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The density of states �DOS� and the optical conductivity of graphene is calculated in the presence of a
perpendicular magnetic field and where scattering on charged and short-range impurities is included. The
standard Kubo formula is employed where the self-energy induced by impurity scattering and the Green’s
function are calculated self-consistently including inter-Landau level �LL� coupling and screening effects. It is
found that the scattering from those two types of impurities results in a symmetric LL broadening and asym-
metric inter-LL coupling renormalizes the LL positions to lower energy. The peak position and intensity of the
magneto-optical conductivity depends on the filling factor and the broadened DOS. Good agreement is found
with recent cyclotron resonance measurements.
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I. INTRODUCTION

Graphene, one atomic thick sheet of carbon, shows sev-
eral exotic features with a linear energy dispersion around
the two nodal points K and K� in the Brillouin zone. This
differs strongly from a conventional two-dimensional elec-
tron gas �2DEG� that typically exhibits a parabolic energy
spectrum �e.g., inversion layer at a Si surface, GaAs/GaAlAs
semiconductor heterostructure�. When a magnetic field is ap-
plied perpendicular to the 2D plane of graphene, the electron
energy is quantized into Landau levels �LL� with an energy
spectrum En= ���n���B, where n=0, �1, . . . and �B

=vF
�2eB /� with vF the Fermi velocity. The LLs are non-

equidistant and the frequency �B is proportional to �B rather
than the usual linear dependence on B. Interestingly, the
Dirac point in the energy spectrum at k=0 now gives an
extra LL with E0=0 shared by both electrons and holes with-
out an energy gap. These remarkable features of the energy
spectrum of graphene have resulted in unique physical prop-
erties such as the anomalous integer quantum Hall effect and
a finite conductivity at the Dirac point.1

Theoretically, a lot of attention has been paid on the in-
vestigation of the electrical conductivity in graphene. The dc
conductivity at zero and finite magnetic fields was studied
theoretically by different groups.2–9 The density of states
�DOS�, the LL structure and the electrical conductivity were
obtained from the Boltzmann transport theory and/or the
Kubo formula with scattering from short- and long-range
impurities that were considered in the Born or the T matrix
approximation.2–7 The dependence of the conductivity due to
an isolated impurity located at different sites �e.g., sitelike,
bondlike, or hollowlike� was further evaluated.8

The real part of the optical conductivity gives information
about the electromagnetic absorption and the Raman signal
which were investigated experimentally10–14 and
theoretically.15–20 In the case of quantized and well separated
LLs, transitions between LLs are induced which should lead
to a delta-function peak structure in the absorption spectrum.
However, broadened peaks were observed due to the pres-

ence of disorder.10–14 Using Lorentzian fitting to the far in-
frared transmission spectrum, Orlita et al.10 found that the
width of the absorption peaks has a sublinear �B dependence
at high magnetic fields. Shon and Ando7 considered two dif-
ferent types of scatterers and found a �B dependence for the
broadening of the LLs. They included short-range scattering
where the range is smaller than the lattice constant and the
long-range case where the range is comparable or slightly
larger than the lattice constant but still much smaller than the
typical electron wavelength. In both cases the impurity scat-
tering potential was modeled by a � type of function. Similar
experiments by Jiang et al.11 found that the LLs were
strongly broadened by 20–35 meV and it was hard to assess
any B dependence of the half width of the different observed
resonances. Recently, Henriksen et al.14 observed a different
behavior for the n=0→1 optical transmission of exfoliated
graphene and found that the cyclotron resonance �CR� peak
energy exhibited a V shape as a function of the filling factor
for 0���4. Maximal and minimal values of the CR energy
were found for, respectively, half and integer filling factors.
Such a dependence on the filling factor implies that electron-
electron �e-e� interaction should be important.

