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We study the effects of the interaction between electrons and holes on the conductance G of quasi-one-
dimensional graphene systems. We first consider as a benchmark the limit in which all interactions are negli-
gible, recovering the predictions of the tight-binding approximation for the spectrum of the system, and the
well-known result G=4e2 /h for the lowest conductance quantum. Then we consider an exactly solvable field
theoretical model in which the electromagnetic interactions are effectively local. Finally, we use the effective-
field theory formalism to develop an exactly solvable model in which we also include the effect of nonlocal
interactions. We find that such interactions turn the nominally metallic armchair graphene nanoribbon into a
semiconductor while the short-range interactions lead to a correction to the G=4e2 /h formula.
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I. INTRODUCTION

Monolayer graphene is a truly two-dimensional system
and a zero-gap semiconductor, where the electrons and holes
behave as massless fermions with unusual transport proper-
ties and display an anomalous quantum-Hall effect.1,2 In or-
der to utilize their important electrical features in certain ap-
plications, many efforts have been recently made to explore
the properties of lower-dimensional graphene nanostructures
such as nanoribbons.3–7 By cutting graphene into a narrow
ribbon structure, the electrons and holes are laterally con-
fined to form a quasi-one-dimensional �1D� structure, similar
to the case of carbon nanotubes7 and conventional semicon-
ductor quantum wires.8–13 The formation of 1D subbands in
graphene structures can lead to the quantization of conduc-
tance. One of the most interesting questions associated to
this quantity is if the conductance G of the lower band devi-
ates from that given by Landauer’s formula14 for noninter-
acting systems, G=gs

e2

h where the degeneracy factor is gs
=4 for graphene and gs=2 for conventional systems.

Effects of the electron-electron interaction in conventional
1D systems were investigated by Tomonaga15 many years
ago, and since then a number of works have been published
on this problem.16–24 One of the remarkable predictions of
these theories is that, even in the absence of scatterers such
as impurities, the conductance G deviates from that given by
Landauer’s formula as G=�gs

e2

h , where � depends on the
interaction. In an experiment on a GaAs-AlGaAs quantum
wire, Reilly et al.25 have found that � goes from 0.7 to 0.5
with increasing carrier density. Another interesting effect
provided by Tomonaga’s model is the possibility for
electron-electron interaction to open a gap in the spectrum.
This behavior has been recently experimentally verified in
the contest of carbon nanotubes.26

Motivated by these experiments on quasi-one-
dimensional carbon-based systems, in this work we study the
consequences of the electromagnetic interactions and quan-
tum correlations between electrons and holes, inside nanor-
ibbons built from a single layer of two-dimensional
graphene. In particular, in this paper we choose to consider
only the family of armchair graphene nanoribbons �AGNR�.

For these systems, tight binding calculations of the 1D sub-
bands lead to a dispersion relation

En�k� = � �v�k2 + �n + ��2�2/w2, �1�

k is the longitudinal momentum, v�106 m s−1�1 /300c is
the band velocity and w is the nanoribbon width. n
=0, �1, �2, . . .. is an integer for the subband index, and 0
� ����0.5 depends on the crystallographic orientation of the
GNR. The value of �=0 holds in the AGNR’s subfamily
with N=3p+2, where p is an integer and N is the number of
dimer lines across the ribbon width.

In the following, we mainly focus on the computation of
the conductance of graphene quantum wires in the case in
which n=0 and ��0, so that, in the absence of interactions,
the electron and hole n=0 bands form gapless Dirac cones.
To this end, we develop a model motivated by an effective-
field theory �EFT� based on an expansion in k /kT �or w /L
where L is the length of the system�, where kT is the typical
momentum of electrons and holes propagating in the trans-
verse direction.

