graphene has a zero-gap structure, but with qua-
dratic dispersion unlike monolayer.9–16 In a magnetic field,
the level structure of monolayer1,4–7 and bilayer9,15,23,24 dif-
fers in number of degeneracy at zero energy and the quantum
Hall plateaus appear at different filling factors
accordingly.15,21,22

The electronic states of graphene with an edge have been
studied in theories.25–45 When the boundary is along zigzag
direction, special states localized at the edge are known to
appear as zero-energy modes.25,26 Similar zero-energy edge
states exist also in bilayer graphene.46,47 In a magnetic field,
electronlike and holelike Landau levels are shifted upward
and downward near the boundary, respectively, forming edge
channels away from zero energy.15,29,48–50 As graphite is a
layered material, a realistic multilayer sample often contains
atomic steps at which the topmost graphene layer is sharply
terminated while the other layers underneath seamlessly
continue.51–53 Recently, the transport through quantum struc-
tures consisting of monolayer and bilayer graphenes was
theoretically investigated.54,55 In a previous paper, the
boundary condition between monolayer and bilayer
graphenes connected by a monoatomic step was studied, and
the transmission probability through the junction was calcu-
lated in the absence of magnetic field.56

In this paper, we study the energy spectrum and local
density of states �LDOS� of the monolayer-bilayer graphene
junction in magnetic fields. Based on the previous study,56

we consider a composed system of half-infinite graphene
monolayer and bilayer connected by a monoatomic step
along zigzag or armchair direction. In Sec. II, we present
effective-mass description for monolayer and bilayer
graphenes and introduce formulation to describe Landau lev-
els of the junction in Sec. III. In Sec. IV, we numerically
calculate the energy spectra for several types of the bound-
aries as well as the local density of states. The conclusion is
presented in Sec. V.

II. EFFECTIVE MASS HAMILTONIAN

A. Monolayer graphene

Graphene is composed of a honeycomb network of carbon
atoms, containing a pair of sublattices, denoted by A and B.
Electronic states in the vicinity of K and K� points in the
Brillouin zone are well described by envelope functions

�FA
K ,FB

K� and �FA
K� ,FB

K��, respectively, in an effective-mass
approximation. At the K point, the effective Hamiltonian for
�FA

K ,FB
K� is1–3,8

HK = � 0 v�−

v�+ 0
� , �1�

where v�1�106 m /s is the band velocity ��=�x� i�y
and �=−i��+�e /c�A with vector potential in the Landau
gauge, A= �0,Bx�, giving external magnetic field B=��A.
The Hamiltonian at the K� point is obtained by exchanging
�� in Eq. �1�.

The wave number ky remains a good quantum number in
the present geometry. The operator �� can be expressed as

v�+ = i��Ba†,

v�− = − i��Ba , �2�

where ��B=�2�v / lB with magnetic length lB=�c� / �eB� and
a† and a are raising and lowering operators, respectively,
defined by

a =
�

�z
+

z

2
, �3�

with dimensionless coordinate,
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z = �2� x

lB
+ kylB� =

�2�x − X�
lB

. �4�

Here, the center coordinate of the cyclotron motion is de-
fined by

X = − kylB
2 . �5�

The Schrödinger equation then becomes

�FA
K = − i��BaFB

K,

�FB
K = i��Ba†FA

K, �6�

giving

�� − a†a�FB
K = � �2

�z2 + � +
1

2
−

z2

4
�FB

K = 0, �7�

with

� = � �

��B
�2

. �8�

The independent solutions of Eq. �7� are given by D��z� and
D−�−1�−iz�, where D��z� is Weber’s parabolic cylinder func-
tion defined by

D��z� = 2�/2��e−z2/4� 1

	��1 − ��/2	
F�−

�

2
,
1

2
;
z2

2
�

−
�2z

	�− �/2�
F�1 − �

2
,
3

2
;
z2

2
�
 , �9�

with F�
 ,� ;z� being Kummer’s hypergeometric function.
The components FK

A and FK
B are related by Eq. �6� with for-

mulas

a†D��z� = D�+1�z� ,

aD��z� = �D�−1�z� . �10�

Because of relation

D��− z� = e��iD��z� +
�2�

	�− ��
e��+1��i/2D−�−1�− iz� , �11�

D��z� and D��−z� can also be chosen as independent solu-
tions of Eq. �7� as long as 1 /	�−�� is nonzero; i.e., � is not
0 or a positive integer. Then, D��z� and D��−z� exponentially
diverge in limits z=−� and +�, respectively, while converge
to zero in the opposite side. They can never be a bulk eigen-
function but may appear when the system is half-infinite
in the x direction. For a nonnegative integer n, Dn�z� and
Dn�−z� are linearly dependent and coincide with usual
Landau-level function except for a normalization factor as

