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We investigate quantum pumping of massless Dirac fermions in an ideal �impurity free� double layer of
graphene. The pumped current is generated by adiabatic variation in two gate voltages in the contact regions to
a weakly doped double graphene sheet. At the Dirac point and for a wide bilayer with width W� length L, we
find that the pumped current scales linearly with the interlayer coupling length l� for L / l��1, is maximal for
L / l��1, and crosses over to a ln�L / l�� / �L / l�� dependence for L / l��1. We compare our results with the
behavior of the conductance in the same system and discuss their experimental feasibility.
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I. INTRODUCTION

Quantum pumping of charge refers to the generation of a
dc electrical current in the absence of an applied bias voltage
by periodic �ac� modulation of two or more system param-
eters, for example, the shape of the confining potential or a
magnetic field.1 The idea of adiabatically generating a flow
of particles in a moving periodic potential is due to
Thouless,2 and has been followed by many theoretical and a
few experimental investigations of pumping in mesoscopic
systems. In 1998 Brouwer,3 building on earlier results by
Büttiker et al.4 and a proposal by Spivak et al.,5 developed a
description of quantum pumping through open mesoscopic
systems in terms of the scattering matrix of the system. This
paved the way for investigating the effects of quantum inter-
ference on quantum pumping and has led to theoretical in-
vestigations of many different aspects of pumped currents in
open nanodevices, such as the relation of quantum pumping
to geometric �Berry� phases,6 the effect of Andreev reflection
on quantum pumping in nanostructures that contain super-
conducting parts,7 the effect of electron-electron
interactions,8 and the generation of adiabatically pumped
spin currents.9

Most of these investigations were carried out for semicon-
ductor structures such as quantum dots and nanowires. In
addition, also proposals for adiabatic pumping in carbon
nanotubes,10 and recently graphene11,12 have been put for-
ward. Since its experimental discovery in 2004,13 graphene
has been found to exhibit electronic transport properties that
are quite different from those in other nanoelectronic struc-
tures due to the nature of its charge carriers �massless Dirac
fermions described by a relativistic wave equation�.14 An ex-
ample of this is the importance of evanescent modes for
transport close to the Dirac point: in a sample of undoped
graphene, which does not have any free electrons, contacted
by doped electrodes the conductance close to the Dirac point
is dominated by the contribution of evanescent modes which
transmit electrons injected from one end of the sample to the
other end.15,16 This is also true for quantum pumping in a
monolayer of graphene, where the pumped current is induced
by two oscillating gate voltages.11

In this paper we investigate quantum pumping of Dirac
fermions in a graphene bilayer. Compared to a carbon mono-
layer, the bilayer has an additional energy scale, namely the

interlayer coupling strength t�. The corresponding length
scale l� is an order of magnitude larger than the interatomic
distance d.14 Our aim is to investigate the dependence of the
adiabatically pumped current on the interlayer coupling t�.
For the conductance in a bilayer with heavily doped contact
regions and width W� length L it has recently been found
that at the Dirac point the bilayer transmits as two monolay-
ers in parallel and the conductance is independent of t�.17 In
contrast, for the pumped current Ip we find that Ip depends
linearly on L / l� for small interlayer coupling strength t�

=1 / l��1 /L, exhibits a maximum around t��1 /L and
scales as ln�L / l�� / �L / l�� for large interlayer coupling t�

=1 / l��1 /L. For typical experimental parameters the
pumped current is of order 10–100 pA.

The paper is organized as follows. In Sec. II we present
the bilayer model and an introduction to pumped currents.
Section III contains the calculation of the pumped current,
followed by results and comparison to the conductance in
Sec. IV. We conclude by making a connection to experiments
in Sec. V.

II. BILAYER MODEL AND PUMPED CURRENT

We consider the geometry that is schematically depicted
in Fig. 1. A sheet of ballistic graphene in the �x ,y� plane
contains a weakly doped strip of length L and width W which
is contacted by two more heavily doped electrodes at x=0
and x=L. The doping in these contacts is controlled by gate
voltages, which induce a potential profile of the form

U�x� = �U1�t� for x � 0 or x � L in the upper layer

U2�t� for x � 0 or x � L in the lower layer

0 for 0 � x � L in both layers.
�
�1�

We assume the potential step to be abrupt, which is justi-
fied close to the Dirac point where the Fermi wavelength
�F�L and any smoothing of the step over a distance small
compared to L becomes negligible. In addition, we consider
a short and wide geometry �L�W�, for which boundary con-
ditions in the transverse y direction become irrelevant.