We show that the combined effects of the interaction and
of the low dimensionality of the system drastically change
the structure of the ground state and of the spectrum of ex-
citations, which are typical of the two-dimensional graphene.
In fact, the vacuum develops a condensate of electron-hole
pairs and the spectrum of excitations turns out to be saturated
by bosonic particle-hole collective modes. As a consequence,
a gap opens up between valence and conduction band, turn-
ing the nanowire into a semiconductor: the AGNR behaves
as a Mott insulator. Interactions at distances on the order of
few lattice spacing lead to a correction to Landauer’s for-
mula for the conductance, in the form G=�4 e2

h with �
= 1

1+d/� and −��d�+	.
The paper is organized as follows. In Sec. II, we introduce

the model Hamiltonian for noninteracting electron and holes
and we calculate the free conductance of charge carriers. In
Sec. III we develop a model in which the screened Coulomb
interaction is effectively local, and compute the correspond-
ing conductance. In Sec. IV we use the effective-field theory
formalism to construct the most general Lagrangian describ-
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ing the interaction at distance of electrons and holes in the
wire. We show that, under suitable approximations, such a
Lagrangian reduces to an exactly solvable model, whose so-
lution is given in Sec. V. The implications of these results on
graphene physics will be presented in Sec. VI. Conclusions
and perspective developments are summarized in Sec. VII.

II. THEORY FOR GNR’S WITHOUT INTERACTION

The role of dynamical electron-hole correlations in
graphene quantum wires is expected to be very different than
in monolayer two-dimensional graphene. In fact, the free
Dirac-type Hamiltonian for two-dimensional graphene has
been shown to be a fixed point of the renormalization group
�RG� of the corresponding EFT.27 This implies that perturba-
tive coupling constants of such an EFT can be made arbi-
trarily small by applying RG transformation. Hence, the free
Dirac Hamiltonian can be used as a good starting approxi-
mation for discussing the dynamics of electrons and holes in
a graphene layer, with interactions providing at most, small
logarithmic corrections. On the other hand, in Ref. 28 we
have shown that the lowest-order interaction terms the EFT
describing quasi-one-dimensional graphene have dimension-
less coupling constants, and therefore appear at the same
order in the EFT expansion of the free kinetic terms. This
implies that interactions can never be neglected, and in gen-
eral are expected to shape the physics of such quantum
wires.

In view of such considerations it is instructive to first
consider as a bench mark the quantum motion near the K
point of the electrons in the conductance band and holes in
the valence band of GNR’s in the limit in which all interac-
tions are neglected. Such an analysis allows to clarify which
properties of the wire are induced by the dynamical correla-
tions.

The second-quantized Hamiltonian leading to the desired
free single-particle spectrum of the lowest energy band


�k� = � �v�k2 +
M2v2

�2 �2�

is of course

H0 = v�� dx�†�t,x��− i�1�x +
�3Mv

�
���t,x� , �3�

where ��t ,x� is the fermion field operator. In the following,
we shall work in a natural system of units for this problem,
in which �=v=1. Note that, in such units, the speed of light
is c=1 /�300.

In order to exploit the formal analogy with the relativistic
Dirac theory, it is convenient to introduce position contra-
variant vectors

x̃� = �vt,x� = �t,x� , �4�

momentum contravariant vectors

p̃� = �E/v,p� = �E,p� , �5�

and the metric tensor as g��=diag	1,−1
. In addition, let ��

and �S be 2�2 matrices obeying the usual Dirac algebra:

���,��� = 2g��, �6�

��S,��� = 0, �7�

and, ��S�2=1. For example, one may choose a representation
in which

�0 = �3,

�1 = i�2,

�S = �0�1 = �1. �8�

Note that with this choice one has ���S=−�����.
Using such a set of definitions, the action associated to the

free “Dirac” Hamiltonian �3� can be cast in the familiar form

S0 =� 	d2x̃�̄�i�”̃ − M��
 . �9�

Furthermore, in the presence of a classical external field
A�

ext, the action of free electrons and holes inside the system
is given by

S =� d2x̃�̄�iD”̃ − M�� , �10�

where the covariant derivative is defined as

D̃� = �̃� + ieA�
ext. �11�

The electric conductivity of the GNR described by the
action, Eq. �10�, is given by

R	��
,q�
 =
1

Eext�
,q�
R� d2x̃ei�
t−qx�j1�x̃��A�, �12�

where A�
ext�x̃�= (��x̃� ,0) is the potential of a weak external

electric field, Eext.
Applying the linear response theory and using the defini-

tion, Eq. �5�, one immediately finds

� d2x̃eiq̃·x̃j1�x̃��A
�
ext = i	i�10�q̃�
A0

ext�q̃� , �13�

where ����q̃� is the vacuum polarization tensor, defined as

i����q̃� =� d2x̃eiq̃·x̃��T	j��x̃�j��0�
��� . �14�

In the noninteracting model, this matrix element can be com-
puted exactly and reads

i����q̃� = −
e2

�
�g�� −

q̃�q̃�

q̃2 �I�q� , �15�

where

I�q� = − q2�
0

1

dx
x�1 − x�

M2 − x�1 − x�q2 . �16�

This result can be used to readily obtain the conductivity
of the system. After restoring the appropriate powers of v
and �, we find our final results
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R���
,q�
L