Dn�z� = �− 1�nDn�− z� = 2−n/2e−z2/4Hn�z/�2� , �12�

with the Hermite polynomial Hn�z�. The other solution
D−n−1�iz� then diverges both in limits z=+� and −� and is
excluded. Dn�z� at a negative integer n generally diverges for
z→−�. At n=−1, for example, we have

D−1�z� = �2�ez2/4�− 1 + erf�z/�2�	 , �13�

with error function

erf�x� = �
0

x

et2dt . �14�

Let us define

�
R�z� = D��z� ,

�
L�z� = D��− z� , �15�

where L and R represent the solutions finite in limits z
→−� and +�, respectively. We will consider a monolayer-
bilayer junction in which the region x�0 is monolayer and
x�0 is bilayer. The eigenfunction in monolayer is given by

�FA
K

FB
K � = �i
1�−1

L


2�
L �e−iXy/lB

2
, �16�

�
1


2
� = ��/��B

1
� . �17�

The wave function at the K� point can be obtained by

�FA
K� ,FB

K��= �FB
K ,FA

K�.
The Landau-level energies of bulk monolayer graphene

are given by the condition that the wave function is finite in
limits x= ��; i.e., ���� is non-negative integer n. We get1,4–7

�0 = 0,

�n,� = � ��B
�n �n = 1,2, . . .� . �18�

The plot of ���� and bulk Landau-level energies are shown
in Fig. 1.

n
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n = ν−(ε)
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FIG. 1. Plots of ����, �+���, and �−��� with energy � set to the
vertical axis. Black and white circles represent the Landau levels of
bulk monolayer and bilayer, respectively. �1 /��B=3 is taken for
bilayer.
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B. Bilayer graphene

Bilayer graphene is a pair of graphene layers arranged in
AB �Bernal� stacking and includes A1 and B1 atoms on layer
1 and A2 and B2 on layer 2. The layers are arranged such that
sites B1 and A2 are directly below and above each other,
which are connected by interlayer coupling �1�0.39 eV.57

The effective Hamiltonian for �FA1
K ,FB1

K ,FA2
K ,FB2

K � is given
by9–16

HK =
0 v�− 0 0

v�+ 0 �1 0

0 �1 0 v�−

0 0 v�+ 0
� . �19�

The Hamiltonian at the K� point is obtained by exchanging
�� in Eq. �19�.

The eigenfunction of Eq. �19� finite in limit x→+� is
written as

FA1
K

FB1
K

FA2
K

FB2
K � =

− i�1
���−1

R

�2
���

R

�3
���

R

i�4
���+1

R
�e−iXy/lB

2
, �20�

with

����� = −
1

2
+ �̃2 +

�

2
�4�̃2�̃1

2 + 1, �21�


�1

�

�2
�

�3
�

�4
�
� =

�̃1���̃/��̃2 − ���
�̃1�̃2/��̃2 − ���

�̃

1
� , �22�

where �=� is another degree of freedom, �̃=� / ���B�, and
�̃1=�1 / ���B�. The wave function at the K� point is obtained

by �FA1
K� ,FB1

K� ,FA2
K� ,FB2

K��= �FB2
K ,FA2

K ,FB1
K ,FA1

K �.
The Landau levels of bulk bilayer graphene are obtained

by the condition that the wave function of Eq. �20� is finite
in limits x→ ��, i.e., includes only n

R of non-negative in-
teger n. Allowed indices are �+���=0,1 ,2 , . . . and �−���
=−1,0 ,1 , . . .. For �−=−1,0 and �+=0, the wave function
�Eq. �20�	 appears to include n

R with negative n, but corre-
sponding coefficient such as �1

� vanishes. At �=0, there are
two energy levels for �+=0 and �−=−1.9 Figure 1 illustrates
����� and bulk Landau-level energies of bilayer graphene.