The bilayer pump is operated by periodic variations in the
carrier density in the leads by varying the potentials U1�t�
=U1+�U1 cos��t� and U2�t�=U2+�U2 cos��t+	� such that
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U1�t�=U2�t� on average. In the linear-response regime where
�Ui�Ui �i=1,2�, the pumped current Ip into the left lead is
given by the scattering matrix expression3

Ip � IL =
�e sin 	�U1�U2

2

�
��L

�
�

Im� �S��
�

�U1

�S��

�U2
	 . �2�

Here the index � sums over all modes in the left contact
region and � sums over all modes in both the left and right
contact regions. The pumped current into the right lead is
then given by IR=−IL=−Ip. S denotes the Landauer-Büttiker
scattering matrix whose elements S��,nm describe scattering
from mode m in lead � to mode n in lead �.

In the presence of a potential U1 �U2� in the upper �lower�
layer, the low-energy excitations of the graphene bilayer
close to a Dirac point are described by the 4
4 Hamil-
tonian,

H =

U1 v�px + ipy� t� 0

v�px − ipy� U1 0 0

t� 0 U2 v�px − ipy�
0 0 v�px + ipy� U2

� ,

�3�

where p=−i�� /�r is the momentum operator. Hamil-
tonian �3� acts on the four-component wave function
��A1

, �B1
, �B2

, �A2
�, with A1 labeling the amplitude on the A

sublattice of the first �upper� layer, and similarly for B1, A2,
and B2. We only take nearest-neighbor coupling from A to B
sites within the same layer or between the two different lay-
ers into account.18 The four eigenenergies of Hamiltonian �3�
are given by

�1,2 =
U1 + U2

2
+

1

2
�f��k� ,

�3,4 =
U1 + U2

2
−

1

2
�f��k� , �4�

where

f��k� � 4k2 + 2t�
2

+ �U1 − U2�2 � 2�t�
4 + 4k2
t�

2 + �U1 − U2�2�

and k= �kx
2+ky

2�1/2 denotes the total momentum. From now
onwards, we absorb a factor ��v�−1 in �, U1, U2, and t�,
which are all given in units of momentum.

Using scattering matrix theory we calculate in the next
two sections the total pumped current19 Ip for U1=U2�U at
the Dirac point �=0 and derive analytic expressions for the
limit of heavily doped contacts U→−� �these were also con-
sidered in Ref. 17�.

III. CALCULATIONS

The scattering matrix S and subsequently its derivatives
with respect to U1 and U2 can be found by matching eigen-
states of Hamiltonian �3� at the interfaces x=0 and x=L. For
given � and transverse momentum ky the eigenstates of Eq.
�3� are characterized by two longitudinal momenta kx�,

kx� =�V1
2 + V2

2

2
�

1

2
��V1

2 − V2
2�2 + 4t�

2 V1V2 − ky
2 �5�

with Vj ��−Uj �j=1,2�. Associated with each real wave
vector kx+ are two propagating modes 	�,+

R �x ,y� �right going�
and 	�,+

L �x ,y� �left going�. Similarly, another two propagat-
ing modes 	�,−

R �x ,y� and 	�,−
L �x ,y� correspond to each real

wave vector kx−. Defining k��kx�+ iky, the left- and right-
going eigenstates are given by

	�,�
R �x,y� = N�


X2�V1

X2�k�
�

X1�V2

X1�k�

�eikx�x+ikyy , �6a�

	�,�
L �x,y� = N�


X2�V1

− X2�k�

X1�V2

− X1�k�
�
�e−ikx�x+ikyy , �6b�

where

Xj� � Vj
2 − kx�

2 − ky
2 + t�Vj j = 1,2, �7�

N� = 
2Wkx��V1X2�
2 + V2X1�

2 ��−1/2. �8�

The eigenstates 
Eq. �6�� are normalized by N� such that
each state carries unit current

I

ev
= �

0

W

dy	†��x 0

0 �x
		 � 1. �9�

For U1=U2→−�, Eqs. �5� and �6� reduce to the results of
Ref. 17.