� = I
e2

��


/v
	�
/v + i��2 − q2


I�q�

=
e2

2�
��
/v − q�I�
/v� �17�

and by taking the Fourier transform29

R���
,x�
L

� =
e2

2��
cos�
x

v
�I�
/v� . �18�

When the mass term M is zero and the electron and hole
bands are gapless Dirac cones, as happens for armchair
GNR’s with N=3p+2, in the limit 
→0, we get for the dc
conductance G �defined as the 
→0 limit of R	 ��
,x�

L 
� at
zero-chemical potential

G =
e2

h
. �19�

This result must then be multiplied for the factor gs=4, to
account for the spin and sublattice degeneracy

G → G = gs
e2

h
. �20�

When there is a band gap, i.e., M �0, we expect that the
same result holds when M is small with respect to the Cou-
lomb energy, i.e., the energy stored in the electrostatic field
applied to the end points of the wire. Otherwise, the dc con-
ductance at zero-chemical potential is zero.

This discussion can be straightforwardly generalized to
the case of finite electron chemical potential. In general, in
the formalism of quantum field theory, the transition to finite
density is achieved by adding a term to the zero-density ac-
tion in the form

S	�,�̄
 → S	�,�̄
 − i�� d2x̃�̄�x̃��0��x̃� . �21�

Hence, in the free-theory case, the finite-density effect is
simply that of shifting the p̃0 component which enters in the
free-fermion propagator by the electron’s chemical potential
�: p̃0→ p̃0+�. As a consequence, the first branch-cut singu-
larity of I�q̃2� in the complex plane is translated to the point
q̃0=M −�, on the real axis. This means that, even for arbi-
trarily small Coulomb energies, the regime of finite conduc-
tance is reached as soon as the electron density � becomes
equal or larger than the gap M, as expected. In the next
section we will take into account the effect of the interaction
between electrons and holes on G in the case of M =0.

III. A MODEL WITH LOCAL CURRENT-CURRENT
INTERACTIONS

Let us now begin our study of the effects of the interac-
tions between electrons and the holes. In this section, we
consider a model which emphasizes the consequence of the
screening of the Coulomb force inside the wire, and com-
pletely neglects the interaction at distance.

If the electrostatic interaction between electrons and holes
is short-ranged, then the very low-energy electrodynamics

can be described by an effective vector-vector interaction—
see Fig. 1—

Lint =
d

2
��̄������̄���� , �22�

where the coupling constant d is inversely proportional to the
inverse of the screening mass ms, i.e.,

d

2
= e2/ms

2. �23�

Notice the analogy with the Fermi theory for weak decays, in
which the vector-boson mediated weak interaction is re-
placed by an effective local axial-vector coupling.

In our 1+1 dimensional effective theory, the choice of
interaction, Eq. �22�, defines the massless Thirring Model,
i.e.,

STh =� d2x̃�̄i�”̃� −
d

2
��̄����2. �24�

The calculation of the conductance of the wire in such a
model can be carried out analytically, even in the nonpertur-
bative regime.

As shown in Refs. 30–33 it is possible to explicitly refor-
mulate the massless Thirring Model in terms of a massless
bosonic free theory. In the present context, the bosons of
such a theory can be physically interpreted as a electron-hole
bound states. The fact that the spectrum of the wire in the
Thirring Model is gapless implies that short-ranged vector
correlations cannot turn the metallic armchair nanoribbon
into a semiconductor.