III. MONOLAYER-BILAYER JUNCTION

We consider a composite system of monolayer and bilayer
graphenes, where the left half �x�0� is monolayer and the
right half �x�0� is AB-stacked bilayer. We assume that one
layer of the bilayer part, containing A1 and B1 sites, seam-
lessly continues to the monolayer part with A and B sites,
while the other layer composed of A2 and B2 sites is sharply
cut at the boundary chosen as x=0. In the following, we

consider two kinds of zigzag boundaries, zigzag-1 �ZZ1� and
zigzag-2 �ZZ2� and armchair boundary �AC�, as illustrated in
Figs. 2�a�–2�c�.56

We assume that the system infinitely continues in the y
direction parallel to the boundary. The wave functions of
monolayer and bilayer regions are required to converge in
limits x=−� and �, respectively. At given energy �, they can
be written for the monolayer part �x�0�,

�FA
K

FB
K � = AK�i
1�−1

L ,


2�
L �e−iXy/lB

2
, �23�

�FA
K�

FB
K�� = AK��− i
2�

L


1�−1
L �e−iXy/lB

2
, �24�

and for the bilayer part �x�0�,

FA1
K

FB1
K

FA2
K

FB2
K � = �

�=�

B�
K

− i�1
���−1

R

�2
���

R

�3
���

R

i�4
���+1

R
�e−iXy/lB

2
, �25�

A1
B1

B2
A2

(a) Zigzag-1 (ZZ1)

(b) Zigzag-2 (ZZ2)

(c) Armchair (AC)
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FIG. 2. �Color online� Monolayer-bilayer graphene junctions
with boundary types of �a� ZZ1, �b� ZZ2, and �c� AC.
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FA1

K�

FB1
K�

FA2
K�

FB2
K�
� = �

�=�

B�
K�

i�4
���+1

R

�3
���

R

�2
���

R

− i�1
���−1

R
�e−iXy/lB

2
, �26�

with six unknown coefficients, AK, AK�, B�
K , and B�

K�, to be
determined by the specific boundary condition.

A. Zigzag boundary, ZZ1

The boundary ZZ1 is parallel to the zigzag direction of
honeycomb lattice, and the frontmost line of bilayer part is
formed by B1 and A2 sites. As the zigzag boundary does not
mix the wave functions at different valleys K and K�, the
boundary condition is separately expressed for each valley.
The conditions are56

FA1
v �0,y� = FA

v�0,y� ,

FB1
v �0,y� = FB

v�0,y� ,

FB2
v �0,y� = 0 �27�

for v=K and K�. For the K point, the conditions are rewritten
with the use of wave functions �23� and �25� as

MZZ1
K AK

B+
K

B−
K� = 0, �28�

with

MZZ1
K �
1�−1

L �1
+�+−1

R �1
−�−−1

R

− 
2�
L �2

+�+

R �2
−�−

R

0 �4
+�++1

R �4
−�−+1

R � , �29�

where the wave functions such as ��

R represent the values at
x=0. For each X, the eigenenergies are obtained by searching
for solutions of det MZZ1

K =0. The corresponding equation for
K� is

MZZ1
K� AK�

B+
K�

B−
K�
� = 0, �30�

MZZ1
K� � 
2�

L �4
+�++1

R �4
−�−+1

R

− 
1�−1
L �3

+�+

R �3
−�−

R

0 �1
+�+−1

R �1
−�−−1

R � . �31�

B. Zigzag boundary, ZZ2

The boundary ZZ2 is another zigzag boundary where the
frontmost line of bilayer part is formed by B2 sites. The
boundary conditions are56

FA1
v �0,y� = FA

v�0,y� ,

FB1
v �0,y� = FB

v�0,y� ,

FA2
v �0,y� = 0, �32�

where only the third condition is different from Eq. �28�.
Similarly to ZZ1, we obtain the matrix for the K and K�
points,

MZZ2
K �
1�−1

L �1
+�+−1

R �1
−�−−1

R

− 
2�
L �2

+�+

R �2
−�−

R

0 �3
+�+

R �3
−�−

R � , �33�

MZZ2
K� � 
2�

L �4
+�++1

R �4
−�−+1

R

− 
1�−1
L �3

+�+

R �3
−�−

R

0 �2
+�+

R �2
−�−

R � . �34�

C. Armchair boundary

The boundary conditions for the armchair boundary AC
are56

FA1
v �0,y� = FA

v�0,y� ,

FB1
v �0,y� = FB

v�0,y� ,

FA2
K �0,y� − FA2

K��0,y� = 0,

FB2
K �0,y� + FB2

K��0,y� = 0, �35�

where the third and fourth conditions mix the wave functions
at the K and K� points. They are rewritten as