From now onwards we assume to be at the Dirac point
�=0. In the undoped graphene region 0�x�L we then find
from Eq. �5� that kx�= � iky, which corresponds to evanes-
cent modes. The left-incident eigenstates of Hamiltonian �3�
can then be written as

U
0

U1

0

U2

0

L x

0

L
x

L W

x
y

FIG. 1. �Color online� Schematic picture of the graphene bi-
layer. Top panel: two stacked honeycomb lattices of carbon atoms
in a strip of width W between metallic contacts �blue and red re-
gions�. Bottom panel: variation in the electrostatic potential across
the two layers.
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���x,y� = �	�,�
R �x,y� + r+�

LL 	�,+
L �x,y� + r−�

LL 	�,−
L �x,y� for x � 0


�c1��1 + c2��2�ekyx + �c3��3 + c4��4�e−kyx�eikyy for 0 � x � L

t+�
RL 	�,+

R �x − L,y� + t−�
RL 	�,−

R �x − L,y� for x � L .
� �10�

Here r−+
�� and t−+

�� with � ,�� �L ,R� denote the reflection and
transmission coefficients from a +-mode incident from lead
� to a − mode in lead �. In the middle region the eigenvec-
tors �1-�4 have been constructed such that they are linearly
independent at the Dirac point �=0. This yields

�1 =

0

1

0

0
�, �2 =


0

− it�x

1

0
� ,

�3 =

1

0

0

− it�x
�, �4 =


0

0

0

1
� . �11�

The reflection and transmission coefficients are calculated by
matching the eigenstates 
Eq. �10�� at the two interfaces x
=0 and x=L, see the Appendix. For a short and wide geom-
etry with L�W the boundary conditions in the y direction

become irrelevant. Taking infinite mass boundary conditions,
such that ky is quantized as ky = �n+1 /2�
 /W, n=0,1 ,2 , . . .
the pumped current 
Eq. �2�� becomes a sum of eight terms

Ip =
�eW sin 	�U1�U2

2
2 �
0

�

dky �
�,��=�

�����ky� �12�

with

�����ky� � Im� �r���
�LL

�V1

�r���
LL

�V2
+

�t���
�LR

�V1

�t���
LR

�V2
	 . �13�

IV. RESULTS

In the Appendix we describe details of the calculation of
the derivatives of r���

LL and t���
LR with respect to U1 and U2 and

consider the limit U1→U2�U with U→−�. This is equiva-
lent to V1→V2�V with V→+�. Substitution of these de-
rivatives into Eq. �12� and integrating over ky then yields the
pumped current,

Ip =
�eW sin 	�U1�U2

2
2

4�

U2�
0

V→�

dky

�2 + 6kyL sinh�2kyL� − 8 cosh2�kyL��sinh�2kyL�


�2 + 4 cosh2�kyL��3 �14a�

=
2�e


2

W

L
� sin 	

�U1�U2

U2 �
0

VL→�

dx

�2 + 6x sinh�2x� − 8 cosh2�x��sinh�2x�


�2 + 4 cosh2�x��3 �14b�

=
�e

2
2

W

L
sin 	

�U1�U2

U2

1

4�2��2 + 4�2��5 − 20�3 + 3���2 + 2���2 + 4�ln��2 + 4� + 12��2 + 4


�Li2�2 +
�2

2
+

�

2
��2 + 4	 − Li2�2 +

�2

2
−

�

2
��2 + 4	�� . �14c�

Here we have defined the dimensionless coupling length
�� t�L and Li2 is the dilogarithm function defined as Li2
=�1

x�ln t� / �1− t�dt. Equation �14c� is the main result of this
paper. The upper integration limit in Eq. �14a� originates
from the requirement that the wave functions in the left and
right leads should correspond to traveling waves, and hence
that kx� should be real �kx− gives the more stringent condi-
tion ky ��V�V− t��V for V→��. We see that both for L
=0 and for L→� the pumped current 
Eq. �14c�� reduces to
zero. For L=0, i.e., in the absence of the middle region, there

is no possibility for evanescent waves to interfere in this
region: all incoming waves from one lead are fully transmit-
ted into the other lead without scattering to the other layer
and hence do not contribute to the pumped current �which is
composed of waves that scatter at least once from one layer
to the other�. For L→�, the evanescent modes in the weakly
doped middle layer do not reach the other contact and the
pumped current becomes zero.