Let us now compute the conductance of the wire. Follow-
ing Ref. 32 we bosonize the system and map the, Eq. �24�,
into

S =
1

2
� d2x̃���̃���2 +

1

d
��̃���2 − �1

d
+

1

�
���̃���2� ,

�25�

where � is the scalar field obtained through the bosonization
of the fermionic fields while � and � are the boson fields
introduced using the auxiliary vector field technique.34

The bosonization dictionary for the massless Thirring
model30,32 states that the vector current is represented as fol-
lows:

Screening

FIG. 1. If the typical momenta exchanged by fermions in the
wire is much smaller than the inverse screening length of the elec-
trostatic interaction, the interaction can be replaced by an effective
local vector-vector vertex.
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J� = �̄��� →
1

2�
������ . �26�

Hence, it is straightforward to calculate the response of the
system to an external field, in linear response theory. The
current-current correlation function reads

J��p�J��− p�� = �g�� −
p�p�

p2 � e2

��1 + d/��
. �27�

Using the procedure, Eqs. �13�–�18�, we can compute the
quantum conductance for the AGNR. The result is

G = gs
e2

h�1 + d/��
. �28�

Notice that this results differs from Landauer’s formula by
the factor35 1 / �1+d /�� which is due to the presence of
short-ranged correlations.

IV. INCLUDING THE EFFECTS OF THE INTERACTIONS
AT DISTANCE

In the previous section, we have developed a phenomeno-
logical model in which the Coulomb interaction inside the
wire was assumed to be effectively zero-ranged. Such a
model becomes reliable only if the typical momenta of the
electrons and holes propagating in the wire are much smaller
than the inverse screening length.

We now want to improve on such an approach, by defin-
ing an alternative model in which the range of the interaction
is kept finite. To this end, we rely on the EFT formalism,
which represents a powerful tool to describe the low-energy
dynamics of arbitrary closed systems —for a pedagogic in-
troduction to EFT’s see Ref. 36, for a more technical treat-
ment see, e.g., Ref. 37.

Any time a physical system is characterized by a large
separation in its relevant energy-momentum scales, the low-
energy observables are expected to be insensitive to the de-
tails of the physics which involves only the hard degrees of
freedom, with energy and momenta above the gap. In this
case, the EFT formalism can be used to systematically con-
struct a model Lagrangian which describes the dynamics of
the relevant low-energy degrees of freedom. In general, the
EFT is much simpler to solve than the corresponding �more�
fundamental theory, as it is formulated in terms of fewer
degrees of freedom. In addition, the advantage of the EFT
description is that its Lagrangian can be systematically con-
structed, starting from symmetry arguments. Indeed, Wein-
berg theorem38 implies that one should consider the most
general Lagrangian, compatible with the symmetry proper-
ties of the underlying fundamental theory and with the fun-
damental principles of quantum field theory:

L = �
i=1

	

ci���Ôi. �29�

In this Eq., Ôi are field-dependent local operators, � is an
ultraviolet cut-off, chosen in the gap between the high-
energy and the low-energy modes and ci��� are the �running�

coupling constants. The price to pay in the EFT approach is
that the Lagrangian contains, in principle, an infinite number
of new unknown parameters ci���, which implicitly embody
the information about the ultraviolet physics, above the cut-
off. Such coefficients have to be calculated from the under-
lying microscopic theory, or have to be fitted from experi-
ment.

Clearly, the Lagrangian, Eq. �29�, does not yet represent a
physical theory since it depends on an infinite number of
parameters. On the other hand, the presence of a large sepa-
ration in the energy-momentum scales assures that, in order
to compute observables to any finite accuracy, one needs to
specify only a finite number of such effective parameters.39

Typically, this corresponds to the coupling of the lowest-

dimensional operators Ôi. In the case of perturbative theo-
ries, one can show that higher dimensional interaction opera-
tors lead in general to higher order contributions40 in the
expansion of the observables in power of p /�. Hence, any
desired accuracy can be reached by considering effective
Lagrangians with only a finite number of effective interac-
tions.

Let us now apply the EFT formalism to our specific case,
in which the natural cut-off scale is provided by the trans-
verse momentum in the wire, �=kT. We are interested in an
effective-field theory describing only the dynamics of low-
energy degrees of freedom inside the wire, i.e., the electrons
and holes propagating along the longitudinal direction.
Hence, in our approach, we propose a purely 1+1 dimen-
sional description of the electronic properties of the wire,
using the EFT technology to build an effective Lagrangian
which simultaneously takes into account for the short- and
long-ranged correlations induced by the presence of the
transversal confinement and of the interactions between elec-
trons inside the wire.