The width of the optical absorption at low temperature is
determined by disorder. Scattering on impurities is believed
to be the most important scattering mechanism determining
the LL broadening at low temperature. We can distinguish
two types of scattering, i.e., long-range charged impurities
and short-range impurities �e.g., defects and vacancies�.
From the linear density dependence of the conductivity of
graphene it was concluded that the most important disorder
for graphene on SiO2 is due to charged impurities.21 This
conclusion was seriously questioned in Ref. 22. A sublinear
dependence of the conductivity on the backgate voltage was
also found which was explained by invoking scattering from
both long-range and short-range scatterers.23,24 The ratio
�t /�q �i.e., the transport scattering time �t to the quantum
scattering time �q� was found to have different values �i.e.,
1.5 up to 5.1� for different samples which suggests that both
charged impurities and short-range scatterers are active
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whose relative importance depends on the specific
sample.24–26 The T matrix approach15 and the Born
approximation16 was used to calculate the optical conductiv-
ity at a finite magnetic field where the effect of disorder due
to localized and extended defects was taken into account.
Dóra and Thalmeier27 studied the DOS and magneto-optical
conductivity in the presence of localized disorder and the
self-energy was calculated within the full self-consistent
Born approximation �SCBA� which is similar to the work of
Ref. 15. In their work, they focused on the frequency and
magnetic field dependence of the DOS due to localized dis-
order. An anomalous absorption line was found by assuming
a constant LL broadening.17,18 Recently, the optical Hall con-
ductivity in graphene and in the ordinary 2DEG was studied
using the Kubo formula.19

In the present paper, we use the standard Green’s-function
approach to study the optical conductivity in monolayer
graphene in quantizing magnetic fields. We consider the ef-
fect of scattering with both charged and short-range impuri-
ties. The scattering potential due to charged impurities is
taken Coulombic which is modified by screening induced by
the e-e interaction which removes the singularity at small q
values in the electron-charged impurity scattering potential.
The magnetic field is taken sufficiently strong such that the
electron energy is quantized in LLs and the impurity poten-
tial is assumed weak enough so that single impurity scatter-
ing is a good approximation. Furthermore, scattering from
short-range impurities is included where the strength of this
impurity potential is assumed to be independent of the wave
vector. In contrast with previous works, we will calculate the
LL width due to a combination of both kinds of impurity
scatterers within a self-consistent Born approximation. Also,
distinct from previous studies we include both intra- and
inter-LL scattering effects.

The paper is organized as follows. In Sec. II the formal-
ism to calculate the optical conductivity is given where we
will use the Kubo formula. A quantizing magnetic field is
applied perpendicular to the 2D plane of the graphene layer.
The self-energy induced by scattering from both charged im-
purities and short-range impurities is evaluated from which
we obtain the broadening of the LLs. We study the depen-
dence of the DOS and the positions and strength of the dif-
ferent peaks in the magneto-optical conductivity on the rela-
tive contribution of the two impurity scattering mechanisms.
The numerical results are presented and discussed in Sec. III
and the main conclusions are summarized in Sec. IV.

II. THEORETICAL APPROACHES

In this paper, the graphene sheet is taken along the xy
plane and a uniform static perpendicular magnetic field with
strength B is applied. The single free carrier Hamiltonian in
an external magnetic field can be solved analytically. The
wave function and energy spectrum are given by28

�r�n,x0� = 	n,x0
�r� = Cne−iyx0/lB

2�Snh�n�−1�x − x0�

h�n��x − x0� � , �1a�

E
 = En = Sn
��n���B. �1b�

Here, r= �x ,y� is the spatial coordinate in the graphene plane,
Cn=��1+�n,0� /2, 
= �n ,x0� specifies the electronic state,
n�=0, �1, . . .� is the LL index, x0=kylB

2 is a good quantum
number which connects the carrier wave vector along the y
direction with its average position along the x direction, lB
= �� /eB�1/2 is the radius of the ground cyclotron orbit, ��B
=�2� / lB is the effective magnetic energy with �=�vF the

band parameter, and hn�x�= in�2nn !��lB�−1/2e−x2/2lB
2
Hn�x / lB�

with Hn�x� the Hermite polynomial. Furthermore, Sn=1 for
an electron when n
0, Sn=−1 for a hole when n�0, and
Sn=0 for n=0. The LLs are degenerate with degeneracy
D0=1 / �2�lB