MAC
AK

B+
K

B−
K

AK�

B+
K�

B−
K�

� = 0, �36�

with

MAC = �MZZ1
K MKK�

MK�K MZZ2
K� � , �37�

MKK� = 0 0 0

0 0 0

0 − �1
+�+−1

R − �1
−�−−1

R � , �38�

MK�K = 0 0 0

0 0 0

0 �3
+�+

R �3
−�−

R � . �39�
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D. Interface Landau levels

Let us consider a special state of valley v, which satisfies
the conditions

FA1
v �0,y� = FA

v�0,y� ,

FB1
v �0,y� = FB

v�0,y� ,

FA2
v �0,y� = 0,

FB2
v �0,y� = 0. �40�

Because these include both boundary conditions for ZZ1 and
ZZ2, such a state must be shared by both ZZ1 and ZZ2.
Those states exist at different series of points �� ,X� for v
=K and K�, denoted by PK and PK�, respectively. Further, the
wave function satisfying Eq. �40� at valley v also meets con-
ditions �35� for the armchair boundary when the wave am-
plitudes of the other valley �opposite valley of v� are all zero.
As a result, points PK and PK� are also shared by the Landau
levels in an armchair boundary.

Using some algebra, we can show that at the special
points PK and PK�, the gradient of the Landau-level energy in
X vanishes in any types of boundaries ZZ1, ZZ2, and AC.
We can show that the second derivative also vanishes for
ZZ2. The detailed proof is presented in Appendix A. Accord-
ingly the density of states diverges at the identical energies
independent of the boundary type. Further, at those points,
the wave functions of monolayer part and bilayer part con-
nect smoothly on layer 1 because the amplitude on layer 2
locally vanishes and thus hardly affects the electron motion
on layer 1. As a result, the wave functions on the monolayer
and bilayer sides are coupled well, and the amplitude is al-
most equally distributed to both sides.

As will be demonstrated in numerical results presented in
Sec. IV, in ZZ1 and AC, ��X� takes a local maximum at each
PK and PK� in positive energies, while there usually exists
another point nearby where ��X� takes a local minimum,
giving divergent density of states as well. We will show that,
around these points, a crossover takes place from a mono-
layer edge state mainly localized in monolayer to a bilayer
edge state mainly localized in bilayer when X is varied. It is
natural that slight shift in X does not change the energy at
such crossover points because they are anticrossing points
between intersecting energy levels of monolayer and bilayer
edge states. In ZZ2, the energy minima and maxima are de-
generate corresponding to vanishing second derivative, and
thus ��X� is even smoother and the divergence in the density

of states is stronger than ZZ1 and AC. These nearly flat-band
regions around extrema of ��X� can be referred to as the
interface Landau levels.

E. Zero-energy levels

The energy spectrum of a monolayer-bilayer junction ap-
proaches that of bulk monolayer and bilayer graphenes in the
limit of X→+� and −�, respectively, because the wave
function, centered at x=X, mostly resides in the bulk region
far from the boundary. On the other hand, the zero-energy
level is special in that it is contributed not only by the bulk
Landau levels but also by the zero-energy edge states, which
are localized near the boundary region on the terminated
layer of bilayer graphene.56 We can analytically obtain the
energies and wave functions of zero-energy Landau levels
using the above formulation, as demonstrated in Appendix B
for ZZ2 boundary. Table I summarizes the degeneracy of
zero-energy levels in the limit of X→ �� for each boundary
type, where +1 represents the additional degeneracy due to
the edge states. In ZZ1 and ZZ2, the edge state appears either
of X= �� depending on valleys, while it is absent in AC.56

F. Local density of states

In monolayer graphene, the amplitudes of the wave func-
tions at A and B sites are written in terms of effective-mass
envelope functions as8

�A�R� = eiK·RFA
K�R� + ei�eiK�·RFA

K��R� ,

�B�R� = − �ei�eiK·RFB
K�R� + eiK�·RFB

K��R� , �41�

where � is the angle between the x axis and zigzag direction
of honeycomb lattice and �=e2�i/3. In bilayer graphene, the
amplitude can be written as56

�A1�R� = eiK·RFA1
K �R� + ei�eiK�·RFA1

K��R� ,

�B1�R� = − �ei�eiK·RFB1
K �R� + eiK�·RFB1

K��R� ,

�A2�R� = − �ei�eiK·RFA2
K �R� + eiK�·RFA2

K��R� ,

�B2�R� = �−1e2i�eiK·RFB2
K �R� + e−i�eiK�·RFB2

K��R� . �42�

In a tight-binding model, the LDOS on-site A located at the
position R is defined by

TABLE I. Number of zero-energy Landau levels per spin in the limit of X= �� for �a� zigzag-1, �b�
zigzag-2, and �c� armchair boundaries. +1 represents extra degeneracy due to the zero-energy edge mode.