The only way to include interactions at distance while
respecting the symmetry, causality, unitarity and local charge
conservation constraints is to introduce an effective gauge-
boson field a�, which we shall call the pseudo-photon, owing
to the formal analogy with QED. It is important to stress that
this is an effective field, which does not represent physical
photons propagating inside the wire. Its role is to mediate the
long-distance interactions arising from the interplay of elec-
tromagnetic coupling and transverse confinement, in a way
that charge conservation is enforced locally, in the wire. In
addition since we are interested in the response to an external
electric field, we include into our effective Lagrangian the
coupling with a �physical� external electromagnetic field A�

ext.
On the other hand, we neglect the dynamics of photon radia-
tion, from the electrons in wire, as this a relativistic effect
and arguably very small, in the limit of low-electron density.

The pseudophoton field a� propagates at a speed v�
=1 /��1 /, which does not in general correspond to that
of the electrons and holes. This is equivalent to say that we
can define a gauge in which the free classical Euler-
Lagrangian equations for a� are

��2 �2

�t2 −
�2

�x2�a� = 0. �30�

This can be achieved by considering a free action in the form
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S0	ã�
 =� d2x̃�−
1

4
f̃�� f̃��� , �31�

where

f̃�� = �̃�ã� − �̃�ã�, �32�

and

ã0 = a0, �33�

ã1 = �a1. �34�

The action, Eq. �31�, leads to the free wave Eq. �30� upon
imposing the modified Lorentz gauge condition,

�̃�ã� = 0. �35�

Clearly since the pseudo-photon and the massless fermions
propagate at different velocities, the resulting theory will not
be invariant under any “Lorentz”-type symmetry.

The starting point to construct an effective Lagrangian
which conserves locally the change of the fermions is to
introduce a gauge invariant coupling of the pseudophotons
and fermions

D̃� � �̃� + iga� + ieA�
ext. �36�

Let us now perform a naive dimensional analysis to iden-
tify the lowest order operators in our EFT. In 1+1 dimen-
sions, the fermion field has mass dimension 1/2 while the a�

and A� field have mass dimension 1. The lowest-dimensional
gauge invariant operators with all the Lorentz indexes con-
tracted are therefore

�̄iD”̃ �, m����̄�, ��̄O��2, �O = 1,i�s,��,���S�

�̄��� f̃���,�̄���F���

f̃�� f̃��,�̄i�̃� f̃�����, �̄i�̃�F����� . �37�

The first, second, and third lines contain operators of dimen-
sion 2, 3, and 4, respectively. Form this point ahead we will
consider a special configuration for the AGNR, which geo-
metrically assures the disappearance of the mass term, as in
planar graphene, due to the contact between valence and con-
duction bands. As shown in41 this hypotheses is fulfilled in
3p+2 family of AGNR, that represents 1/3 of the whole
possible armchair nanoribbons.

The role of the contact terms ��̄O��2 is to mimic the
ultraviolet physics which sets in when electrons and holes
interact at a distance on the order of the inverse cut-off, i.e.,
of the transverse size of the wire, �1 /kT. The interaction
between electrons and holes separated by distances much
larger than the inverse cut-off is mediated by the coupling

with the pseudo-photon field, e.g., the �̄iD”̃ � term.
The exact nonperturbative solution of the theory de-

scribed by the EFT Lagrangian containing all the terms in
Eq. �37� is of course a formidable problem. On the other
hand, our main purpose is to study the combined effect of
long-range and short-range correlations on the electronic

properties of the wire. From such a stand point, we define a
model in which only the lowest-dimensional effective inter-
actions which generate tree-level interactions between the
electromagnetic currents are retained. These are the vector-

vector contact interaction term ��̄����2, the minimal cou-

pling term �̄iD”̃ � and the pseudophoton kinetic term f̃�� f̃��.
The latter term is required to assure the propagation of the
pseudophoton field. In conclusion, the effective action of our
model for the internal quantum electrodynamics of the wire
reads

S �� d2x̃��̄iD”̃ � −
d

2
��̄����2 −

1

4
f̃�� f̃��� . �38�

We emphasize the fact that such an action was obtained by
retaining only some of the effective couplings. This choice
unavoidably introduces some model dependence in our cal-
culations. On the other hand, the gain is that the model de-
fined by Eq. �38� is exactly and analytically solvable, even in
the nonperturbative regime. In the following, we shall refer
to the model define by the action, Eq. �38�, as to the
Schwinger-Thirring model. In principle, the effect of the
terms which we have excluded from our model Lagrangian
can be estimated in perturbation theory, or at the mean-field
level. We leave such an analysis to our future work.

