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We investigate the fine structure of the edge states energy spectrum for zigzag and armchair ribbons of
graphene in a strong magnetic field. At low energy, the spectra can be described by an effective Schrödinger
Hamiltonian with a double well potential, symmetric in the zigzag case and asymmetric in the armchair case.
We develop a semiclassical formalism based on the WKB approximation to calculate analytically the energy
spectrum for the two types of edges, including regions which were not studied earlier. Our results are in very
good quantitative agreement with numerical calculations. This approach leads to a qualitative description of the
spectra in terms of the quantization of unusual classical orbits in the real space.
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I. INTRODUCTION

The fascinating properties of graphene originate from its
perfect two-dimensional �2D� character and from its unusual
electronic structure where valence and conduction bands
touch at two inequivalent points of reciprocal space. In the
vicinity of these two points, the dispersion relation is linear
and charge carriers behave as massless Dirac fermions1 with
striking consequences on the electronic properties, like the
unusual 2D quantum Hall effect.2,3 Recent studies have also
addressed electronic properties of confined graphene struc-
tures such as dots, rings, or nanoribbons. In particular, nan-
oribbons have been suggested as potential candidates for re-
placing electronic components in future nanoelectronic and
nanospintronic devices.4,5 In that perspective, the role of
edge states is essential. In the absence of magnetic field, edge
states can emerge for particular types of edges.6,7 Such local-
ized electronic states can be described analytically at low
energy by using the Dirac equation with the appropriate
boundary conditions.8 More recent theoretical works have
investigated the metallic nature of such edge states by con-
sidering staggered on-site potentials,9 surface
perturbations,10 spin-orbit coupling,11 edge doping,12 and so-
phisticated terminations of the honeycomb lattice.13–15 Ex-
perimental efforts have been performed to observe different
natures of edges16–18 and study charge transport in
ribbons.19,20

This paper deals with the structure of edge states in a
strong magnetic field, a problem which has been the subject
of recent interest.21–23 Although this problem is somehow
reminiscent of the case of usual 2D electrons,24,25 it is much
richer since here charge carriers are massless particles and
the structure of the edge states depends on the nature of the
edges, the so-called zigzag and armchair edges. These two
types of edges can be described at low energy by an effective
Schrödinger Hamiltonian with a harmonic potential.21,23 In
the zigzag case, this potential is similar to the one of the
usual integer quantum Hall problem,24 whereas in the arm-
chair case, the potential presents a specific asymmetry.21,23

Moreover, these edge states have been recently investigated
numerically in graphene rings,26 and in graphene ribbons by
considering an anisotropic hopping parameter,27 or by taking
account for a possible quantum Hall ferromagnetism.28

However, the energy dependence of the Landau levels
when approaching the edges has only been discussed briefly.
The goal of this paper is to investigate in details the fine
structure of the edge states energy spectrum for zigzag and
armchair ribbons and provide a complete quantitative ana-
lytical description within the WKB approximation. The pa-
per is organized as follows: in Sec. II, we recall and discuss
in details the tight-binding spectra for zigzag and armchair
ribbons with and without magnetic field. When a field is
applied, we point out peculiar features of the edge states
which we describe analytically in the rest of the paper. Fol-
lowing the procedure suggested in previous works,21,23 we
derive in Sec. III a simple effective Hamiltonian �essentially
the squared Dirac Hamiltonian� with a potential depending
on the boundary conditions. Then, in Sec. IV, we present a
semiclassical framework to calculate analytically the low-
energy spectra. Two methods are used: the first one is based
on the Bohr-Sommerfeld quantization �BSQ� of the action
and leads to a simple qualitative picture in terms of classical
skipping orbits in Sec. V. However, this method does not
properly describe the case where the classical cyclotron ra-
dius is on the order of the distance to the edge. Therefore, we
develop a more sophisticated semiclassical approach, based
on the WKB approximation, that leads to analytical quanti-
tative results in agreement with numerical calculations. The
details of this approach are given in the Appendix A. We
conclude in Sec. VII.

II. TIGHT-BINDING SPECTRUM

A. Zero magnetic field

We briefly recall the band structure of infinite graphene
ribbons within the tight-binding picture. For that purpose, we
first consider the Hamiltonian H of an infinite 2D sheet of
graphene, and we use the Bloch theorem in both x and y
directions. As the honeycomb lattice has two carbon atoms
per cell �that we call A and B, see Fig. 1�, the Bloch wave
function is written as

��k�� = �
j

eik�R� j��A�Aj� + �B�Bj�� , �1�

where R� j are the vectors of the triangular Bravais lattice.
Then, within the tight-binding model, the Hamiltonian is
written as
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H = t� 0 f�k��

f��k�� 0
	 �2�

in the basis of the two sublattices ��A ,�B�, where t is the
hopping parameter between nearest neighbors and with

f�k�� = − 1 − exp�ik� · a�1� − exp�ik� · a�2� , �3�

where a�1 and a�2 are the basis vectors of the triangular Bra-
vais lattice with 
a�1
= 
a�2
�a0. The lattice parameter a0 is
related to the carbon-carbon distance a=0.142 nm by
a0=�3a. The dispersion relation given by ��k��= � t�f�k���
�see Fig. 2�a�� consists in two bands which touch at the cor-
ners of the first Brillouin zone �FBZ�. The positions of these
points are given by the condition f�K� �=0, that is,

K� =
1

3
�a�1

� − a�2
�� K� � = −

1

3
�a�1

� − a�2
�� ,

where a�1
� and a�2

� are the basis vectors of the reciprocal lattice.
The spectrum is linear near these points. The choices of the
unit cell and of the axes are illustrated in Fig. 1�a�. The
positions of the so-called K� and K� � Dirac points are shown in
Fig. 1�b�, where we have also indicated their projections onto
the axis kx and ky.

We consider now infinite ribbons with either zigzag or
armchair edges. In these finite geometries, the Bloch theorem
can be used only along the infinite direction, and the bound-
ary condition along the finite direction yields a finite number
of bands. These bands, computed in the tight-binding model,
are displayed in Figs. 2�d� and 2�e�. It is seen that the spectra
of these ribbons correspond to the projection of the 2D spec-
trum along the kx axis �armchair edge� or the ky axis �zigzag
edge�. The projected points K� and K� � coincide in the arm-
chair case but they do not in the zigzag case. This remark
illustrates the fact that for the armchair case, the two valleys
are admixed by the boundary condition as we will discuss
later. Finally, note that the flat level between the two points K�

and K� � for zigzag edge is not captured by the projection of
the bulk result. This zero energy state is localized near the
edges and its existence depends on the boundary
conditions.7,8,29 This edge state exists without any magnetic
field.

From now on, we define the geometry of the armchair and
zigzag ribbons as shown in Fig. 3: the ribbon is infinite along
the y direction and it has a finite width L in the x direction.

FIG. 1. �Color online� �a� Sheet of graphene with zigzag and
armchair edges. �b� The black dots represent the nodes of the trian-
gular reciprocal lattice whose a�1

� and a�2
� are the basis vectors. The

Dirac points K� and K� � are located at the corners of the FBZ. The
projections of the K� and K� � points on the kx and ky axes have been
represented by crosses.

FIG. 2. �Color online� �a� Energy spectrum ��k�� of an infinite
sheet of graphene. Projection of this spectrum �b� along the ky axis
onto the plane �� ,kx� and �c� along the kx axis onto the plane �� ,ky�.
Band structure �d� for an infinite armchair ribbon and �e� for a
zigzag ribbon. Their widths are L=49a0 /2 for the armchair ribbon
and L=49�3a0 /2 for the zigzag ribbon. The positions of the K� and
K� � points are represented by dashed vertical lines and the one-
dimensional FBZ is delimited by continuous vertical lines. The en-
ergies are given in units of the hopping parameter t.

FIG. 3. �Color online� Graphene ribbons of width L with �a�
zigzag edges and �b� armchair edges. We consider the y direction as
infinite. The circles represent empty sites and define the edges.
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Within this convention, we have Ky �Ky� for the zigzag rib-
bons and Ky =Ky� for the armchair ones.

B. Perpendicular magnetic field

We now apply a perpendicular magnetic field B� =−Be�z on
each type of ribbon and calculate numerically the band struc-
ture within the tight-binding model.21 The finite width of the
ribbons along the x axis leads us to work with the Landau
gauge Ay =−Bx and Ax=0. Because of the vector potential Ay,
the hopping parameter t �taken as unity in the rest of the
paper�, takes a Aharonov-Bohm phase t→ tei�2�/�0�
dl�·A� ,
where �0=h /e is the magnetic-flux quantum. We now study
the low-energy spectrum for a given magnetic flux � through
an elementary plaquette. In Fig. 4, we show the low-energy
tight-binding spectra for the zigzag ribbon with and without
magnetic field in the same plot. The spectra for the armchair
case are shown in Fig. 5. The zero-field cones are progres-

sively transformed into flat Landau levels with the expected
�n= � t�2��3n� /�0 behavior.30

We now comment on several important features of these
spectra which to our knowledge have not been discussed in
the literature. Since in the chosen Landau gauge, a state ky is
centered at the position ky�B

2 along the x direction, where
�B=�� /eB is the magnetic length, the variation in the energy
levels can be interpreted as a function of this position, as
redrawn in Figs. 6 and 7. In these figures, we have indicated
the position of the edges along the x direction, at low energy.
Indeed, the position of one edge is fixed by the position of
the Dirac points in zero field and the other edge is located at
a distance 	qy =L /�B

2 , where L is the width of the ribbon and
where qy =ky −Ky

���. As the two valleys are not admixed in the
zigzag case, this operation must be performed for both K� and

FIG. 4. �Color online� Tight-binding spectrum at low energy for
a zigzag ribbon with �red� and without �green� magnetic field. The
magnetic flux is �=0.00126�0 and the width is L=199�3a0 /2.