2� which is proportional to the magnetic field B.
Now we use the wave function given above to construct

the carrier quantum field operators, �†�r�=	
a

†	


��r� and
��r�=	
a
	
�r�, where a


† and a
 are, respectively, the cre-
ation and annihilation operators for a carrier in a LL state
�
�. These field operators satisfy the anticommutation rules.
The optical conductivity is given by the Kubo formula

���� = −
i

��

1

S



0

�

d�ei���T�j���j�0�� , �2�

where T� is the Dyson time ordering operator, S is the area of
the 2D plane, and �=1 /kBT is the inverse temperature with
kB the Boltzmann constant. The current operator is given by

j = 	
n,x0

	
n�

e
�

�
CnCn��Sn���n�,�n��−1 + Sn��n�−1,�n���an,x0

† an�,x0
,

�3�

which satisfies j���=e�Hje−�H in the Heisenberg representa-
tion. To calculate the current-current correlation function, we
replace the unperturbed Green’s function for a carrier by the
full Green’s function. Due to the interaction with charged
impurities and with short-range impurities, the induced self-
energy should be included within the Green’s function. Tak-
ing the summation over the fermion frequency,29 the real part
of the conductivity �Eq. �2�� becomes

Re ���� = �0
gsgv

2�lB
2

�2

��
	
n,n�

Cn
2Cn�

2 �Sn�
2 ��n�,�n��−1 + Sn

2��n�−1,�n���

� 

−�

� dE

�
�nF�E� − nF�E + ����

�Im Gn�E�Im Gn��E + ��� , �4�

where

Gn�E� = �E − En − �n�E��−1 �5�

is the full Green’s function, �0=e2 /� is the quantum of con-
ductivity, and nF�E� is the Fermi distribution function. From
Eq. �4� we find that resonant transmission occurs when the
condition E= �E�n��1−En� is satisfied. In the Born approxima-
tion, the self-energy �n�E� due to the presence of charged
impurities and short-range impurities is given by �n�E�
=�n

C�E�+�n
S�E�, where
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�n
C�E� = 	

n�

�n,n�
2 Gn��E� �6�

with �n,n�
2 =ni

c	qCn,n��lB
2q2 /2��Vqe−qd�2. ni

c is the charged
impurity density, Cn�n�x�=Cn�

2 Cn
2�N ! / �N+J�!�e−xxJ

� �LN
J �x�+Sn�Sn

�N+J
N LN−1

J �x��2 is the square of the electron-
charged impurity interaction matrix element with N
=min��n�� , �n��, J= ��n��− �n��, and LN

J �x� the associated
Laguerre polynomial. Vq=2�Ze2 /�1q is the Fourier trans-
form of the Coulomb impurity potential, where Z is the
impurity charge number and �1 is the static dielectric con-
stant for impurities in the SiO2 wafer layer. In our numerical
calculation, we take Z=1, �1=4.25 and we consider charged
impurities separated from the graphene layer and situated
in a 2D layer at a distance d from graphene. Here, in our
calculation, we include the e-e screening effect through
Vq→Vq /��q�=2�e2Z / ��1�q+Kq��, where ��q� is the static
dielectric function,30–32 Kq is the inverse screening length
calculated within the random-phase approximation �RPA�
which at low temperatures is mainly determined by the
intra-LL e-e interaction. In the limit of long-rang scattering,
the RPA inverse screening length becomes Kq

−�gsgve2 /��lB

2�	nCnn�lB
2q2 /2�Im Gn�EF�, where �=2.5 is the

dielectric constant for carriers in graphene, gs and gv are the
spin and valley degeneracy, and EF is the Fermi energy. The
self-energy due to short-range scattering is given by7,16

�n
S�E� = �2	

n�

Gn��E� , �7�

where �2= �niV0
2 /2�D0����B�2 which implies that the level

broadening due to short-range scattering is proportional to
�B. ni is the short-range impurity concentration and assum-
ing the strength of the impurity potential to be a constant, we
have V=�iV0��r−ri�.