V. EXACT NON-PERTURBATIVE SOLUTION OF THE
SCHWINGER-THIRRING MODEL

In this section, we discuss the exact analytic solution42 of
the Schwinger-Thirring model—see also the discussion in
Ref. 43.

A. Solution of the Schwinger Model

Let us begin by reviewing the solution of the pure
Schwinger model, i.e., for d=0, which can be found in stan-
dard quantum field theory textbooks, such as Ref. 32. A re-
markable feature of such a theory is that its classical action is
invariant under two independent transformations, defined by
the following different types of local rotations of the fermion
fields

��x� → ei��x���x� �̄�x� → �̄�x�e−i��x�, �39�

��x� → ei�S��x���x� �̄�x� → �̄�x�ei�S��x� �40�

and by the corresponding gauge transformations

a� → a� −
1

g
�̃�� , �41�

a� → a� + i
1

g
����̃

�� . �42�

The dynamical consequences of such a symmetry become
evident once one parametrizes the photon field degrees of
freedom as
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a� =
1

g
��̃�� − i����̃

��� �43�

and re-expresses the path integral in terms of the fermion

fields �, �̄, and of the � and � fields.
The invariance of the classical action defines a classical

symmetry of the system. Such a symmetry is realized also at
the quantum level only if the full path integral remains un-
changed under the transformations, Eqs. �39� and �40�, and
Eqs. �41� and �42�. To verify if such a condition is realized,
let us analyze the transformation properties of the fermionic

measure D�D�̄. It is possible to show that the gauge sym-
metry, Eq. �39�, leaves invariant the fermionic measure and
therefore the symmetry defined by the transformation, Eqs.
�39�–�41�, is respected also at the quantum level. On the
other hand, under the chiral gauge transformation, Eqs.
�40�–�42�, one has

D�D�̄ → D�D�̄J−2, �44�

where

J−2 = exp�− 2� d2x̃
1

g2 �̃��m2�̃��� �45�

is the functional Jacobian determinant of the chiral transfor-
mation, Eq. �40�, and m=g /�� is the so-called Schwinger
mass. Hence, the chiral gauge symmetry is said to be
“anomalous,” i.e., broken at the quantum level.

As a result of the chiral anomaly, the path integral of the
Schwinger model can be written as

Z =� D�D�̄D� exp	iSshw	�,�̄,�

 , �46�

where the Schwinger action Sshw is defined as

Sshw	�,�̄,�
 =� d2x̃��̄i�̃”� −
1

2

1

g2 �̃����̃2 − m2��̃��� .

�47�

As shown in Ref. 32, this partition function can be
mapped into a purely bosonic one, which reads

Sshw	�,�
 =
1

2
� d2x̃	��̃���2 − m2�2
 . �48�

Notice that this action is quadratic in the boson fields, so
every correlation function can be computed exactly.

B. Solution of the Schwinger-Thirring model

We are now in a condition to discuss the solution of our
Schwinger-Thirring model, Eq. �38�. Applying the chiral and
scalar gauge transformations, Eqs. �39�–�41�, and Eqs.
�40�–�42�, and evaluating the corresponding anomalous shift
in the fermionic measure, the action transforms into

Sshw	�,�̄,�
 =� d2x̃��̄i�̃”� −
d

2
��̄����2

+ −
1

2

1

g2 �̃����̃2 − m2��̃��� . �49�

As in the case of the Schwinger model, the strategy to solve
this theory is to define a bosonization scheme such that the
resulting formulation of the path integral is purely Gaussian.
Such a procedure involves determining the bosonized repre-

sentation of the vector current, �̄���. The procedure is illus-
trated in the Appendix. The result of such an analysis is that
under bosonization the vector current operator becomes

�̄��� → − i
1

��
����̃�� . �50�

Having established the “bosonization dictionary”31,44 for
the fermionic current, it is immediate to obtain the bosonized
version of the Schwinger-Thirring model. Indeed, Eq. �49�
transforms into

Sst	�,�
 =
1

2
� d2x̃��1 +

d

�
���̃���2 − m2�2� �51�

with m2=g2 /�. Formally, this action has the same form of
the original Schwinger model bosonic action. The only dif-
ference is in the factor �1+d /��, which rescales the kinetic
term. This factor contributes to correlations functions and
provides corrections to the mass of the Schwinger boson but
does not modify the qualitative structure of the ground state
and of the excitation spectrum.