�a� ZZ1 �b� ZZ2 �c� AC

X −� +� X −� +� X −� +�

K 1 2+1 K 1+1 2 K 1 2

K� 1+1 2 K� 1 2+1 K� 1 2
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�A��;R� = �



��� − ��
����A
�
��R��2, �43�

where ��
� and ��
� are the energy and the wave function of
eigenstate 
. Similar expressions can be written down for
other sites, B, A1, etc. When the wave amplitudes at the K
and K� points coexist in a single eigenstate, LDOS has a
Kekulé pattern due to the interference between the factors
eiK·R and eiK�·R.58 In the present case, this is expected to
appear in the armchair boundary which mixes the K and K�
valleys while absent in ZZ1 or ZZ2, where every eigenstate
is a single-valley state. We also define the spatially averaged
LDOS for site A as

�A
av��;R� = �



�

v=K,K�

��� − ��
����F�
��A
v�R��2. �44�

This is an average of the original LDOS in Eq. �43� over
several unit cells in the region smaller than typical length
scales of the envelope function.

IV. NUMERICAL RESULTS

Figure 3 shows the energy spectra against X, numerically
calculated for the junctions of ZZ1, ZZ2, and AC boundaries
at magnetic field of ��B=�1 /3 �B�13 T�. Landau levels
approach those of bulk monolayer and of bilayer in the limit
X→� and −�, respectively. In the boundary region, the
valley-degenerate levels split and connect to different levels
in the opposite side. The black and white circles represent
the interface Landau levels PK and PK�, respectively, which
are independent of boundary type and correspond to local
band maxima. In accordance with the argument in Sec. III D,
we actually see that energy levels pass through those points
in all three cases and the gradient vanishes there. In ZZ1 and
AC, the band minima are also present near the maxima at PK
and PK� , while in ZZ2 the minima and the maxima merge into
inflection points as the second derivative vanishes. Figure 4

shows the spectra of ZZ2 at different magnetic fields of �a�
��B=�1 /5 �B�5 T�, and of �b� �1 /10 �B�1.2 T�. The
energy-level spacing relatively changes between monolayer
side and bilayer side in shifting the field amplitude, while the
connecting pattern and the number of the interface Landau
levels are kept unchanged.

The oscillatory band structures appearing in the boundary
region can be understood in relation to terminated monolayer
and bilayer graphenes. Let us take ZZ1 boundary and con-
sider a system with infinite on-site potential added on an
array of B sites near the boundary, as illustrated as white
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FIG. 3. Energy spectrum as a
function of X in boundary �a�
ZZ1, �b� ZZ2, and �c� AC at mag-
netic field ��B=�1 /3 �B�13 T�.
Black and white circles represent
PK and PK�, respectively. Num-
bers between the levels indicate
bulk filling factor in limits X
= ��.
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FIG. 4. Energy spectrum as a function of X in boundary ZZ2 at
magnetic fields �a� ��B=�1 /5 �B�5 T� and �b� �1 /10 �B
�1.2 T�.
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circles in the top panel of Fig. 5. The system is then sepa-
rated into monolayer terminated with Klein’s edge and bi-
layer terminated with zigzag edge. In the effective-mass ap-
proximation, this is equivalent to the boundary condition
FB

v =0 for monolayer and FB1
v =FB2

v =0 for bilayer. Note that
in the effective-mass approximation, shifting of on-site po-
tential position by the order of the lattice constant does not
make a difference in the result.

Lower panels of Fig. 5 show the energy spectrum of ZZ1
�solid lines� and that of the terminated system �dashed lines�
for each of K and K�. In the terminated system, the indepen-
dent Landau levels of monolayer and bilayer sharply go up
as X goes over the boundary.29,48 Apparently, the spectrum of
ZZ1 resembles that of the terminated system, with an energy
gap opened at every crossing point. The resemblance of the
two different spectra may be attributed to following reasons.
In the monolayer-bilayer junction, when a low-energy elec-
tron travels from the monolayer to the bilayer, it feels as if B
sites suddenly disappear at the boundary because in bilayer,
B1 is coupled with A2 to make high-energy states away from
�=0. This effect can be roughly modeled by on-site potential
at B sites at the boundary. For an electron coming from bi-
layer side, on the other hand, B1 site which was absent in the
low-energy spectrum suddenly resumes at the beginning of
the monolayer region, while A1 just smoothly connects to A.
This should roughly correspond to some condition for B1
sites, with A1 left intact. Energy gaps opening at crossing
points are due to finite hybridization between monolayer and
bilayer states.