The total electron self-energy can be separated in a real
and an imaginary parts �n�E�=�n�E�− i�n�E�, where the real
part �n�E� results in an energy shift and the imaginary part
�n�E� determines the single-particle quantum level broaden-
ing of the nth LL. The DOS for carriers in the nth LL is then
given by

Dn�E� = �−
1

�
�gsgvD0 Im Gn�E� . �8�

In the limit of well separated LLs and assuming that the
energy is close to the nth LL, inter-LL scattering can be
neglected. Only the term n=n� is retained in the self-energy
�Eqs. �6� and �7��. The corresponding DOS is given by

Dn�E� =
gsgvD0

�

1

�n
Re�1 − �E − En

2�n
�2�1/2

, �9�

where �n=�n,n+� is the single-particle quantum level broad-
ening induced by the two kinds of impurity scattering.

From the above discussion, the optical conductivity re-
lates to the imaginary part of the Green’s function which is
determined by the broadened DOS. Notice that the charged
impurity scattering contribution to the LL width is deter-
mined by the screened electron charged impurity scattering
potential. Because the RPA inverse screening length is deter-

mined by the imaginary part of the Green’s function, the full
Green’s function or DOS must be evaluated
self-consistently.33 From Eqs. �6� and �7�, the self-energies
are expressed by the squares of the intra-LL and inter-LL
electron-impurity interaction matrix elements. In the limit of
well separated LLs, coupling between different LLs can be
ignored and intra-LL coupling is retained. If the width is
comparable to or larger than the energy distance between
neighboring LLs, the broadened DOS will overlap, and
inter-LL coupling should be included. The width of the LLs
are a function of a number of variables, e.g., the magnetic
field, the electron concentration, the charged impurity and
the short-range impurity density, the effective distance be-
tween the graphene layer and the charged impurities, and the
short-range impurity potential.

III. RESULTS AND DISCUSSIONS

A. Charged impurity scattering

In this paper, the material parameters corresponding to
graphene are taken as follows: the band parameter
�=6.5 eV Å �i.e., corresponding to vF�1.0�106 m /s� for
graphene, the typical electron density is ne�1012 cm−2

which can be tuned by applying a gate voltage. We assume
that the charged impurities are located in the SiO2 substrate
and they are separated from the graphene interface by
d�1 nm with a typical impurity density ni�1011 cm−2.
The single-particle quantum level broadening due to short-
range scattering is taken to be ���0.05–0.1���B.7,16 In our
numerical calculations, we include ten adjacent LLs when
calculating the inter-LL coupling.

Figure 1 shows the DOS and the LL width at the Fermi
energy in the presence of only charged impurity scattering
for a fixed electron density ne=1012 cm−2 and charged im-
purity density ni

c=1011 cm−2. From Fig. 1�a� we notice that

FIG. 1. �a� The DOS as a function of energy at B=5 T and �b�
the LL width at the Fermi energy EF as a function of magnetic field
�or filling factor, upper axis� for a fixed electron density
ne=1012 cm−2 and charged impurity density ni

c=1011 cm−2 limited.
D0= �2�lB

2�−1 is the degeneracy of each LL. The vertical dotted line
in �a� indicates the position of EF.
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the broadened DOS are symmetric around E=0. The LLs are
well separated for B=5 T and E /E1�1.8 and coupling be-
tween different LLs can be neglected. The peaks of the DOS
are centered around the LL energies En. The dependence of
the electron-charged impurity potential on the modulus q of
the momentum transfer and the oscillation of the associated
Laguerre polynomial results in a sharpening of the LL at the
Fermi energy. The LL width at EF is plotted in Fig. 1�b� and
we notice that: �1� it oscillates with magnetic field or filling
factor and �2� on the average it decreases with increasing
magnetic field which is consistent with the results of Refs. 32
and 33. The energy spacing between subsequent LLs
��n+1−�n���B
��B /2�n for large n decreases with in-
creasing energy �see Fig. 1�a��. Increasing the charged impu-
rity density, the level broadening due to charged impurities
increases leading to overlapping LLs which implies that
inter-LL coupling should be included. Figure 2 shows the
DOS with inter-LL coupling included. It exhibits now a con-
tinuous background for n
2 on which the oscillating LLs
are superimposed. The nonequidistant LLs result in an asym-
metric inter-LL coupling which is different from the symmet-
ric DOS in a conventional equidistant LL system.30 In Fig. 2
the peaks of the broadened DOS are shifted to lower energy
as compared to the nondisordered LLs which is a conse-
quence of this asymmetric coupling. In Ref. 27, asymmetric
peaks in the DOS were attributed to the self-energy due to
localized impurities which was obtained within the full
SCBA. Therefore, the type of scattering and the used ap-
proximation when calculating the self-energy determine the
shape of the broadened DOS and modify the position of the
LLs.