VI. PROPERTIES OF THE GNR IN THE
SCHWINGER-THIRRING MODEL

In Sec. IV we introduced the Schwinger-Thirring model
for the electrodynamics of the graphene wire. In the previous
section, we have shown that such a model can be mapped
into a modified Schwinger model. The effect of the short-
range vector-vector interaction which are present in our
model is absorbed into the coefficient �1+d /��, which mul-
tiplies the kinetic energy term. Hence, using the fact that the
Schwinger model is exactly solvable, we are finally in a con-
dition to predict some important properties for the wire.

A. Ground-state structure and bosonization
of the spectrum of excitations

As in the original Schwinger model, the vacuum is char-
acterized by a finite fermion condensate

���̄���� � 0. �52�

In the context of graphene nanowire physics, this result im-
plies that, even in the presence of short-distance vector-
vector interaction, the electron-hole pair density in the
vacuum is not zero.

This effect is due to the anomalous breaking of the chiral
symmetry, which is also responsible for the bosonization of
the spectrum. The Schwinger-Thirring model contains no fer-
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mion excitations but only an arbitrary number of free
fermions-antifermions bound states, with mass M =g2 /��1
+d /��. In the context of graphene physics, this means that
the spectrum of excitations of the nanowire starts with a
single collective electrons-holes mode with dispersion rela-
tion


�k� = � �v�k2 +
4g2�/

e2�1 + d/��
�53�

and contains a continuos of multiboson excitations, starting
at the two-boson threshold. Additional thresholds for multi-
boson excitations are located at nm with n=3,4 ,5 , . . .. In
these formulas, we have restored the constants v, c, �, and
�= e2

4��c �1 /137 is the fine structure constant.

B. Conductance of the graphene wire

The calculation of the conductance of the wire in linear
response theory in the presence of electron-hole interactions
can be performed following the same steps taken in the free
case. It is important to recall that the model we are consid-
ering contains two distinct vector fields: the effective
pseudophoton field a� and the physical external photon field
A�. The conductance is stimulated by the latter field while
the long-range dynamical correlations are generated by the
former field. Consequently, the coupling of such two fields
with the fermion field � is parametrized by different cou-
pling constants, g and e. Note that this is not the case in the
original Schwinger model, in which one considers only one
type of coupling of the fermions to the vector field —see,
e.g., Ref. 45. As a consequence, the current-current correla-
tion function which enters in the definition of the conduc-
tance in our model is not the same correlation function which
enters in the Dyson series associated to the pseudo-photon
mass renormalization.46

The current-current correlation function ���
sh of the

Schwinger system to an external vectorial perturbation was
calculated by Schwinger in his original work47 but the
bosonization technique offers a different way to obtain the
same result. By definition we have

i���
sh �x̃, ỹ� =� �

i�A��x̃�i�A��ỹ�
�

A�=0

log Z	A�
 , �54�

Zsh	A�
 =� Da�D�̄D�eiSsch+ie�d2x̃�̄�x̃�����x̃�A��x̃� �55�

applying the bosonization technique, we find

i���
sh �x̃, ỹ� = −

e2

�
����̃���x̃�����̃���ỹ�� . �56�

After analytically continuing back to real time, the Fou-
rier transform of such a result is

i���
sh �q̃� = −

e2

�
�q̃2g�� − q̃�q̃��

1

q̃2 − m2 , �57�

where m is the Schwinger mass. The effect of long-range
correlations on current-current correlations can be read-off

by comparing this formula its free counterpart, Eq. �15�.
By following exactly the same procedure one can com-

pute the current-current correlation function in the complete
Schwinger-Thirring model, i.e., using the action, Eq. �51�.
We find

i���
st �q̃� = −

e2

�

1

1 + d/�
�q̃2g�� − q̃�q̃��

1

q̃2 − m2 . �58�

We note that the existence of a single pole implies that the
conductance is entirely saturated by the propagation of con-
fined electron-hole bound states �Schwinger bosons�, and not
by �quasi� free electrons and holes.