FIG. 5. �Color online� Tight-binding spectrum at low energy for
an armchair ribbon with �red� and without �green� magnetic field.
The magnetic flux is �=0.00126�0 and the width is L=199a0 /2.

FIG. 6. �Color online� Tight-binding low-energy levels in the
quantum Hall regime as a function of the position ky�B

2 along the x
axis for a zigzag ribbon. The edges are represented by vertical black
lines. Green and blue horizontal lines indicate the position of the
bulk Landau levels for comparison with the position of the levels at
the edges. Note the mirror symmetry of the spectrum between the
two valleys K� and K� �. The energy is given in units of t.

FIG. 7. �Color online� Tight-binding low-energy levels in the
quantum Hall regime as a function of the position ky�B

2 for an arm-
chair ribbon. The edges are represented by vertical black lines. The
energy is given in units of t.
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K� � valleys, as seen in Fig. 6. Therefore, it is clear that the
dispersive character of the levels corresponds to the edge
states, as first discussed by Halperin in the context of the
integer quantum Hall effect of massive particles in two-
dimensional gases.24 However, the band structure for
graphene is more complex and depends on the type of edge
as we discuss now. For the zigzag edge, we first emphasize
that, inside a given valley, the spectrum is not symmetric: the
energy levels are not identical on left and right sides. More-
over, exactly at the left and right edges, the energy levels
�edge take peculiar values: they alternatively take the value of
higher bulk Landau levels �bulk. This correspondence is dis-
played by horizontal color lines in Fig. 6. More precisely, for
the K� valley, we have the relation �n

edge=�2n+1
bulk with n
0

�horizontal blue lines� on the left edge whereas we have
�n

edge=�2n
bulk �horizontal green lines� with n�0 for the right

edge. In addition, we have the same structure in the K� � val-
ley, provided the role of the two edges is permuted. This
remarkable distribution of the edge states will be explained
in Sec. IV C. The armchair case, in Fig. 7, is quite different.
Each Landau level is doubly degenerate, a direct conse-
quence of the valley admixing. The degeneracy lifting takes
place close to the edge with a nonmonotonous behavior for
one every two levels that will be explained in Sec. IV C. In
the following we present a qualitative and quantitative de-
scription of these spectra within a semiclassical analytical
approach.

III. LOW-ENERGY EFFECTIVE HAMILTONIAN

A. Bulk Hamiltonian

At low energy, Hamiltonian �2� can be linearized around
the two Dirac points K� and K� �. Expanding k� as k� =K� ���+q� in

each valley, the tight-binding Hamiltonian is then replaced
by a 4�4 linearized Dirac-type Hamiltonian,

Ĥ = 
a0�
0 iq̂x − q̂y 0 0

− iq̂x − q̂y 0 0 0

0 0 0 iq̂x + q̂y

0 0 − iq̂x + q̂y 0
� ,

�4�

which describes the two uncoupled valleys in the basis
��A ,�B ,�A� ,�B��, where 
=

�3
2 t and a0 is the lattice spacing.

The eigenfunctions �� can be expressed as the superposi-
tion of the contributions of the two valleys so that we can
write

���r�� = eiK� r���A�r��
�B�r�� 	 � eiK�� r���A��r��

�B��r��
	 . �5�

In the magnetic field B� =−Be�z, and within the Landau
gauge Ay =−Bx, we perform the Peierls substitution

q̂y→ q̂y +eÂy = q̂y −eBx̂. Then we introduce the dimensionless
variables x̂ /�B→ x̂ and xc=qy�B. Since q̂x=−i�x, the Hamil-
tonian in a magnetic field reads

Ĥ =
vF

�B
��

0 �x + x − xc 0 0

− �x + x − xc 0 0 0

0 0 0 �x − �x − xc�
0 0 − �x − �x − xc� 0

� , �6�

where vF=
a0 is the Fermi velocity. Next, it is useful to

work with the squared Hamiltonian Ĥ2 which is diagonal.
We introduce the dimensionless effective Hamiltonian Hef f
as

Ĥ2 = 2
vF

2

�B
2 Hef f , �7�

which defines four effective Schrödinger equations,

Hef f� = En� �8�

with

Hef f = −
1

2
�x

2 +�
Vu�x� 0 0 0

0 Vd�x� 0 0

0 0 Vd�x� 0

0 0 0 Vu�x�
� , �9�

where the potentials Vu�x� and Vd�x� are given by

Vu�x� �
1

2
�x − xc�2 +

1

2
, �10�
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Vd�x� �
1

2
�x − xc�2 −

1

2
�11�

and are displayed in Fig. 8. Thus, the effective Hamiltonian
Hef f simply describes only two different harmonic oscilla-
tors. Because of the noncommutativity of the operators x̂ and
�x, the two harmonic potentials Vu�x� and Vd�x� are shifted
by one energy level. From Eqs. �8� and �9�, one obtains two
different Schrödinger equations, one with the potential Vu�x�
for �A and �B� , and the other one with the potential Vd�x� for
�B and �A� .

The eigenvalues �n of the original Hamiltonian �7� are
obtained from the dimensionless eigenvalues En of the effec-
tive Hamiltonian Hef f as

�n = �
vF

�B

�2En. �12�

In the Landau gauge we have used, the wave function is a
plane wave along the y direction and now reads

���r�� = ��A
��r��

�B
��r��

	
=eiqyy�eiK� r���A�x�

�B�x� 	 � eiK�� r���A��x�
�B��x�

	� . �13�

The eigenvalues En=n are the Landau levels associated
with the eigenfunctions of the harmonic oscillator ��n� as
follows:

�A = �n−1 �A� = �n,

�B = �n �B� = − �n−1. �14�

This is illustrated in Fig. 8. The effect of the edges is to
modify the potentials �Eqs. �10� and �11�� and consequently
the components �A/B

��� of the wave functions and the energy
spectrum. These modifications depend on the nature of the
edge which yields to specific boundary conditions. In the two
following sections, we derive the effective Schrödinger equa-
tions for zigzag and armchair edges.

B. Zigzag edges

To treat the zigzag edges of a graphene ribbon, we first
recall that all the atoms on one edge belong to the same
sublattice, and therefore, all the atoms on the opposite edge
necessarily belong to the other sublattice. As the ribbon is
periodic in the y direction, we still write the low-energy
wave functions �� as in Eq. �13� but the components �A/B

���

are not the eigenfunctions of the harmonic oscillator any-
more. As the left edge is only made of A sites �see Fig. 3�,
the wave function on the B sites vanishes for x=0, i.e.,
�B

��x=0,y�=0. The situation is identical on the right edge at
x=L for the A sublattice: �A

��x=L ,y�=0. As a consequence,
we have the boundary conditions,

�A�L� = 0 �A��L� = 0,

�B�0� = 0 �B��0� = 0. �15�

These boundary conditions do not admix the valleys
which can still be described separately, as in the bulk system.
Consequently, with the zigzag boundary conditions, we have
four independent Schrödinger equations, one for each valley
and for each sublattice, with four independent potentials
VA�x�, VB�x�, VA��x�, and VB��x�. Such boundary conditions
can be accounted for by an infinite potential barrier either at
x=0 or at x=L, according to the sublattice and the valley.
Namely, the potentials VB�x� and VB��x� are harmonic poten-
tials that have to be cut in x=0 whereas the potentials VA�x�
and VA��x� have to be cut in x=L. Since the four edge prob-
lems are quite similar, we focus on the case of the right edge
for the K� valley. Thus, the potential VA�x� reads

VA�x� = �Vu�x� for x � L

� for x � L
� �16�

and is plotted in Fig. 9. Similarly, one can define VA��x�,
VB�x�, and VB��x�. As a matter of fact, the problem of a har-
monic well with an infinite potential barrier �Fig. 9� is iden-
tical to the problem of a double symmetric harmonic well
�Fig. 10�, provided we only keep, in the latter, the eigenen-
ergies associated with the eigenstates that vanish on the edge,
that are the antisymmetric states. The interest of considering
such a double symmetric well is that, as we will see in Sec.
III C, both zigzag and armchair edges can be described by
double harmonic wells, the difference being an energy shift
between the two wells in the armchair case. We illustrate in
Fig. 10 the double symmetric potential VA�x� we finally con-
sider in the effective Schrödinger equation for the right zig-
zag edge and the K� valley, that is,

�−
1

2
�x

2 + VA�x���AS�x� = En
AS�xc��AS�x� , �17�

VA�x� =
1

2
��x� + xc�2 +

1

2
. �18�

The index AS refers to the antisymmetric solutions and we
have performed the translations x−L→x and xc−L→xc so
that the right edge is now located in x=0. The eigenenergies
En

AS�xc� are calculated analytically within a WKB treatment

FIG. 8. �Color online� The harmonic potentials Vu and Vd of the
effective Hamiltonian Hef f. The eigenfunctions associated with the
eigenvalues En=n are the eigenfunctions of the harmonic oscillator,
respectively, �n−1 and �n.
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introduced in Sec. IV. The detailed calculations are explained
in the Appendix A.