From Fig. 1�b�, it may appear strange that the LL width
on average decreases with increasing magnetic field. The
width of the electron wave function is proportional to
lB�1 /�B and for scattering on Coulomb impurities,
V�r��1 /r, one expects that the LL width should increase as
�B. The origin of the different B dependence can be traced
back to the screening effect. Therefore, we repeated the cal-
culation and replaced the inverse screening length Kq by a

constant value qTF using a Thomas-Fermi �TF� screening
wave vector independent of the magnetic field. The numeri-
cal results are shown in Fig. 3 and exhibit the expected �B
dependence. It is the magnetic field dependence of the
screening which leads to the very different B dependence of
the broadening shown in Fig. 1�b�. For completeness we
show the screened and bare Coulomb potentials in Fig. 4 for
the same conditions as in Fig. 1 and B=5 T. Using Fourier
transform, we obtain the Coulomb potential in real space
�see inset of Fig. 4�. Notice that the screened Coulomb po-
tential V�r� is reduced as compared to the bare potential
which is a consequence of the strong screening at small q
values.

B. Short-range impurity scattering

The DOS including only short-range impurity scatterers is
shown in Fig. 5. For an intermediate value of the single-
particle broadening induced by short-range scattering
�=0.1E1,7,16 the full width at half maximum is 2�=0.2E1.
Only the broadened DOS for the n=0,1 LLs is clearly sepa-

FIG. 2. �Color online� The DOS as a function of energy includ-
ing inter-LL coupling for a larger charged impurity density
ni

c=2�1011 cm−2 in the presence of only charged impurity scatter-
ing for B=5 T and ne=1012 cm−2. The solid black curve indicates
the total DOS and the dashed color curves are the DOS of each
separate LL. The vertical dotted lines indicate the positions of the
nondisordered LLs. The Fermi level is located at EF /E1=1.404.

FIG. 3. �Color online� The LL width as a function of magnetic
field in the presence of only charged impurity scattering with mag-
netic field independent Thomas-Fermi screening wave vector qTF.
The solid red curve indicates the LL width at the Fermi energy. The
parameters are the same as in Fig. 1.

FIG. 4. The Fourier transform of the bare �dashed lines� and
screened �solid lines� Coulomb potential in the presence of only
charged impurity scattering and intra-LL screening Kq. The inset
shows the potential in real space. The parameters are the same as in
Fig. 1 and B=5 T.
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rated while the overlap between the other adjacent LLs is
obvious in Fig. 5�a� which leads to spurious sharp peaks
between the LLs. Therefore, we included inter-LL coupling
with the adjacent 10 LLs �i.e., including n�=n, n�
=n�1, . . ., n�=n�10 in the self-energy �n

S�E� of Eq. �7��
and obtain the DOS plotted in Fig. 5�b�. Now the DOS ex-
hibits only peaks near the LL energies �Eq. �1b��. The LLs
n=0 and n=1 are broadened and well separated in the Born
approximation.