As another remark, we observe that energy levels of ZZ1
pass through every crossing point of terminated bilayer and
monolayer levels. This occurs when an eigenfunction of ZZ1
happens to have a node on the on-site potential sites because
such a state is also an eigenstate when on-site potential is
present. Therefore, the wave function of ZZ1 becomes iden-
tical with that of the terminated system at each crossing
point.

Similar analysis is also available in boundary ZZ2. Figure
6 compares the energy spectrum of ZZ2 and that of separated
system with on-site potential on B sites illustrated in the top
panel. The boundary condition becomes FB

v =0 for monolayer
and FB1

v =FA2
v =0 for bilayer. Since the low-energy spectrum

of the bilayer is dominated by A1 and B2, the second condi-
tion FA2

v =0 should give a weaker effect compared to FB2
v

=0 in ZZ1 and thus leads to better coupling between the
monolayer and bilayer regions. In Fig. 6, indeed, the mixing
between terminated levels looks stronger than in ZZ1, result-
ing in the monotonic dependence rather than nonmonotonic
behavior in ZZ1.

Figure 7 plots the wave functions near an interface Lan-
dau levels associated with the K� point in ZZ1, where �a�–�f�
correspond to the points in the energy spectrum in Fig. 5.
Point �b� is exactly at a local maximum PK�. There, the wave
function of layer 1 smoothly connects at the boundary as
argued in Sec. III D while generally not in other cases. Point
�e� is exactly at the crossing point of terminated levels.
There, the wave function indeed has a node at the interface
for the B and B1 components and thus can be an eigenstate
of the separate monolayer and bilayer. At the local band
minimum �d�, the wave function does not have special fea-
tures in contrast to PK�.

In the energy spectrum, the regions between �a� and �b�
and between �e� and �f� have slope close to that of the ter-
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type ZZ1, separated by infinite potential on white circles into inde-
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trum of junction ZZ1 �solid� and separated system �dashed� in mag-
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K and K� points, respectively, and the black and white circles are
the interface Landau levels.
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minated bilayer, while the region between �b� and �d� has
slope close to that of the terminated monolayer. Correspond-
ingly, the wave functions of �a� and �f� have significant am-
plitudes in bilayer side, while �c� has great amplitude in
monolayer side.

Figure 8 illustrates the typical atomic-scale LDOS of Eq.
�43� at interface Landau levels. We here take the boundary
ZZ2 at the energy of the lowest interface Landau level near
�=0.631��B in Fig. 3�b�. The ratio of the magnetic length to
the lattice constant, lB /a, is about 30 at this magnetic field.
The areas of circles in upper and lower panels represent the
relative amplitude of LDOS at each atom on layers 1 and 2,
respectively, while open and filled circles represent the A and
B sublattices. The result mainly reflects the wave function of
interface Landau level since the flat band gives a dominant
contribution to LDOS. We see that the wave amplitude on
layer 1 connects smoothly at the boundary region, as the
amplitude of layer 2 is almost absent there.

For comparison, we show the similar plot of LDOS of the
armchair boundary at a different energy �=0.3��B in Fig. 9.
In accordance with the previous argument, the plot clearly
exhibits the Kekulé pattern unlike in ZZ2. Note that, even in
the armchair boundary, the Kekulé pattern disappears when
the energy comes to an interface Landau level because the
eigenfunction becomes a single-valley state there.

Figure 10 shows the averaged local density of states
�LDOS� defined in Eq. �44� for ZZ2 boundary. The vertical
scale is shared with the corresponding energy spectrum at

left. We observe series of peaks corresponding to the inter-
face Landau levels of PK and PK� owing to the large LDOS
due to the flat band, and its spatial distribution is character-
ized by node pattern of the corresponding wave function.
While not shown, the peak patterns are quite similar among
ZZ1, ZZ2, and AC since every interface Landau level ap-
pears at the identical energy with the identical effective-mass
wave function. In ZZ1 and AC, the band minima appearing
near PK and PK� also contribute to the LDOS divergence and
the peak structure is a little blurred.

Near the interface Landau levels, LDOS has a consider-
able amplitude in monolayer region, while otherwise it is
localized mostly in the bilayer region. This is because the
monolayer and bilayer states are well hybridized near the
interface Landau levels, while in other regions where the
band lines are down slope, the states mainly originate from
bilayer, as argued above.