C. Armchair edges

We now consider the case of an armchair ribbon as dis-
played in Fig. 3�b�. The corresponding low-energy Hamil-
tonian is obtained from Eq. �4� by the substitution qy→−qx
and qx→qy. By keeping the same gauge Ay =−Bx as above,
the Hamiltonian in the presence of a magnetic field now
reads

Ĥ = i

a0

�B
��

0 − �x − �x − xc� 0 0

− �x + x − xc 0 0 0

0 0 0 �x − �x − xc�
0 0 �x + x − xc 0

� . �19�

Of course, this new choice of axes does not affect the eigen-
values of the bulk problem and leaves the effective Hamil-
tonian Hef f defined in Eq. �7� unchanged but the eigenfunc-
tions have now the following form:

�A = − i�n−1 �A� = i�n,

�B = �n �B� = − �n−1, �20�

where the ��n� functions are the eigenfunctions of the har-
monic oscillator. The phase factor i originates from the ori-
entation of the ribbon. Following the procedure suggested by
Brey and Fertig,21 we now construct an effective Hamil-
tonian which accounts properly for the armchair boundary
conditions. Since, for this type of edge, we have the particu-
lar relation Ky =Ky�, as argued in Sec. II, the wave functions
now read

���r�� = ��A
��r��

�B
��r��

	

=ei�Ky+qy�y�eiKxx��A
��x�

�B
��x�

	 � eiKx�x��A�
��x�

�B�
��x�

	� , �21�

where the components �B/A
���� must satisfy specific boundary

conditions. A crucial difference with zigzag ribbons is that
armchair edges are constituted of both A and B sites. As a
consequence, both components �A

� and �B
� must vanish on

each side of the ribbon: ���x=0,y�=0 and ���x=L ,y�=0.
From now on, we choose to explicit these boundary condi-
tions for the left side at x=0, what leads to

FIG. 9. �Color online� Potential VA�x� that describes the right
edge in the K� valley of a zigzag nanoribbon for the Hef f problem.
The edge is modelized by an infinite potentia barrier.

FIG. 10. �Color online� Double symmetric harmonic potential
with xc=L−2. We show the eigenenergies obtained within the WKB
approximation. The higher energy levels �blue continuous lines� are
the antisymmetric solutions. They are the same than those of a
harmonic well cut by an infinite potential barrier �Fig. 9�. For
completion we have indicated the energies of the symmetric solu-
tions �dashed red lines� which are not considered here. The two
regions A and B and the cyclotron radius R are defined in Sec. IV.
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�A
��0� = � �A�

��0� ,

�B
��0� = � �B�

��0� . �22�

Contrary to the zigzag case, the armchair boundary condi-
tions admix the contributions of the two valleys for a given
sublattice. In addition, since the Dirac Hamiltonian is first
order, the continuity equations �Eq. �22�� on the wave func-
tion imply continuity of the derivatives. From Eqs. �19� and
�22� we obtain

�x�A
��0 = � �x�A�

��0

�x�B
��0 = � �x�B�

��0. �23�

Next, as suggested by Brey and Fertig,21 we build new func-
tions �� as

���x� � �B
��− x���− x� � �B�

��x���x�

=− i��A�
��− x���− x� � �A

��x���x�� , �24�

where � is the Heaviside function. Thus, the functions ��

are solutions of a new effective Schrödinger equation with a
potential Vleft�x� which is Vu�x� for x�0 and Vd�x� for
x�0,

�−
1

2
�x

2 + Vleft�x�����x� = En
��xc����x� , �25�

Vleft�x� =
1

2
���x� − xc�2 + ��x� − ��− x�� . �26�

In order to take into account the armchair boundary condi-
tions �Eqs. �22� and �23��, we impose the functions �A/B

� to
satisfy the continuity equations,

���0+� = ���0−� ,

�x�
��0+ = �x�

��0−. �27�

The asymmetric potential �Eq. �26�� is shown in Fig. 11. The
asymmetry originates from the noncommutativity of x with
�x and corresponds to a shift in energy by one Landau level

between the two uncoupled wells Vu and Vd. The asymmetric
structure of Vleft is a consequence of the valley admixing
imposed by the boundary conditions.

We now discuss the qualitative structure of the wave func-
tions. The two combinations �� are built with four compo-
nents �A/B

����. When the particle is far from the edge, the sys-
tem is described by two independent potentials Vu�x� and
Vd�x� so that the components �A/B

���� take their bulk value
given by Eq. �20�. Now, close to the edge, the expressions of
�A/B

���� are modified. In particular, the boundary conditions
�Eq. �27�� imply two types of solutions �+ and �−, by
matching the components �A/B

���� in two different ways. We
illustrate this point in Fig. 12 in the case where n=1 by
showing a qualitative construction of the components �A/B

����.
The eigenfunction �+ has 2n nodes whereas �− has 2n−1
nodes. As a consequence, the associated eigenvalues En

−�xc�
are lower than the eigenenergies En

+�xc�, and the valley de-
generacy of the energy spectrum is lifted, as seen in Fig. 5.
This point is discussed quantitatively in Sec. IV C.

By imposing ��L ,y�=0, the right edge can now be con-
sidered easily in the same way. We obtain a similar effective
problem where the potential Vleft�x� has been replaced by

Vright�x� =
1

2
���x� + xc�2 + ��− x� − ��x�� , �28�

where we have performed the translations x−L→x and
xc−L→xc for more commodity in the calculations in the
next section. Thus, the potential Vright�x� that describes the
right edge at x=L is now centered in x=0. The potential
Vright�x� is displayed in Fig. 13.

IV. SEMICLASSICAL TREATMENT

The aim of this section is to calculate analytically the
energy spectrum En�xc� for both zigzag and armchair bound-
ary conditions by using a semiclassical formalism. The
eigenenergies are solutions of effective Schrödinger equa-
tions in appropriate potentials: a double symmetric harmonic
potential VA�x� �Fig. 10� for the zigzag case and a double

FIG. 11. �Color online� Potential Vleft�x� for the left edge of an
armchair ribbon in a magnetic field. The two wells are centered
from a distance �xc� to the edge x=0. The energy levels En

+ in blue
and En

− in red are shown by horizontal lines in each well and have
been calculated semiclassically. The energies are dimensionless.

FIG. 12. �Color online� Illustration, for n=1, of the two solu-
tions �−�x� and �+�x� at the left armchair edge. These solutions do
not exhibit the same number of nodes �black circles�. �a� The con-
tinuity equations generate a wave function �− with 2n−1 nodes.
The functions �B

−�−x� and −i�A�
−�−x� are represented on the left

�red� whereas �B�
−�x� and −i�A

−�x� are represented on the right
�blue�. �b� The continuity equations generate a wave function �+

with 2n nodes. The functions �B
+�−x� and −i�A�

+�−x� are represented
on the left �red� whereas �B�

+�x� and −i�A
+�x� are represented on the

right �blue�.
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asymmetric harmonic potential Vright�x� �Fig. 13� for the
armchair case. We develop here two approaches. In the first
one �Sec. IV A�, we assume that the two wells of the poten-
tials are uncoupled, and quantize the action with the Bohr-
Sommerfeld rule. The second approach �Sec. IV B�, based on
the WKB formalism, properly accounts for the overlap of the
wave function between the two wells. From now on, we only
focus on the right edge of the ribbons, and take �=1.

A. Semiclassical quantization of the action

We first define the classical cyclotron radius R. For the
zigzag case, R is given by E=1 /2�R2+1� as illustrated in
Fig. 10. For the armchair case, since the potential Vright�x� is
asymmetric, we need to define two classical cyclotron radii
Rl and Rr �see Fig. 13�. Next, we introduce an action S as-
sociated with these potentials. Along a closed path, the action
is given by

S�E,xc� = 2�
x1

x2

dx�2�E − V�x�� , �29�

where x1 and x2 are the positions of the turning points, and
V�x� is either VA�x� or Vright�x�. Such an action is quantized
with the Bohr-Sommerfeld rule as

S�E,xc� = 2��n + 
�E,xc�� , �30�

where n
0 is an integer and 0�
�E ,xc��1 is a function
that encodes all the information on the connection procedure
at the turning points. For a harmonic potential, 
=1 /2. Here,
for the double well potentials, 
�xc ,E� is not a constant any-
more but depends on the energy and on the distance to the
edge because of the overlap of the wave function between
the two wells. We assume in this section that the two wells
are uncoupled so that we take 
 as a constant.

Now we have to specify distinct regions in energy, each of
them requiring an appropriate semiclassical treatment. These
regions are delimited by horizontal thick lines in Figs. 10 and
13 and involve different expressions of the action S�E ,xc�
given by Eq. �29�.

1. Zigzag ribbons

We consider the potential VA�x� that describes the right
zigzag edge for the K� valley �Fig. 10�. We recall that the
right edge is located at x=0. For a given energy E, we have
to discuss two distinct regions: �xc��R �region A� and
�xc��R �region B�, where R=�2E−1 is the cyclotron radius.