C. Charged impurity and short-range impurity scattering

The DOS, in the presence of both charged impurity and
short-range impurity scattering, is plotted in Fig. 6 where we
included inter-LL coupling. At a fixed electron density
ne=1012 cm−2 and magnetic field B=5 T, the filling factor
�=8.27 and the n=2 LL is partially filled. The width of each
LL is determined self-consistently and includes contributions
from long- and short-range scattering. Larger broadening is
obtained with increasing single-particle quantum level
broadening due to short-range impurities or by increasing the
charged impurity density in which case inter-LL coupling
becomes more important. The broadened DOS at integer fill-
ing �=10 is plotted in Fig. 7. Filling factor �=10 corre-
sponds to a Fermi level position between the n=2 and n=3
LLs. Here, due to the broadening of LLs, the self-consistent
Fermi energy is located in the broadened n=3 LL which
implies that most states for the n=2 LL are occupied and the
n=3 LL is only filled by a few electrons. Because of the
small screening the LLs are more broadened.

Figure 8 shows the LL width at the Fermi energy as a
function of magnetic field including charged impurity and
short-range scattering, where results are shown for three dif-
ferent values of the strength of short-range impurity scatter-

ing. From Fig. 8 we note that: first, by including two types of
scatterers the single-particle LL broadening increases slowly
with increasing magnetic field near half filling which can be
fitted �dashed-dotted-dotted curves� to a B
 functional depen-
dence with 
�0.5 which is consistent with the found experi-
mental dependence.10 Second, increasing the strength of
short-range scattering, 
 increases because of the larger con-
tribution to the Level broadening from short-range impuri-
ties. Meanwhile, stronger inter-LL coupling leads to a larger
superposition of LLs. More broadened DOS results in a
weaker oscillatory behavior of the RPA screening length and
smaller oscillations of the total LL width with filling factor.
Third, it should be noted that the LL width from charged
impurities oscillates as a function of the filling factor. At
integer filling, the electron screening effect is weak and the
LL width is enhanced.

FIG. 5. �Color online� The DOS as a function of energy �a�
without and �b� with inter-LL coupling in the presence of only
short-range scattering at B=5 T. The solid black curves in �a� and
�b� indicate the total DOS and the dashed color curves are the DOS
of each LL. The vertical dotted lines in �a� and �b� indicate, respec-
tively, the positions of the Fermi energy and the nondisordered LLs.
The Fermi level in �b� is located at EF /E1=1.436 when
ne=1012 cm−2 and is shown by the dotted vertical line in �a�.

FIG. 6. �Color online� The DOS as a function of energy for
different charged impurity density and single-particle level broad-
ening due to short-range impurities when ne=1012 cm−2 and
B=5 T ��=8.27�. The solid black curves in �a� indicate the total
DOS and the dashed color curves are the DOS of each LL. The
vertical dotted line in �a� indicates the position of the Fermi energy
EF.

FIG. 7. �Color online� The same as Fig. 6 but now for integer
filling �=10.
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D. Magneto-optical conductivity

Figure 9 shows the real part of the optical conductivity as
a function of photon energy at a fixed magnetic field. Several
absorption peaks can be observed. We know that for a con-
ventional 2DEG En+1−En=��c so that only one absorption
peak is typically observed with frequency �=�c. In contrast,
for graphene because En�−En depends on the LL index ��n�
�see Eq. �1b��, the selection rule ��n��=�n��1 can give rise to a
series of peaks in the magneto-optical conductivity. At a
given magnetic field B=5 T and electron density
ne=1012 cm−2, the n=2 LL is partially filled which implies

that the Fermi level is situated in the n=2 LL. The intraband
transitions from E2 to E3 and from E1 to E2 contribute to the
broad peak “1” due to their almost equal energy spacing. The
intensity of these intraband transitions is large as compared
to the intensity of the other interband transitions. The peak
“2” is caused by the first interband transition from E−1 to E2.
Two interband transitions result in the two other peaks which
have almost twice the oscillator strength of the previous peak
of the interband transition �e.g., the peak “3” comes from the
transitions from E−2 to E3 and E−3 to E2�. All the interband
transitions except the first one appear in pairs. All allowed
transitions are plotted in the inset of Fig. 9�a�. Interestingly,
around the Fermi energy, adjacent filled LLs due to inter-LL
coupling �see Fig. 6� leads to extra transitions. Notice, a
small sharp peak “5” is found for small frequency which is
the result of this particular value of the filling factor. This
result differs from the case when a constant broadening is
assumed as in Refs. 17 and 18. The reason is that, in their
calculation, no LL mixing was taken into account. When
increasing the broadening the peaks in the absorption spec-
trum are smoothened and some of them disappear.