Figure 2 shows ��,��=������ky� 
Eq. �A10� in units of
4�U−2�, which is essentially the mode-dependent pumped
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current, as a function of ky. We see that ��,��=������ky

=0�=0, i.e., waves with transverse momentum ky =0 that are
incident perpendicular to the interface do not contribute to
the pumped current, which is a manifestation of the Klein
paradox.14,15 We also see that negative mode contributions
only occur for small values of �. From Eq. �A10� it follows
that the largest contribution to ��,��=����� comes from the
transverse modes kyL�0.1� for ��50, similarly as for the
transmission �conductance� in the same system.17 Figure 3
shows a plot of the total pumped current Ip as a function of
�, for a fixed value of W /L=100. For n�200 modes the sum
converges to the continuum result. The number of modes
needed for convergence becomes larger for W /L larger while
for W /L=20 only n�20 modes are needed. As expected,
Ip�t�=0�=0, since in the absence of interlayer coupling the
bilayer reduces to two uncoupled monolayers for which the
pumping parameters V1�t� and V2�t� become uncoupled and
no pumping occurs. From Eq. �14c� we obtain that for small
interlayer coupling strength t��1 /L the pumped current Ip
scales as

lim
t�→0

Ip =
4 ln 2 − 1

64
2 �e
W

L
sin 	

�U1�U2

U2 � , �15�

hence Ip depends linearly on t� for t�=1 / l��1 /L. On the
other hand, in the limit of large interlayer coupling t�

=1 / l��1 /L we find

lim
t�→�

Ip =
3

4
2�e
W

L
sin 	

�U1�U2

U2

ln �

�
, �16�

and hence Ip�
ln t�L

t�L in this limit. In between these two limits
Ip exhibits a maximum which is determined by dIp /d�=0
and yields

�max = 3.88 → Ip��max� = 0.51
�e

2
2

W

L
sin 	

�U1�U2

U2 .

�17�

Thus Ip is maximal if t� is of the same order as 1 /L. The
pumped current thus strongly depends on t� and reduces to
zero for t�→0. This is in sharp contrast with the behavior of
the conductance at the Dirac point in a graphene bilayer,
which equals the conductance across two monolayers and is
independent of t�.17

V. CONCLUSION

In summary, we have investigated the adiabatically
pumped current through a wide graphene bilayer consisting
of a central weakly doped graphene sheet coupled to two
heavily doped contact regions. At the Dirac point, the
pumped current is carried by evanescent waves in the central
region and exhibits a crossover from linear �for t�L�1� to
logarithmic �for t�L�1� dependence as a function of in-
creasing interlayer coupling strength t�, with a maximum
around t�L�3.88. This scaling behavior with t� is markedly
different from the behavior of the conductance G in the same
system, which is independent of t� and equal to the conduc-
tance across two monolayers in parallel. In practice, this dif-
ferent behavior of Ip and G as a function of t� and L could be
used to distinguish between the conductance and the pumped
current.

We can estimate the magnitude of the pumped
current using typical experimental parameters14,20,21 t�

= �0.4 eV� / ��vF��0.6
109 m−1, U�0.1 V, �U�10
mV, and ��1 GHz. In order to be able to measure a sub-
stantial pumped current, one thus needs sample sizes L
�4 / t��6 nm, which is smaller than currently available
samples of order micron.22 However, with steady progress
toward smaller sample sizes, sample lengths of order 10–100
nm are expected to become available in the future. We then
obtain from Eq. �14c�,

Ip,max � 5 
 10−14W

L
sin�	�A , �18�

which, for W /L�100–1000 is well within experimental
reach. Observation of this current would be a striking dem-
onstration of quantum pumping produced by relativistic
quantum mechanics.