�1� Region A: �xc��R. The turning points are defined by
x1=xc−R and x2=xc+R so that the action �Eq. �29�� in the
left well is simply,

SA�R� = �R2. �31�

A simple calculation of the energies by quantizing SA with
the constant value 
=1 /2 in Eq. �30� leads to the Landau
levels En=n+1 with n
0, and therefore to the spectrum
�n��B�n+1� in this region. The n+1 term originates from
the energy shift of the potential VA�x�. The rest of the spec-
trum near the right edge is given by the contribution of the
other valley. Therefore, by treating the same way the poten-
tial VA��x�, we find the spectrum En=n with n
0. Finally, we
obtain a set of degenerated energies En=n with n
1, and a
nondegenerated level E0=0 what gives the expected valley
degenerated graphene energy levels �n� ��Bn for n
0.

�2� Region B: �xc��R. The left turning point x1 is un-
changed but the right turning point is replaced by x2=0 so
that the action reads

SB�R,xc� = R2�� −
1

2
sin�2��� , �32�

where we have introduced the parameter ��arccos
xc

R . The
spectrum depends now on the distance xc to the edge. The
total action in the double well St=2SB is quantized as
St=2��p+1 /2�. We recall that we have to keep only the
antisymmetric solutions which have an odd number of nodes,
what implies p=2n+1. Therefore, such a quantization leads
to

SB�R,xc� = 2��n +
3

4
	 . �33�

We recover the result 
=3 /4 for a harmonic potential cut by
an infinite barrier potential.31 By identifying the two expres-
sions �32� and �33�, we finally obtain a set of self-consistent
equations labeled by the integer n for En�xc�, from which we
can extract the energy spectrum.

The spectrum En�xc� obtained within this approach for the
right zigzag edge in the K� valley is plotted in Fig. 15. In
order to correctly describe the region where �xc��R, we use
in Sec. IV B a more sophisticated approach based on the
WKB formalism.

2. Armchair ribbons

Because of the asymmetry of the potential Vright�x�, we
have now to distinguish three regions �C, D, and E in Fig.
13�. In each one, we consider two actions, Sl for the left well
and Sr for the right well. In addition, the levels in the left or
in the right well will be indexed by different integers
nl , nr
0. The energy is given by E= �Rl

2+1� /2= �Rr
2−1� /2,

FIG. 13. �Color online� Potential Vright�x� of the right armchair
edge in a magnetic field with the dimensionless energies En calcu-
lated semiclassically. Here xc=−2. The three regions C, D, and E,
such as the cyclotron radii Rl and Rr refer to the Sec. IV.
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where Rl �respectively, Rr� is the cyclotron radius for the left
�respectively, right� well �note that Rr

2−Rl
2=2�.

�3� Region C: Rl�Rr� �xc�. In each well, the action still
has the form given by Eq. �31� so that we write

left well:Sl = SA�Rl� ,

right well:Sr = SA�Rr� . �34�

By using the Bohr-Sommerfeld rule �Eq. �30�� with 
=1 /2
for both Sl and Sr, we find the energies Enl

=nl+1 into the left
well and Enr

=nr into the right well, and then n�nr=nl+1.
This leads to the degenerated Landau levels En=n with
n
1 and a nondegenerated level E0=0.

�4� Region D: Rl� �xc��Rr. Now, because of the step in
the potential, the action Sr has the form given by Eq. �32�,
whereas Sl is unchanged. The two actions read

left well:Sl = SA�Rl� ,

right well:Sr = SB�Rr,xc� . �35�

The action Sl is still quantized as previously, what simply
gives the spectrum En=n with n
1. As the wave function
inside the right well does not totally vanish in x=0, the situ-
ation is different than in the case of an infinite potential
barrier. This suggests a choice closer to 
=1 /2 rather than

=3 /4 for the quantization of the action Sr. By doing so, we
obtain an implicit equation in En and xc from which we can
extract the spectrum En�xc�. Of course, we understand that
the region D is necessarily badly described by such an ap-
proach and specifically requires a more sophisticated method
since 
 cannot be a constant anymore.

�5� Region E: �xc��Rl�Rr. In this region, we need to
consider the total action that reads

SE = SB�Rl,xc� + SB�Rr,xc� , �36�

where the function SB is given in Eq. �32�. This expression is
still valid when xc crosses the edge. Since the two turning
points both touch a harmonic potential, this action is simply
quantized by the usual Bohr-Sommerfeld rule with 
=1 /2
what also leads to an implicit equation in En� and xc, where
n� is a different integer than n since there are twice more
solutions in this region than in the regions A or C.

The armchair spectrum obtained within this approach is
shown in Fig. 17. It perfectly matches with numerical solu-
tions of the Schrödinger equation �Eq. �25�� except around
the intermediate region D. In the following, we describe
quantitatively all the regions by keeping 
=
�E ,xc� and cal-
culating the spectra of zigzag and armchair ribbons by ac-
counting for the coupling between the two wells. We give
now the general picture of the method which is detailed in
the Appendix A.

B. WKB approach

In this section, we present a method based on the WKB
formalism to account for the overlap of the wave function
between the two wells. This approach is detailed in the
Appendix A. Technically, it brings us to calculate the

function 
�E ,xc�. For this purpose, we express the wave
function inside the left well within the WKB approximation
as

�←�x� =
C

�k�x�
sin�S�x1,x� +

�

4
� �37�

with C a constant and where

S�x1,x� = �
x1

x

dx��E − V�x�� �38�

is the partial action between the turning point x1 and an ar-
bitrary position x inside the left well. Close to the right turn-
ing point x2, this approximation breaks down. In order to find
a valid approximation of the wave function in this region, we
linearize the harmonic potential so that the eigenfunctions of
the Schrödinger equation are a combination of Airy func-
tions, that is,

�→�x� = �l Ai�f l�x,E,xc�� + �l Bi�f l�x,E,xc�� , �39�

where �l and �l are constants and f l�x ,E ,xc� is a function
that depends on the region A, B, C, D, or E so that each
region must be treated separately. By imposing the equality
between �←�x� and the asymptotic expansion of �→�x� in-
side the well, we obtain a relation between the constants and
the action Sl which is given by the relation �Eq. �29��. We
need to distinguish the cases x2�0 and x2=0 �Fig. 14�, for
which the matching condition gives

x2 � 0: tan Sl/2 = �l/�l,

x2 = 0: tan�Sl/2 + �l� = �l/�l, �40�

where �l=�l�E ,xc� is a known function originating from the
step between the energy E at the turning point x2=0 and the
potential V�0�. The same procedure must be performed for
the right well where we obtain similar relations between the
ratio �r /�r and the action Sr calculated between the two
turning points in the right well,

FIG. 14. �Color online� Illustration of the two typical different
situations we have to distinguish for the semiclassical calculation.
�a� The two turning points x1 and x2 are on the parabola. �b� The
turning point x2=0 is not on the parabola. These two situations
involve different expressions of the action S�E ,xc�=Sl in the left
well. Same considerations have to be made for the right well.
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x3 � 0: tan Sr/2 = �r/�r,

x3 = 0: tan�Sr/2 + �r� = �r/�r, �41�

where x3 is the left turning point in the right well.
To determine the ratio �l /�l, we impose the continuity of

the wave function and its derivative between the two wells.
By doing so, we obtain one equation with the two unknown
quantities �l /�l and �r /�r. Next, by injecting Sr=St−Sl into
Eq. �41�, where the total action St is calculated explicitly as a
function of E and xc, we obtain a second-order polynomial in
�l /�l what yields two solutions. Because of the relation �Eq.
�40��, the action is quantized as Sl=2��n+
l� which is the
Bohr-Sommerfeld quantization. Thus, the two solutions of
the polynomial yield the two solutions 
l

��E ,xc�.
Next, by using formula �29�, we calculate explicitly the

expression of the action Sl as a function of E and xc, which
we identify with the action given by the Bohr-Sommerfeld
rule previously found. As we know the functions 
l

��E ,xc�,
we finally obtain two analytical self-consistent equations in
E and xc for a given n, one with 
l

+ and the other one with 
l
−.

The spectrum En�xc� can then be extracted for a given n. The
whole procedure must be performed for each region A to E
where the action has different expressions as discussed in the
previous section. All this study is detailed in the Appendix A
for both the symmetric and the asymmetric potentials.

C. Quantitative analytical results

We give here the spectra obtained for the effective poten-
tials VA�x� �zigzag case, Eq. �18�� and Vright�x� �armchair
case, Eq. �28��, within the two semiclassical approaches in-
troduced above.

1. Symmetric potential (zigzag)

The energy levels En�xc� of the double symmetric har-
monic potential VA�x� describing the contribution of the K�

valley at the right zigzag edge �see Fig. 10� are shown in Fig.
15. The two regions �xc��R and �xc��R are separated by a
parabola of equation E= �xc

2+1� /2. In the spectrum of Fig.
15, we have only kept the higher energy solution of the
double well problem since they correspond to the eigenener-
gies of the antisymmetric eigenfunctions. The dashed lines
correspond to the approximation where 
=cst, what leads to
an unphysical discontinuity around �xc�=R. The continuous
lines represent the energy levels obtained within the WKB
approximation. The solutions found with this method in re-
gions A and B perfectly match at �xc�=R. Next, we show in
Fig. 16 the structure of the edge states spectrum in the K�
valley for both the left and right edges. The right �blue� part
of the spectrum, is the energy spectrum on the right edge
calculated within the WKB method and already displayed in
Fig. 16, whereas the left �red� part represents the edge states
on the left side of the ribbon in the same K� valley. The
effective problem for the left edge is obtained in a similar
way than for the right edge �see Sec. III B� where we have
considered the potential Vd�x� and the boundary condition
�B�x=0�=0. Note that we recover the particular relation
�n

edge=�2n+1
bulk with n
0 on the left edge and �n

edge=�2n
bulk with

n�0 for the right edge. This peculiar property of the edge
states is due to the fact that we have to keep only the anti-
symmetric eigenfunctions of the double well problem. In
particular, when xc=0, the double well is simply a single
harmonic well, so as the bulk potentials. In addition, the shift
of this distribution between the two edges is due to the shift
in energy between the potentials VA�x� and VB�x� that, re-
spectively, originate from the potentials Vu�x� and Vd�x�
modified by the zigzag boundary conditions. We have em-
phasized this point by dashed lines in Fig. 16. This explains
the remarkable structure of the zigzag edge states discussed
in Sec. II B. Finally, the mirror symmetry between the val-
leys K� and K� � emphasized in Fig. 6 is now clear, since the
edge potentials into the K� � valley, that are VA��x� for the right
edge and VB��x� for the left edge, now originate from the bulk
potentials Vd�x� and Vu�x�, respectively, with the zigzag
boundary conditions.