The magneto-optical transition via absorption scattering
occurs mainly through electronic transitions from lower oc-
cupied LLs to higher empty LLs. Different transition chan-
nels have different transition probabilities �see Eq. �4��. The
filling of the LLs decides the possible transitions that con-
tribute to the optical absorption. When increasing the elec-
tron density ne, the filling factor increases. In Fig. 9�b�, the
filling factor is increased to �=10 for B=5 T, which shifts
the Fermi energy to the n=3 LL. Now the intraband transi-
tions from E3 to E4 and from E2 to E3 contribute to the first
broadened peak which shifts the position of this peak to
lower energy. The first interband transition induced by the
transition from E−1 to E2 shown in Fig. 9�a� is now no longer
possible. The intensity of the peak 3 halves because only the
transition from E−2 to E3 contributes to it. The rest of the
peaks remain roughly unchanged. The corresponding transi-
tion channels are given in the inset of Fig. 9�b�. The above
optical conductivity results from the electronic transitions
with the selection rules �n��= �n��1 and can be explained
from the broadened LLs shown in Figs. 6 and 7.

Figure 10 shows the optical conductivity in units of �0
=e2 /� as a function of �� /E1 at a fixed filling factor �=2 for

FIG. 8. �Color online� The LL width at EF as a function of
magnetic field in the presence of both charged impurity and short-
range impurity scattering including inter-LL coupling. Solid black,
dashed olive, and dotted wine curves are for different strength of
short-range broadening � /E1=0.05, 0.08 and 0.1, respectively. The
dashed-dotted-dotted dark gray curves fit the width near half filling
with �B
 where 
=0.12, 0.22, and 0.25, respectively. The other
parameters ne and ni

c are the same as in Fig. 1�a�.

FIG. 9. �Color online� The optical conductivity as a function of
photon energy at B=5 T for two values of the filling factor �a� �
=8.27 �ne=1012 cm−2� and �b� �=10 for different single-particle
quantum level broadening induced by charged impurities and short-
range impurities. The insets show a schematic LL ladder with al-
lowed transitions indicated by arrows and the horizontal dotted line
indicates the position of the Fermi energy.

FIG. 10. �Color online� The optical conductivity as a function of
photon energy for fixed filling factor �=2 for different magnetic
fields at ni

c=1011 cm−2 and �=0.08E1.
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different magnetic field. Notice that: first, at a filling factor of
�=2 the n=0→1 transition results in the first strong peak.
Comparing with Ref. 15 where scattering only from short-
range impurities was included, the self-consistent DOS in-
duced by electron-impurity �e-i� scattering using the T matrix
approximation showed a large broadening around zero en-
ergy which smeared the n=0, �1 LLs into a single broad-
ened peak. Their analysis showed that the transitions involv-
ing the n=0 LL were suppressed which does not agree with
our findings. The transition involving the n=0 LL has been
observed in far infrared transmission experiments. Second,
the optical conductivity is proportional to the degeneracy
�D0�B� and �B is proportional to �B which leads to an
increased oscillator strength at high magnetic field. Third, the
peak positions of the LLs in the presence of disorder are
slightly shifted to lower energy. The peak energy of the n
=0→1 transition is plotted in Fig. 11�a� which is a little
lower than the n=1 LL energy. Fourth, the half width at half
maximum �HWHM� of the optical conductivity in Fig. 11�b�
is consistent with the experiment results but notice that the
experimental results11 exhibit some extra structure which is
not reproduced by our theory.