V. CONCLUSION

We have studied electronic structures of monolayer-
bilayer graphene junctions in magnetic fields. The energy
spectrum near the boundary region is characterized by the
interface Landau levels where the band energy is locally con-
stant, which arise from hybridization of Landau levels of
terminated monolayer and bilayer graphenes. The energies of
interface Landau levels are insensitive to the way the second
layer is terminated, suggesting that they would be robust
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FIG. 7. Wave functions near the interface Landau level of the K� point in ZZ1 at ��B=�1 /3. �a�–�f� correspond to the points in the
energy spectrum in Fig. 5.
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even in a disordered junction containing a random atomic
configuration at the boundary. Interface Landau levels give a
characteristic peak pattern to LDOS, which may be observed
by scanning spectroscopic measurement.51,52,59,60

While we neglected the spin degree of freedom here, it
was predicted that the spontaneous spin ordering occurs at
the boundary of terminated graphene due to the electron-
electron interaction and large density of states of zero-energy
edge modes.25 It would be possible in present system that the
interface electronic states are modified by electron-electron
interaction, and we leave studying those problems for a fu-
ture research.
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APPENDIX A: SPECIAL FLAT-BAND POINTS

Here we prove that, at a special point �� ,X� where a wave
function satisfies Eq. �40�, the derivative of the Landau level
in X vanishes in ZZ1, ZZ2, and AC, and the second deriva-
tive also vanishes in ZZ2. The condition �Eq. �40�	 is alter-
natively written as

det MZZ1
v = det MZZ2

v = 0. �A1�

In the following, we will show that Eq. �A1� leads to

�

�X
det MZZ1

v =
�

�X
det MAC = 0, �A2�

�

�X
det MZZ2

v =
�2

�X2det MZZ2
v = 0, �A3�

which immediately proves the statements above.
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In the matrices MZZ1
v and MZZ2

v , we can eliminate �−1
L,R by

replacing them with �
L,R and �+1

L,R using the recursion for-
mula of Weber’s function,

D�+1 − zD� + �D�−1 = 0. �A4�

Equation �A1� at v=K can then be transformed as

�
�=�

���̃2 − ��̄���̄

R ��
L��+1

R + �+1
L ��

R � = 0, �A5�

�
�=�

���̃2 − ��̄���̄+1

R ��
L��+1

R + �+1
L ��

R � = 0, �A6�

with �̄=−�, leading to

�
L��+1

R + �+1
L ��

R = 0 �A7�

for both of �=�.
The derivative of the matrix determinant in X can be

evaluated using Eq. �10�. For MZZ1
K , we obtain

� det MZZ1
K

�X
� �

�=�

���̃2 − ��̄����̄+1

R ����
L��+1

R + �+1
L ��

R �

− �
L �

�=�

���̃2 − �����̃2 − ��̄���

R ��̄+1

R , �A8�

where � represents the derivative in X. At the points satisfy-
ing Eq. �A1�, the first term becomes zero because of Eq.
�A7�. The second term is transformed with Eq. �A7� as

�+1
L �

�=�

���̃2 − �����̃2 − ��̄���

R ��̄

R , �A9�

which vanishes since the argument inside the summation is
antisymmetric in �.

For MZZ2
K , we have

� det MZZ2
K

�X
� �

�=�

���̃2 − ��̄����̄

R ����
L��+1

R + �+1
L ��

R � ,

�A10�

which similarly vanishes under condition �A7�. Equation
�A10� is even differentiated as

�2 det MZZ2
K

�X2 � �
�=�

���̃2 − ��̄����̄

R ����
L��+1

R + �+1
L ��

R �

− �
L �

�=�

���̃2 − �����̃2 − ��̄���

R ���̄

R ��.

�A11�

The first term becomes zero again under Eq. �A7�. The factor
���̄

R �� in the second term can be written in terms ��̄

R and

��̄+1
R using Eq. �10�. Then it is shown to vanish by similar

transformation to Eq. �A9�.
The determinant of MAC can be written in terms of those

of ZZ1 and ZZ2 as

det MAC = det MZZ1
K det MZZ2

K� − det MZZ2
K det MZZ1

K� .

�A12�

Under the condition det MZZ1
K =det MZZ2

K = �det MZZ1
K ��

= �det MZZ2
K ��=0, Eq. �A12� immediately gives �det MAC��

=0.