2. Asymmetric potential (armchair)

For the armchair case, we have to keep all the solutions of
the double asymmetric potentials Vleft�x� and Vright�x�. As

FIG. 15. �Color online� Dimensionless eigenenergies En�xc� of
the double symmetric harmonic oscillator potential VA�x� calculated
analytically �continuous line� within the WKB method and �dashed
line� within the Bohr-Sommerfeld quantization rule with 
= 1

2 in
region A and 
= 3

4 in region B. The solutions we keep correspond
to the antisymmetric solutions of the double symmetric well.

FIG. 16. �Color online� Dimensionless zigzag edge states En�xc�
of the Hef f problem in the K� valley. We have represented the bulk
wave function of each sublattice �left �red� for B sublattice and right
�blue� for A sublattice�. The results have been obtained within the
WKB approximation.
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discussed in Sec. III C and illustrated in Fig. 12, the wave
functions of the effective Schrödinger equation with arm-
chair boundary conditions �Eq. �25�� have, for a given n,
either 2n nodes or 2n−1 nodes, what leads to pairs of
eigenenergies En

��xc�. The semiclassical energies En�xc� are
displayed in Fig. 17. The three regions C, D, and E are sepa-
rated by the parabola parametrized by �xc�=Rl and �xc�=Rr

that are E= 1
2 �xc

2+1� and E= 1
2 �xc

2−1�. Contrary to the simple
semiclassical calculation with 
=cst �discontinued brown
lines�, the WKB method gives a perfect matching between
the three regions and is in very good agreement with numeri-
cal calculations �gray crosses�. The nonmonotonous depen-
dence of the energy levels En

−�xc� appears as the result of the
competition between two effects. When xc approaches the
edge, the two potential wells of the effective model become
more and more coupled so that the twofold degeneracy is
lifted and the lowest level decreases when xc increases.
When xc further increases, the confinement becomes so
strong that En

−�xc� has to increase.

D. Drift velocity

We now briefly comment on the behavior of the drift
velocity vd along the edges. It is given by the derivative
vd=�� /�ky =�B�� /�xc. Interestingly, in the armchair case,
the nonmonotonous behavior of the edge state energies when
approaching the edge implies a change in sign of the drift

velocity in a finite range of xc. From the discussion of the
above Sec. IV C 2, this negative drift velocity is due to the
lift of the valley degeneracy when xc approaches the edge.
We also point out that the �positive� drift velocity saturates
toward the Fermi velocity when xc increases further. This is
easily understood from the following semiclassical argu-
ment. When xc is largely outside the ribbon, the cyclotron
radius is necessarily of order xc. Therefore the energy E,
solution of the effective Hamiltonian Hef f �Eqs. �8� and �9��,
is of order E=R2 /2→xc

2 /2. Using Eq. �12�, we obtain
vd=�B�� /�xc=vF��2E /�xc→vF.

V. QUANTIZED SKIPPING ORBITS

In this section, we propose a simple interpretation of the
results in terms of a semiclassical picture for skipping orbits.
Consider the action S associated with the effective
Schrödinger equations with the potentials obtained for the
zigzag case. These four equations �one per edge and per
valley� describe the motion of a free massive particle in a
magnetic field �all units being set to one� in the presence of
an infinite potential barrier or the image of the harmonic
potential, as illustrated in Figs. 9 and 10 for the right edge in
the K� valley. From the classical equations of motion, the
action S=�p� ·dr� along a closed trajectory for a given energy
is simply related to the area A enclosed by the corresponding
periodic orbit,

S�E,xc� =� p� · dr� =
eB

2
� r� � dr� = eBA �42�

so that the Bohr-Sommerfeld quantization rule �Eq. �30�� im-
plies the quantization of the area

A�E,xc� = 2��n + 
��B
2 �43�

in our units where �=1. In the bulk of the system, that is,
when the distance �xc� to the edge is larger than the cyclotron
radius R, we have simply

A�E� = S�E� = 2��n + 
� �44�

and the distances are measured in units of �B. This quantiza-
tion implies the quantization of the cyclotron radius R. Tak-
ing 
=1 /2, A=�R2=2��n+1 /2� so that Rn

2=2n+1, we de-
duce the energy levels, En=Rn

2 /2�1 /2=n, and obtain the
bulk spectrum of Landau levels En=n.

When �xc� becomes smaller than R, the classical orbits
skip along the wall represented by the infinite potential well,
and they form open orbits. As already noticed,32,33 the area to
be quantized is the area delimited by the skipping orbit and
the wall. In this case, the action calculated in Eq. �32� has a
very simple interpretation in terms of skipping orbits since
the parameter �=arccos

xc

R has a clear geometrical meaning
shown in Fig. 18. The action is nothing but the area enclosed
by the skipping orbit,

FIG. 17. �Color online� Dimensionless energies En�xc� of the
armchair edge states. The results obtained with three different meth-
ods are shown. The discontinuous brown lines are the levels ob-
tained by taking 
=cst in the Bohr-Sommerfeld quantization
�BSQ�. The colored continuous lines have been obtained within the
WKB approach. The different colors in regions C, D, and E are
associated to the different semiclassical behaviors of the particle in
Fig. 19, as discussed in the next section. The gray crosses represent
the numerical solutions for the energy levels in the potential
Vasym�x�. We show that the results obtained within the WKB
approximation perfectly fit the numerical calculations, except for
n=0.
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A�E,xc� = R2�� −
1

2
sin�2��� . �45�

We can now interpret semiclassically the energy spectra ob-
tained in the above sections.

For the zigzag edge, the two regions A and B in the
spectrum �Fig. 15� can be associated to the two distinct cases
represented in Fig. 18,

�a� region A, A�E� = �R2 = 2��n +
1

2
	 ,

�b� region B, A�E,xc� =
R2

2
�2� − sin 2�� = 2��n +

3

4
	
�46�

from, which together with the relation E=R2 /2�1 /2, we
have deduced the energy levels, except near the region
xc�−R.

For the armchair case, the situation is more involved since
we describe the classical motion of a massive particle in the
presence of its shifted image �Fig. 19�. Since the potential is
asymmetric, we have defined two cyclotron radii related to
the energy E as E=Rl

2 /2+1 /2=Rr
2 /2−1 /2. Now we have to

consider three different cases corresponding to the regions C,
D, and E in Fig. 17.

In the region C where �xc��Rr�Rl, the orbit and its image
are both closed cyclotron orbits. The quantization of their
area,

left side: Al = �Rl
2 = 2��nl +

1

2
	 ,

right side: Ar = �Rr
2 = 2��nr +

1

2
	 �47�

leads to the the energy levels given by En=n, with
n=nr=nl+1, what quantize the cyclotron radii as
Rr=�2n+1 and Rr=�2n−1, the latest does not allow the
n=0 level.

In the region D where Rr� �xc��Rl, the left orbit is still
closed but its image is a skipping orbit. Keeping the notation
n=nr=nl+1, we have, defining �r=arccos

xc

Rr
,

left side:Al = �Rl
2 = 2��n −

1

2
	 n � 0,

right side:Ar = Rr
2��r −

1

2
sin 2�r	 = 2��n +

1

2
	 n 
 0

�48�

from which we obtain the energy levels in region D. The
degeneracy lift is classically explained by the fact that both
orbits have a different structure. The left orbit is closed and
its semiclassical energy is still En=n+1 while the energy
associated with the right skipping trajectory increases with
xc. Note that it is in this peculiar region that an inversion of
the slope occurs.

In the region E where Rr�Rl� �xc�, both orbits are open
and the area to be quantized is the total area

FIG. 18. �Color online� Classical cyclotron orbits for the “effec-
tive” particle associated to the effective Hamiltonian Hef f close to a
zigzag edge. �a� The closed cyclotron orbit encloses an area A
quantized by the Bohr-Sommerfeld rule �Eq. �47��, and the resulting
Landau levels spectrum is displayed in Fig. 15 �region A�. �b� The
particle is skipping along the edge and the edge states energy spec-
trum �region B in Fig. 15� is obtained from the quantization rules
�Eq. �47��.