For a fixed magnetic field B=18 T, we varied the elec-
tron density around the filling factor �=2 and plotted the
optical conductivity in Fig. 12. A notable feature is that the
peak position of the n=0→1 transition shows a “V” shape
as a function of the filling factor around �=2. The reason is
that in the presence of charged impurity scattering, the level
broadening is determined by the screened electron-charged
impurity potential. The RPA screening length is determined
by the imaginary part of the Green’s function at the Fermi
energy which oscillates with magnetic field �or filling factor�.
At integer filling �=2, the screening is weak which gives rise
to a large broadening of the DOS �see Fig. 12�b�� for the n
=1 LL and a large shift of the renormalized LLs. Such a

shifted CR peak energy with a V shape has been observed in
a recent infrared transmission experiment.14 Additionally, the
intensity of the peak around 0.4E1 which corresponds to the
transition n=1→2 for �
2 is lower than that of the corre-
sponding peak for the n=0→1 transition. This agrees with
the experimental result �see Fig. 1 in Ref. 12�.

IV. CONCLUSION

In this paper, we analyzed the effect of two types of scat-
tering, i.e., charged and short-range impurities, on the LL
broadening and the magneto-optical conductivity of
graphene in the presence of a quantizing magnetic field.
Moreover, contributions of both intra- and inter-LL scatter-
ing in the self-energy were taken into account. A Green’s-
function approach was employed to calculate the DOS and
the self-energy within a self-consistent Born approximation.
The LL widths are a function of impurity density, short-range
impurity potential and filling factor. We found that: �1� the
broadened DOS for the �n LLs in the presence of disorder
induced by impurities is symmetric around E=0. When cou-
pling between different LLs is included, the positions of the
renormalized LLs are shifted to lower energy and the LL
peak structure in the broadened DOS becomes less pro-
nounced. �2� In the presence of only charged impurity scat-
tering, intra-LL e-i coupling and intra-LL e-e screening are
retained in the self-energy calculation. The width of each LL
oscillates as a function of the filling factor. The LL width �n,n
at the Fermi energy exhibits maxima at integer filling. For
half filling the LL width at the Fermi energy decreases
monotonically with increasing magnetic field which is very
different from the case when only short-range scattering is
present where the LL width increases as �B. Due to the
separation in energy between the subsequent LLs which be-

FIG. 11. �a� The peak position �full circle� and �b� the HWHM
�-�-� of the n=0→1 transition vs �B. The solid line in �a� corre-
sponds to the n=1 single-particle Landau level. The open square
symbols in �b� are the experiment results from Ref. 11. The param-
eters are the same as in Fig. 10.

FIG. 12. �Color online� �a� The optical conductivity as a func-
tion of photon energy at a fixed magnetic field B=18 T for differ-
ent filling factor with ni

c=1011 cm−2 and �=0.1E1. Traces are offset
for clarity. �b� The n=1 broadened DOS for the corresponding fill-
ing factor and �c� the peak position �-�-� of the n=0→1 transition
as a function of the filling factor. The -�- symbols are the experi-
ment results from Ref. 14.
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haves as ��B /2�n for large n, the broadened DOS tends to
overlap which implies that inter-LL coupling should be in-
cluded. The n=0,1 broadened DOS is separated from the
other LLs within the Born approximation which is different
from the result as obtained using a T matrix approximation.
�3� The DOS are strongly broadened in the presence of the
two kinds of scattering. A B
 dependence with 
�1 /2 is
found near half filling. �4� The broadened LLs and the filling
factor determine the position and intensity of the peaks in the
optical conductivity. The oscillator strength for intraband
transitions is much larger than that for interband transitions.
The HWHM is determined by the type of scattering and the
strength of disorder. �5� In a high magnetic field, transitions
involving the n=0 LL are very pronounced which is different
from the case with only short-range scattering using the T
matrix approximation. The found peak position and the

HWHM of the n=0→1 transition are quantitatively consis-
tent with experiment. �6� Due to the filling factor dependence
of the LL broadening, the CR peak energy exhibits a V shape
as a function of the filling factor which agrees with the ob-
served CR transition in graphene. From our numerical re-
sults, we conclude that the LL broadening is dominated by
both charged impurities and short-range impurities.
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