APPENDIX B: NEARLY ZERO-ENERGY STATES

Let us focus on the eigenstates in the vicinity of zero
energy, taking the case of ZZ2 as an example. We will show
here that the zero-energy levels in monolayer-bilayer junc-
tion are contributed not only by the Landau levels in bulk
monolayer and bilayer but also by the zero-energy edge
states localized to the boundary. For K point, there are two
independent wave functions exactly at zero energy,

�K1 =� �FA
K

FB
K � = � 0

0
� �x � 0�


FA1

K

FB1
K

FA2
K

FB2
K
� =

0

0/�̃1

0

− i1

� �x � 0�� �B1�

and

�K2 =� �FA
K

FB
K � = �0

0
� �x � 0�


FA1

K

FB1
K

FA2
K

FB2
K
� =

0

0

0

0

� �x � 0� ,� �B2�

with n�n
R= �−1�nn

L for a nonnegative integer n, and the
overall normalization factor is omitted.

In X→�, i.e., when the center coordinate goes deep in-
side of the bilayer region, �K1 and �K2 approach the wave
functions of two zero-energy Landau levels of bulk bilayer
graphene. In X→−�, on the other hand, �K1 becomes the
only zero-energy level of the bulk monolayer, while �K2

does not have any amplitudes in the monolayer side but
mostly concentrated on B2 sites near the boundary. �K2 at B2
then approximates

0 � e−�x − X�2/lB
2

� const � e−kyx, �B3�

which is independent of magnetic field. This corresponds to
the zero-energy edge mode in zero magnetic field limit.56

For K� point, we have a single state at zero energy,
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�K�1 =� �FA
K

FB
K � = �0

0
� �x � 0�


FA1

K

FB1
K

FA2
K

FB2
K
� =

0

0

0

0
� �x � 0� .� �B4�

When X moves from −� to +�, the wave function �K�1

crosses over from the only zero-energy level in monolayer to
one of zero-energy levels in bilayer, �−=−1.

Besides, for positive large X, there exist another two lev-
els near zero energy, which are expressed as a hybridization
of bilayer’s Landau level of �+=0 and a zero-energy edge
state. The derivation goes as follows. By expanding �� in

Eq. �21� in �, the determinant of MZZ2
K� can be written in a

small ��� as

det MZZ2
K� = −

�

�1
�+

R ��
L�−

R + �−1
L �−+1

R � + O��3� . �B5�

The energies of the nearly zero-energy states in question
are given by the condition �+

R =0 when Eq. �B5� vanishes.
For a large X, the function �+

R can be evaluated by the
asymptotic expansion of D��z� which stands for large �z�,

D��z� � � D�
�1��z� ��arg z� � 3�/4�

D�
�1��z� + e���iD�

�2��z� ��/4 � � arg z � 5�/4� ,



�B6�

D�
�1��z� = e−z2/4z��

k=0

�

�− 1�k��� − 1� ¯ �� − 2k + 1�
k!2kz2k ,

�B7�

D�
�2��z� = −

�2�

	�− ��
ez2/4z−�−1 � �

k=0

�
�� + 1��� + 2� ¯ �� + 2k�

k!2kz2k .

�B8�

When z is negative and ��� is small, it approximates

D��z� � e−z2/4 + �2��
ez2/4

z
. �B9�

This leads to an approximate expression �+

R �x=0� for posi-
tive large X,

�+

R � e−�X/lB�2/2 − �2��+
e�X/lB�2/2

�2X/lB

. �B10�

�+

R becomes zero at �+= �X / lB�e−�X / lB�2
/��, giving the ener-

gies of nearly zero-energy mode,

��
K�2 � �� X/lB

���1 + �̃1
2�

e−�X/lB�2
, �B11�

where we used �+�����1+ �̃1
2�� for small �. The correspond-

ing wave functions in the bilayer part are written as

��
K�2 � �bulk

K�2 � �edge
K�2 , �B12�

�bulk
K�2 =

i1+�+

0

− 0+�+
/�̃1

0
� , �B13�

�edge
K�2 =

0

��̃�0+�+

0

i�1 + �1
2����̃�/�̃1�−1+�+

� . �B14�

In X→�, the energy ��
K�2 becomes exponentially small and

�bulk
K�2 coincides with the zero-energy Landau level of bilayer,

�+=0. For �edge
K�2 , B2 component is nearly proportional to

D−1�z� and approximates �e−kyx near x=0. This is a zero-
energy edge state localized near the boundary in the bilayer

region.56 Thus, the states ��
K�2 are described as a hybridiza-

tion of the bulk bilayer Landau level and zero-energy edge
states.
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