FIG. 19. �Color online� Classical cyclotron orbits for the effec-
tive particle associated to the effective Hamiltonian, close to an
armchair edge. �a� Each cyclotron orbit encloses an area Al or Ar,
each of them quantized by the Bohr-Sommerfeld rule �Eq. �30��.
For an energy level En=n, one has Rl=�2n−1 and Rr=�2n+1. The
ground state n=0 has no component on the left side. The associated
spectrum is the bulk Landau levels spectrum displayed in the region
C in Fig. 17�b� When the left orbit approaches the edge, its image
becomes a skipping orbit. This lifts the degeneracy between the
energy levels as seen in Fig. 17 �region D�. ��c� and �d�� When xc is
closer to the edge, both orbits are open skipping orbits. The quan-
tization of the total area leads to the spectrum in region E of Fig. 17.
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Al + Ar = 2��n� +
1

2
	 n� 
 0, �49�

Al = Rl
2��l −

1

2
sin 2�l	 ,

Ar = Rr
2��r −

1

2
sin 2�r	 , �50�

where �l and �r are defined such that xc=Rl cos �l
=Rr cos �r. Since the action has almost doubled from region
D to region E, the resulting energy spectrum is twice denser,
and the twofold degeneracy of the levels has been removed.

VI. TWO EDGES

Up to now, we have considered the evolution of the spec-
trum in the vicinity of one edge. If the two edges are suffi-
ciently far apart compared to the cyclotron length �B, the
spectrum can be treated independently on both sides. We
now consider the case of a narrow ribbon, whose width L is
on the order of a few magnetic lengths. The low-energy spec-
trum in a ribbon of width L=9.6�B is shown in Figs. 20�a�
and 21�b�, respectively, for zigzag and armchair ribbons.

In the zigzag case, in each valley, the spectrum clearly
exhibits three different regions, which correspond to the ge-
ometry of the orbits depicted in Fig. 20�b�. Regions A cor-
responds to bulk cyclotron orbits. Regions Bl and Br have
been already discussed and correspond to a skipping orbit
along a single boundary �left or right�. Each sublattice is
characterized by a cyclotron orbit �in K valley, small blue
orbit for A sites and large pink orbit for B sites; the opposite
for the K� valley�. As explained in the text, in K valley, the A
cyclotron orbits sees only the right edge and the B cyclotron
orbits sees only the left edge �the opposite in the K� valley�.
At high energy, the new region J corresponds to the situation
where both cyclotron orbits intersect the two boundaries. The
black curves correspond to the situations where a cyclotron
orbit precisely touches a boundary. Their equation is

��ky� = t
�3a0

2
��qy − 	qy�2 � 1/�B

2 , �51�

where 	qy =0 for the left edge and 	qy =L /�B
2 for the right

edge. By a simple quantization of the areas shown in Fig.
20�b�, one can obtain the full low-energy spectrum in a very
good approximation, excepted when the orbits graze the
boundaries, that is in the vicinity of the black curves. It is
obvious on this figure that the two edges do not play exactly
the same role, and that, for a given valley, the spectrum is not
exactly symmetric. Furthermore, in each valley, an additional
asymmetry is seen at high energy because the linear approxi-
mation of the low-energy Hamiltonian breaks �Eq. �7��
down.

The case of armchair boundary conditions is more in-
volved. In Fig. 21�a�, one can distinguish nine regions, which
corresponds to the geometries of the classical orbits depicted
in Fig. 21�b�. The black curves correspond to the situations
where a cyclotron orbit precisely touches a boundary. Their

equation is given by Eq. �51�. Region C corresponds to bulk
cyclotron orbits. The blue cyclotron orbits are related to the
A and B� eigenfunctions, whereas the pink cyclotron orbits
are related to the A� and B eigenfunctions. Regions El and Er
have been already discussed and correspond to skipping or-
bits along a single boundary �left or right�. In the intermedi-
ate regions Dl and Dr, only one of the two orbits touches the
edge. At high energy, in the region I, the two cyclotron
orbits touch the two edges of the ribbon. The more exotic
regions F, Gl, and Gr have a simple geometric interpretation
in Fig. 21�b�.

VII. CONCLUSION

We have investigated the spectra of graphene ribbons in a
magnetic field with zigzag and armchair boundary condi-

FIG. 20. �Color online� �a� Red curves: low-energy spectrum for
a zigzag ribbon in a magnetic field in units of t. The width L of the
ribbon is L=174a and the dimensionless magnetic flux f is f
=0.00126 so that L /�B=9.6. The black curves indicate the situa-
tions where the classical cyclotron orbits touch an edge. �b� Sche-
matic representation of the different situations for the position of
the cyclotron orbits with respect to the edges of the ribbon, as
discussed in the text.
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tions. We have first revisited these spectra numerically and
revealed a remarkable structure in the repartition of the edge
states in zigzag ribbons that we explain in this paper. We
notice that these remarkable behaviors of the edge states
could be observed by scanning tunneling microscopy or
spectroscopy techniques.23,34–36

Next we have described and calculated these edge states
with simple analytic tools. For both types of ribbons, effec-
tive Schrödinger equations with a specific double well poten-
tial have been derived at low energy. This potential is asym-

metric in energy when the valleys K� and K� � are coupled
�armchair edge� and symmetric otherwise �zigzag edge�. The
eigenenergies of these potentials have been calculated nu-
merically recently.23 Another recent work37 provided a semi-
classical framework to study analytically the edge states for
both zigzag and armchair edges but this approach does not
furnish the full low-energy spectrum. We have developed
here two semiclassical methods to calculate the energy edge
states analytically. A very simple one consists in using the
Bohr-Sommerfeld quantization of the action related to the
effective Schrödinger equations. This approximation cap-
tures the essential of the physical picture except when the
cyclotron radius of the effective particle is on the order of the
distance to the edge. This approach also reveals different
regions as a function of the energy and the distance to the
edge, where the skipping orbits are quantized in different
ways. The second method is based on the WKB formalism,
and accounts for the overlap of the wave function when it is
close to the edge. Consequently, this more sophisticated ana-
lytical approach perfectly describes the edge states whatever
the distance of the center of the cyclotron motion to the edge.
In particular, it quantitatively describes an interesting region
in the armchair case �called region D in the paper� where the
energy does not increase monotonously. This implies that the
drift velocity along the edge may change in sign when the
position xc varies. These WKB results perfectly fit numerical
exact calculations. We have considered only two special
types of boundaries and one may wonder what is the nature
of the edge states for any orientation of the edges. This ques-
tion has already been addressed concerning the existence of
edge states in zero field, see, for example.13 This careful
study has shown that the generic situation corresponds to the
zigzag case. It would be interesting to confirm this statement
in the presence of a magnetic field. For this purpose, it is
useful to stress that for any orientation of the edges, we
always have Ky different from Ky�, as seen in Fig. 2 �y being
the direction of the ribbon�, except for the armchair geom-
etry. Therefore we expect the armchair case to be special in
the sense that the valleys are coupled �since Ky =Ky�� and the
other situations to correspond to uncoupled valleys like in
the zigzag case. A more precise systematic study is certainly
of great interest but beyond the scope of the present work.

ACKNOWLEDGMENTS

We acknowledge useful discussions with J.-N. Fuchs and
M.-O. Goerbig. This work is supported by the NANOSIM-
GRAPHENE Project �Project No. ANR-09-NANO-016-01�
of ANR/P3N2009.

APPENDIX A: THE WKB METHOD

In the whole appendix, we define the classical action as
half of the one defined in Eq. �29�. In this appendix, we
present the detailed calculations on the energy levels En�xc�
within the WKB approximation, for the potential V�x� de-
fined as

FIG. 21. �Color online� �a� Red curves: low-energy spectrum for
an armchair ribbon in a magnetic field in units of t. The width L of
the ribbon is L=201a0 /2 and the dimensionless magnetic flux f is
f =0.00126 so that L /�B=9.6. The black curves indicate the situa-
tions where the classical cyclotron orbits touch an edge. �b� Sche-
matic representation of the different situations for the position of
the cyclotron orbits with respect to the edges of the ribbon.
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V�x� = �
1

2
�x − xc�2 +

V0

2
for x � 0

1

2
�x + xc�2 −

V0

2
for x 
 0.� �A1�

The case V0=0 has been introduced in Sec. III B for the
study of edge states in zigzag nanoribbons while the case
V0=1 has been used in Sec. III C to describe armchair rib-
bons.