FIG. 2. �Color online� The mode-dependent pumped current

Eq. �A10�� as a function of kyL. The curves correspond to �
=0.01 �purple�, �=2 �red�, and �=5 �blue�.

FIG. 3. �Color online� The total pumped current Ip as a function
of �, for W /L=100. The blue, purple, and red lines represent the
exact sum over ky of the integrand in Eq. �14a� for n=100, 150, and
200 modes. The black dotted line is the integrated result, Eq. �14c�.
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APPENDIX: CALCULATION OF THE SCATTERING
MATRIX ELEMENTS AND THEIR DERIVATIVES

In this appendix we calculate the reflection and transmis-
sion coefficients r���

�� and t���
�� �� ,��� �+,−�; � ,��L ,R�

from Eq. �10� and their derivatives with respect to U1 and
U2. These derivatives are then used to calculate the pumped
current 
Eq. �12��.

Matching the eigenfunctions 
Eq. �10�� at the interfaces
x=0 and x=L results in the eight equations,

r+�N+

X2+V1

− X2+k+

X1+V2

− X1+k+
�
� + r−�N−


X2−V1

− X2−k−

X1−V2

− X1−k−
�
�

=

c3�

c1�

c2�

c4�

� − N�

X2�V1

X2�k�
�

X1�V2

X1�k�

� , �A1�

t+�N+

X2+V1

X2+k+
�

X1+V2

X1+k+

� + t−�N−

X2−V1

X2−k−
�

X1−V2

X1−k−

� =

c3�z−1

�c1� − it�Lc2��z
c2�z

�c4� − it�Lc3��z−1
�

�A2�

with z�exp�kyL�, Vj =−Uj at the Dirac point �j=1,2� and
Xj� and N� given by Eqs. �7� and �8�. Eliminating c1−c4
from Eqs. �A1� and �A2� yields after some straightforward
but lengthy algebra for the four reflection coefficients,

r���
LL =

����
LL cosh�2kyL� + ����

LL sinh�2kyL� + ����
LL

� cosh�2kyL� + � sinh�2kyL� + �
�A3�

with � ,��� �+,−�. Using k��kx�+ iky, the dimensionless
coupling length �� t�L, A�X1+X2−, and B�X1−X2+, the co-
efficients in Eq. �A3� are given by

�++
LL = 2N+N−
iky�k+A2 − k+

�B2� + �kx+
2 − kx−

2 + 2ky
2�AB� ,

�++
LL = 2N+N−kx−
k+A2 − k+

�B2 − 2ikyAB� ,

�++
LL = N+N−
�2�A − B�2V1V2 − 2i��A − B�kx−�X1+X1−V2

− X2+X2−V1�� − �++
LL ,

�+−
LL = 2N−

2kx−X1−X2−
�kx+ − kx− + 2iky�A

+ �kx+ − kx− − 2iky�B� ,

�+−
LL = 2N−

2kx−X1−X2−�kx+ + kx−��A − B� ,

�+−
LL = − 2i�N−

2�A − B�kx−�X1−
2 V2 − X2−

2 V1� − �+−
LL , �A4�

and

�−+
LL = �+−

LL�subindex + ↔ subindex −� ,

�−+
LL = �+−

LL�subindex + ↔ subindex −� ,

�−+
LL = �+−

LL�subindex + ↔ subindex −� ,

�−−
LL = �++

LL�subindex + ↔ subindex −� ,

�−−
LL = �++

LL�subindex + ↔ subindex −� ,

�−−
LL = �++

LL�subindex + ↔ subindex −� .