Since the system develops a gap, the conductance be-
comes different from zero for electron densities larger than
the gap, i.e., for ��m. If is this the case, the procedure used
from Eq. �15� to Eq. �19� can be repeated to find the quantum
of conductance. The result is

G = gs
e2

h�1 + d/��
, �59�

where we have included the degeneracy factor.
The present analysis has illustrated how the transport

properties of the wire are determined by two different
mechanisms which are related to the long- and short-range
part of the interaction, respectively. Interactions at distance
induce a gap in the spectrum, implying the insulating prop-
erty of the nanowire. However, long-ranged interactions
alone are not able to modify the value of conductance’s
quantum. Corrections to the free-theory value 4e2 /h value
are completely due to short-ranged interactions.

VII. CONCLUSIONS

In this work, we have studied the effect of the interactions
between electron and holes on the conductance G of quasi-
one-dimensional graphene systems at zero temperature. We
first considered the case in which all the interactions are
absent and there is a gap in the electron and hole bands,
described by an effective mass term M in the free Hamil-
tonian. In this case, when the Coulomb energy of the field
applied to the ends of the wire is larger than the gap M, we
recover the well-known result G=4e2 /h. On the other hand,
when such a Coulomb energy is much smaller than the gap,
we obtain a finite conductance G=4e2 /h only when the
chemical potential � becomes equal or larger than M, as
expected.

We have then taken into account the effect of the interac-
tion by developing a model inspired by an effective-field
theory based on an expansion in k /kT, where k and kT are the
momenta in the longitudinal and transverse directions, re-
spectively. We have shown that long-range interactions dy-
namically generate a gap in the spectrum, turning the GNR
into a Mott insulator. In addition, short-range interactions
lead to a renormalization of the free theory result for the
conductance. Once both types of interactions are taken into
account, one obtains that when the Fermi energy exceeds
the dynamically generated gap, the conductance is G
=4e2 /h�1+d /��, where d is the short-range interaction
strength.
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A possible development of the present work would be to
investigate how the properties of the wire change as a func-
tion of the temperature. Also, our field-theoretic approach
can be easily implemented in the case of carbon nanotubes.

APPENDIX: BOSONIZATION OF THE
SCHWINGER-THIRRING LAGRANGIAN

Let us consider the theory defined by the partition func-
tion

Z�̄,�,a�
	A�
 =� D�D�̄Da� exp�−� d2x

1

4
f��f��

+ − �̄��” + iea” + ieA” ��� . �A1�

Notice that, for sake of simplicity and without loss of gener-
ality, we have dropped the “tilde” notation and we have as-
sumed the same coupling constant e for both the dynamical
a� and the external A� fields.

To solve this theory, we can proceed in the same way as
Sec.V A, applying the gauge transformation also to the ex-
ternal field A�. Hence, we define:

a� =
1

e
���� − i������� , �A2�

A� =
1

e
���� − i������ . �A3�

The corresponding path integral becomes

Z�̄,�,a�
	�,
 =� D�D�̄D�D�

exp�−� d2x
1

2e2����2��� − �̄	�” + ���− ���� + ��

− i������� + ��
�� . �A4�

In the presence of the external field, the application of the
gauge and chiral gauge rotations leads to two anomalous

terms, which are related to the � and  fields, respectively

−
1

2�
�����2 −

1

2�
����2. �A5�

Consequently the path integral is written as

Z�,�	
 =� D�D� exp�−� d2x
1

2
�����2+� �A6�

�−
1

2�
�����2 +

1

2e2����2��� −
1

2�
����2� . �A7�

Now we perform a shift in the field �

� → � + �/� + /� �A8�

and we integrate over the field �, as in the case of the pure
Schwinger model. We obtain

Z�	
 =� D�e−�d2x�1/2������2−e�����/e��+�1/2�m2�2+�1/2�m22
,

�A9�

where m2=e2 /�. The term proportional to 2 can be
dropped, as it does not contribute to correlation functions.
The resulting partition function is

Z�	
 =� D�e−�d2x�1/2������2+�1/2�m2�2−�����/��.

�A10�

We note that, in such a representation, the interaction with
the external field is described by the term 1

��
�����. After

re-expressing such a coupling in terms of the original exter-
nal field A� we find

Z�	A�
 =� D�e−�d2x�1/2������2+�1/2�m2�2−i�1/���A�������.

�A11�

This result shows that, after bosonization, the vector current
operator becomes

�̄��� → − i
1

��
������ . �A12�
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