1. Double symmetric harmonic well

We consider the peculiar case V0=0, that is a double sym-
metric harmonic potential,

Vsym�x� =
1

2
��x� + xc�2. �A2�

For a given energy E, we define the cyclotron radius as
R=�2E �Fig. 22�. In addition, in the whole appendix, the
factor 2 in the definition of the action �Eq. �29�� is missing:
the actions Sl and Sr are now defined as the half of those
introduced in Sec. IV.

a. Region A: R� �xc�

This case, characterized by E�xc
2 /2, corresponds to the

region A in Fig. 22. We write the WKB wave functions in
both wells and then the matching conditions in x=0. As the
potential is symmetric with x, we focus on the left well
�x�0�. The energy E defines two classical turning points at
positions x1=xc−R and xl=xc+R �Fig. 22�. Within the WKB
approximation, the connection procedure near x1 implies that
the wave function in the well reads

�l
←�x� =

Cl

�k�x�
sin�S�x1,x� +

�

4
� , �A3�

where the left arrow indicates that this wave function
matches the correct connection procedure near the left turn-
ing point x1. Cl is a constant and S�x1 ,x� is the partial action
in the left well,

S�x1,x� = �
x1

x

dx�E − Vsym�x� . �A4�

The above expression �A3� breaks down near the second
turning point xl=xc+R. Near this point we linearize the po-

tential as Vsym�x�� R2

2 +R�x−xl� and the Schrödinger equa-
tion reads

� d2

dx2 − 2R�x − xl���l�x� = 0. �A5�

The solution of this equation is given by a combination of
Airy functions,

�l
→�x� = �̄l Ai�ax + x0� + �̄l Bi�ax + x0� , �A6�

a3 � 2R , �A7�

x0 � �2R�1/3�R − �xc�� , �A8�

where the right arrow indicates that this wave function must
obey proper matching conditions near the right turning point

xl. �̄l and �̄l are constants. Inside the well, this wave function
has the asymptotic expansion,

�l
→�x� �

�̄l

���z�1/4sin�2

3
�z�3/2 +

�

4
	

+
�̄l

���z�1/4cos�2

3
�z�3/2 +

�

4
	 �A9�

with

�z� � − x0 − ax =
k2�x�

a2 . �A10�

The argument in the trigonometric functions can be related to
the partial action between x and xl,

2

3
�z�3/2 = �

x

xl

dx�E − Vsym�x� = Sl − S�x1,x� , �A11�

where Sl is the total action in the left well. Therefore �l
→�x�

can be rewritten in the form

�l
→�x� �

�l

�k�x�
cos�S�x1,x� +

�

4
− Sl�

+
�l

�k�x�
sin�S�x1,x� +

�

4
− Sl� �A12�

with �l= �̄l
� a

� �idem for �l�. Then, we impose
�l

←�x�=�l
→�x� inside the well. This implies �l=Cl sin Sl and

�l=Cl cos Sl what finally leads to the important relation

tan Sl =
�̄l

�̄l

=
�l

�l
. �A13�

As the two wells are identical, we obtain the same relation
for the right well,

tan Sr =
�̄r

�̄r

=
�r

�r
�A14�

and similarly to Eq. �A6�, the wave function in the right well
reads near x=0,

FIG. 22. �Color online� Double symmetric well. The two har-
monic wells are centered in �xc. The two turning points in the left
well are x1 and x2, and R is the cyclotron radius.
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�r
←�x� = �̄r Ai�− ax + x0� + �̄r Bi�− ax + x0� . �A15�

The next step is to impose the matching of the two wave
functions and their derivatives in x=0,

�l
→�0� = �r

←�0�, �x�l
→�0� = �x�r

←�0� . �A16�

These matching conditions give the two equations,

�̄l Ai�x0� + �̄l Bi�x0� = �̄r Ai�x0� + �̄r Bi�x0� ,

�̄l Ai��x0� + �̄l Bi��x0� = − �̄r Ai��x0� − �̄r Bi��x0�

from which the ratio
�r

�r
is extracted as

�̄r

�̄r

= −

�̄l

�̄l

�Bi��x0�Ai�x0� + Bi�x0�Ai��x0�� + 2 Bi��x0�Bi�x0�

�̄l

�̄l

2 Ai��x0�Ai�x0� + Ai��x0�Bi�x0� + Ai�x0�Bi��x0�
.

�A17�

The symmetry of the potential implies Sl=Sr so that, from

Eqs. �A13� and �A14�, we have
�̄r

�̄r
=

�̄l

�̄l
�X. The relation �Eq.

�A17�� becomes a simple polynomial for the unknown quan-
tity X,

Ai��x0�Ai�x0�X2 + �Ai��x0�Bi�x0� + Ai�x0�Bi��x0��X

+ Bi�x0�Bi��x0� = 0 �A18�

whose solutions

XS = −
Bi��x0�
Ai��x0�

XAS = −
Bi�x0�
Ai�x0�

�A19�

Correspond, respectively, to the symmetric and antisymmet-
ric wave functions. The action Sl is quantized by the condi-
tion tan Sl=XS,AS so that Sl=��n+
� with 0�
�1, with
two solutions for 
,


S�E,xc� = −
1

�
arctan

Bi��x0�
Ai��x0�

, �A20�


AS�E,xc� = 1 −
1

�
arctan

Bi�x0�
Ai�x0�

. �A21�

In region A, the action is very simply related to the energy,
Sl=�R2 /2=�E so that from Eqs. �A21�, we obtain the im-
plicit equations,

En
S = n +

1

�
arctan�−

Bi��x0�
Ai��x0�� , �A22�

En
AS = n + 1 +

1

�
arctan�−

Bi�x0�
Ai�x0�� , �A23�

where x0 itself depends on the energy,

x0 = �2�2En�1/3��2En − �xc�� .

These implicit equations are solved numerically and we ob-
tain the spectrum �region A� shown in Fig. 23.

b. Region B: �xc��R

This is the region B illustrated in Fig. 22. The expression
of the WKB wave function matching the correct connection
procedure near x1 is still given by Eq. �A3�. The second
turning point in x2 does not exist anymore, and we have to
know the expression of the wave function near x=0. It reads

�l
→�x� = �̄l Ai�y0 + ax� + �̄l Bi�y0 + ax� , �A24�

a3 � 2�xc� , �A25�

y0 �
xc

2 − R2

�2�xc��2/3 . �A26�

Far from x=0, the Airy functions can be expanded to obtain

�l
→�x� �

�̄l

���z�1/4sin�2

3
�z�3/2 +

�

4
	

+
�̄l

���z�1/4cos�2

3
�z�3/2 +

�

4
	 ,

where we have set

�z� � − y0 − ax =
k2�x�

a2 , �l �
�̄l

��
�2�xc��1/6. �A27�

The arguments in the trigonometric functions can be related
to the partial action between x and 0,

2

3
�z�3/2 = �

x

0

dx�R2 − xc
2 − 2�xc�x + �

=Sl − S�x1,x� + � , �A28�

where the quantity,

FIG. 23. �Color online� Semiclassical spectra En�xc� within the
semiclassical approximation �dashed lines� 
=cst and �full lines�
WKB method. The dots are the exact numerical solutions of the
Schrödinger equation with the potential Vsym�x�. The two regions
are separated by the parabola E=xc

2 /2. For the zigzag problem, we
keep only antisymmetric states that are the high-energy levels �blue
lines�.
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� �
�R2 − xc

2�3/2

3�xc�
�A29�

accounts for the step between the potential V�x=0� and the
energy E. The wave function �l

→�x� can thus be rewritten as

�l
→�x� �

�l

�k�x�
cos�S�x1,x� +

�

4
− Sl − ��

+
�l

�k�x�
sin�S�x1,x� +

�

4
− Sl − �� . �A30�

The matching of the two wave functions �l
←�x�=�l

→�x� gives

tan�Sl + �� =
�l

�l
�A31�

and a similar expression for the right well. Again we impose
the continuity of the wave function and its derivative in
x=0 and obtain the two equations:

�̄l Ai�y0� + �̄l Bi�y0� = �̄r Ai�y0� + �̄r Bi�y0� ,

�̄l Ai��y0� + �̄l Bi��y0� = − �̄r Ai��y0� − �̄r Bi��y0�

from where we extract the ratio �r /�r. Then, using the
symmetry �l=�r and �l=�r, we obtain a polynomial in
X��l /�l,

Ai��y0�Ai�y0�X2 + �Ai��y0�Bi�y0� + Ai�y0�Bi��y0��X

+ Bi�y0�Bi��y0� = 0. �A32�

The only difference with the polynomial �Eq. �A18�� for the
region A consists in the substitution x0→y0. Consequently,
the solutions are

XS = −
Bi��y0�
Ai��y0�

XAS = −
Bi�y0�
Ai�y0�

. �A33�

The action Sl is quantized by the condition tanSl=XS,AS so
that Sl=��n+
� with 0�
�1, with two solutions for 
,


S,AS�E,xc� = �� 1

�
�arctan XS,AS − ��� , �A34�

where ��x�=x− �x�, �x� being the next smallest integer. By
construction 0���x��1.

The last step is to relate the energy to the action. This
relation is not linear as in region A but it now reads �see Eq.
�32��,

Sl = E�� −
1

2
sin 2�	 , �A35�

where �=arccos xc /R=arccos xc /�2E has the meaning of a
angle �Sec. V�. From this equation, together with the quan-
tization condition,

Sl = ��n + 
S,AS� , �A36�

where 
S,AS�E ,xc� are functions of E and xc through Eqs.
�A26�, we can extract numerically the eigenenergies En

S and
En

AS and plot them as a function of xc in Fig. 23. In Fig. 24

we have also plotted the xc dependence of the mismatch
index 
S,AS�xc�.

2. Double harmonic asymmetric well

In this section we introduce an asymmetry V0=1 in the
potential which becomes

Vasym�x� = �
1

2
�x − xc�2 +

1

2
for x � 0

1

2
�x + xc�2 −

1

2
for x 
 0� �A37�

and calculate the spectrum En�xc� within the WKB approxi-
mation. We now introduce two cyclotron radii Rl and Rr. The
relation between these parameters and the classical energy is
given by

E =
Rl

2 + 1

2
=

Rr
2 − 1

2
. �A38�

We now have to distinguish three regions delimited by
�xc�=Rl and �xc�=Rr and illustrated in Fig. 25. The total action
in these three regions reads

region C St =
�

2
Rl

2 +
�

2
Rr

2,

FIG. 24. �Color online� Mismatch index 
S,AS�xc� as a function
of xc, for �blue� n=0, �green� n=1, and �brown� n=2. For xc=R,

S�R�=1 /3 whereas 
AS�R�=2 /3 �horizontal dashed lines�. For
xc=0, 
S�0�=1 /4, and 
AS�0�=3 /4.