Also

� = 2N+N−
− �kx+kx− − ky
2��A2 + B2� + �kx+

2 + kx−
2 − 2ky

2�AB� ,

�A5a�

� = 2iN+N−
− �kx+ + kx−�ky�A2 + B2� + 2�kx+ + kx−�kyAB� ,

�A5b�

� = N+N−
− �2�A − B�2V1V2 − 2i��kx+ − kx−��A − B�


�X1+X1−V2 − X2+X2−V1� − 2�kx+kx− + ky
2��A − B�2

− 2�kx+ − kx−�2AB� . �A5c�

The transmission coefficients in Eq. �A2� are given by

t++
RL =

�++
RL cosh�kyL� − �++

RL sinh�kyL�
� cosh�2kyL� + � sinh�2kyL� + �

, �A6a�

t+−
RL =

�+−
RL cosh�kyL� − �+−

RL sinh�kyL�
� cosh�2kyL� + � sinh�2kyL� + �

, �A6b�

t−+
RL = t+−

RL�subindex + ↔ subindex −� , �A6c�

t−−
RL = t++

RL�subindex + ↔ subindex −� �A6d�

with

�++
RL = − 2N+N−�A − B�kx+
2kx−�A − B� + i��X1+X1−V2

− X2+X2−V1�� ,

�++
RL = 4iN+N−�A − B�2kx+ky ,

�+−
RL = − 2i�N−

2�A − B�kx−�X1−
2 V2 − X2−

2 V1� ,

�+−
RL = 2N−

2�A − B�kx−



i��X1−
2 V2 + X2−

2 V1� − 2X1−X2−�kx+ − kx−�� .

�A7�

In two limiting cases the reflection and transmission coeffi-
cients 
Eqs. �A3� and �A6a�–�A6d�� reduce to simple forms.

�1� For L→0, the + and − modes decouple and we obtain
from Eq. �A6a�–�A6d�,
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t++
RL → 1 and t+−

RL → 0. �A8�

�2� For t�→0, i.e., in the absence of interlayer coupling,
the reflection and transmission coefficients 
Eqs. �A3� and
�A6a�–�A6d�� reduce to the monolayer expressions15,16

r++
LL →

t�→0 �kx+ − iky�sinh�kyL�
kx+ cosh�kyL� + iky sinh�kyL�

→
�V1�,�V2�→�

tanh�kyL� ,

�A9a�

t++
RL →

t�→0 kx+

kx+ cosh�kyL� + iky sinh�kyL�
→

�V1�,�V2�→� 1

cosh�kyL�
,

�A9b�

t+−
RL →

t�→0

0. �A9c�

The reflection and transmission coefficients for right-
incident Dirac fermions r���

RR and t���
LR �� ,��� �+,−�� are

given by Eqs. �A3� and �A6a�–�A6d� by interchanging the
layer subindices 1 and 2. So r++

RR=r++
LL �subindex 1

�subindex 1↔subindex 2�, etc.

In order to calculate the pumped current 
Eq. �12��, we
need the derivatives of r���

LL and t���
LR with respect to U1 and

U2. These can be calculated by splitting the coefficients �++
LL,

etc., in Eq. �A3� into real and imaginary parts and differen-
tiating each of these with respect to V1 and V2. The latter
does not make any difference for the current since only prod-
ucts of derivatives with respect to U1 and U2 enter Eq. �12�
which are the same as those of the corresponding derivatives
with respect to V1 and V2 �since Vj =−Uj for �=0, j=1,2�.
The resulting expressions for the derivatives are rather
lengthy and therefore not given here. For equal bias voltages
V1=V2�V �as required for a true pumping process� and in
the limit of V→�, however, an analytic expression for the
pumped current Ip 
Eq. �2� can be derived. This expression is
obtained by first taking the limit V1→V2, for which X1−

→X2−=2t�V and X1+→−X2+= �V1−V2��V+ t
2 �→0 
see Eq.

�7��. We then expand all terms in Eq. �13� in orders of V1
−V2 �or, equivalently, X1+� and find that while the numerators
contain terms of order �V1−V2�7 and higher, all terms in the
denominator are proportional to �V1−V2�8. In the limit of V
→�, assuming V� t� ,ky and Vt��ky

2, the terms of order
�V1−V2�7 in the numerator cancel and we are left with a
finite pumped current which to highest order in V amounts to

�
�,��=�

�����ky� =
4�

U2 


�2 + 6kyL sinh�2kyL� − 8 cosh2�kyL��sinh�2kyL�


�2 + 4 cosh2�kyL��3 �A10�

Integration of Eq. �A10� over the transverse modes ky then leads to the pumped current 
Eq. �14�� in the main text.
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