FIG. 25. �Color online� Double asymmetric well Vasym�x�: C, D,
and E refer to the three regions discussed in the text. For a given
energy E, we define two cyclotron radii Rl and Rr.
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region D St =
�

2
Rl

2 +
Rr

2

2
��r −

1

2
sin�2�r�� ,

region E St =
Rl

2

2
��l −

1

2
sin�2�l�� +

Rr
2

2
��r −

1

2
sin�2�r�� .

�A39�

We treat the three regions separately.

3. Region C: Rl�Rr� �xc�

This region is explicited in Fig. 25. Because of the asym-
metry of the potential, the action is now different in each
well,

Sl =
�

2
Rl

2 = ��E − 1/2� , �A40�

Sr =
�

2
Rr

2 = ��E + 1/2� . �A41�

The WKB wave function has the same form as in Eqs. �A3�,
�A6�, and �A9� written for the symmetric potential so that we
still have the relations �Eqs. �A13� and �A14��. Since the
potential is now asymmetric, the expression of the wave

function near the two inner turning points located in
−�xc�+Rl and �xc�−Rr is now

�l
→�x� = �̄l Ai�alx + xl� + �̄l Bi�alx + xl� �A42�

�r
←�x� = �̄r Ai�− arx + xr� + �̄l Bi�− arx + xr� �A43�

with

al
3 � 2Rl ar

3 � 2Rr, �A44�

xl � �2Rl�1/3�Rl − �xc�� , �A45�

xr � �2Rr�1/3�Rr − �xc�� . �A46�

Then, by imposing the current conservation and the continu-
ity of these wave functions in x=0, we obtain the two equa-
tions,

�̄l Ai�xl� + �̄l Bi�xl� = �̄r Ai�xr� + �̄r Bi�xr�

�̄lal Ai��xl� + �̄lal Bi��xl� = − �̄rar Ai��xr� − �̄rar Bi��xr�
�A47�

from where we extract the ratio
�̄r

�̄r
as

�̄r

�̄r

= −

�̄l

�̄l

�Bi��xr�Ai�xl� + Bi�xr�Ai��xl��Rl

Rr
	1/3� + Bi��xr�Bi�xl� + Bi�xr�Bi��xl��Rl

Rr
	1/3

�̄l

�̄l

�Ai��xr�Ai�xl� + Ai�xr�Ai��xl��Rl

Rr
	1/3� + Ai��xr�Bi�xl� + Ai�xr�Bi��xl��Rl

Rr
	1/3 . �A48�

Since Sl�Sr, the ratios
�̄r

�̄r
and

�̄l

�̄l
are now different. Introducing the total action St=Sr+Sl=2�E, these coefficients are related

as

�r

�r
=

tan St − �l/�l

1 + �l/�l tan St
. �A49�

Then, we insert the relation Eq. �A49� into Eq. �A48� to obtain a polynomial in Xl��l /�l whose the coefficients are only
functions of E and xc,

�tan St�Bi��xr�Ai�xl� + �Rl

Rr
	1/3

Bi�xr�Ai��xl�� − Ai��xr�Ai�xl� − �Rl

Rr
	1/3

Ai��xl�Ai�xr��Xl
2,

�tan St�Ai��xr�Ai�xl� + Bi��xr�Bi�xl� + �Rl

Rr
	1/3

�Ai��xl�Ai�xr� + Bi��xr�Bi�xl���
+ Bi��xr�Ai�xl� − Ai��xr�Bi�xl� + �Rl

Rr
	1/3

�Bi�xr�Ai��xl� − Ai�xr�Bi��xl���Xl

tan St�Ai��xr�Bi�xl� + �Rl

Rr
	1/3

Ai�xr�Bi��xl�� + Bi��xr�Bi�xl� + �Rl

Rr
	1/3

Bi�xr�Bi��xl� = 0 �A50�

PIERRE DELPLACE AND GILLES MONTAMBAUX PHYSICAL REVIEW B 82, 205412 �2010�

205412-18



with St=2�E. Because of the asymmetry of the potential, the
coefficients of the polynomial are much more complicated
than for the symmetric case �Eq. �A18��. We check that for
Rr=Rl and xl=xr=x0 we recover the symmetric case �Eq.
�A18��. The polynomial �Eq. �A50�� has still two solutions
Xl

S and Xl
AS, from which we obtain the action Sl. It has the

from Sl=��n+
� with


l
S�E,xc� =

1

�
arctan Xl

S, �A51�


l
AS�E,xc� =

1

�
arctan Xl

AS + 1. �A52�

Since the energy E is simply related to the action E=1 /2
+Sl /�, we finally obtain the two implicit equations,

En
S = n +

1

2
+

1

�
arctan Xl

S, �A53�

En
AS = n +

3

2
−

1

�
arctan Xl

AS �A54�

from which we obtain the energy levels En�xc� in the region
Rl�Rr� �xc�.

4. Region D: Rl� �xc��Rr

The region D represented in Fig. 25 does not exist for the
symmetric potential Vsym�x�. We have now to linearize the
potential around −�xc�+Rl for the left well and around x=0
for the right well. The solution inside the left well takes the
familiar form

�l�x� = �̄l Ai�alx + xl� + �̄l Bi�alx + xl� , �A55�

al
3 = 2Rl, �A56�

xl = �2Rl�1/3�Rl − �xc�� , �A57�

whereas the one inside the right well is

�r�x� = �̄r Ai�yr − arx� + �̄r Bi�yr − arx� , �A58�

ar
3 = �2xc� , �A59�

yr =
xc

2 − Rr
2

�2xc�2/3 . �A60�

The next step consists in the matching of the Airy functions
with the WKB approximation valuable inside a well. The
treatment for the left well has been performed in the para-
graph a, of this appendix and gives

tan Sl =
�l

�l
=

�̄l

�̄l

, �A61�

whereas the calculation for the right well has been made in
the paragraph b and gives

tan�Sr + �r� =
�r

�r
=

�̄r

�̄r

, �A62�

where

�r =
�Rr

2 − xc
2�3/2

3�xc�
. �A63�

The current conservation and the continuity of the wave
function at x=0 gives the two equations,

�̄l Ai�xl� + �̄l Bi�xl� = �̄r Ai�yr� + �̄r Bi�yr� ,

�̄lal Ai��xl� + �̄lal Bi��xl� = − �̄rar Ai��yr� − �̄rar Bi��yr�

from where we extract the ratio
�̄r

�̄r
,

�̄r

�̄r

= −

�̄l

�̄l

�Bi��yr�Ai�xl� + � Rl

�xc�
	1/3

Bi�yr�Ai��xl�� + Bi��yr�Bi�xl� + � Rl

�xc�
	1/3

Bi�yr�Bi��xl�

�̄l

�̄l

�Ai��yr�Ai�xl� + � Rl

�xc�
	1/3

Ai�yr�Ai��xl�� + Ai��yr�Bi�xl� + � Rl

�xc�
	1/3

Ai�yr�Bi��xl�
. �A64�

Introducing the total action St=Sl+Sr and using Eqs. �A61� and �A62� we obtain the relation,

�r

�r
=

tan�St + �r� −
�l

�l

1 + tan�St + �r�
�l

�l

=
� − Xl

1 + �Xl
, �A65�

where we have introduced �� tan�St+�r�. We inject this last relation into Eq. �A64� to obtain again a polynomial in Xl,
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���Bi��yr�Ai�xl� + � Rl

�xc�
	1/3

Bi�yr�Ai��xl�� − Ai��yr�Ai�xl� − � Rl

�xc�
	1/3

Ai��xl�Ai�yr��Xl
2

+ ���Ai��yr�Ai�xl� + Bi��yr�Bi�xl� + � Rl

�xc�
	1/3

�Ai��xl�Ai�yr� + Bi��xl�Bi�yr��� + Bi��yr�Ai�xl� − Ai��yr�Bi�xl�

+ � Rl

�xc�
	1/3

�Bi�yr�Ai��xl� − Ai�yr�Bi��xl���Xl + ��Ai��yr�Bi�xl� + � Rl

�xc�
	1/3

Ai�yr�Bi��xl�� + Bi��yr�Bi�xl�

+ � Rl

�xc�
	1/3

Bi�yr�Bi��xl� = 0. �A66�

Note that this polynomial satisfies the continuity of the spec-
trum on the parabola for which xc=Rr. Indeed, in this case
we have �r=0 and xr=yr=0 so that the two polynomials �Eq.
�A50�� in region C and Eq. �A66� in region D coincide and
give the same solutions. From here, the work is exactly the
same than for the lower region. Therefore, we have just to
take the two solutions Xl

S and Xl
AS of this polynomial and

insert them into Eq. �A51� to obtain the left mismatch index
in the intermediate region. Then we insert them into Eqs.
�A53� and �A54� to obtain the implicit equations in En and xc
from where we can extract the spectrum En�xc� in the region
D, characterized by the relation Rl� �xc��Rr.

5. Region E: �xc��Rl�Rr

The last region E satisfies �xc��Rl�Rr and is illustrated
in Fig. 25. As for the high-energy region of the double sym-
metric well, we decompose the well into two parts from x
=0, and keep working with Sl that is the action in the well
where x�0. The strategy is still the same, and the calcula-
tions are very similar to those in Appendix A 1 b. We express
the ratio � /� from two ways. First, we obtain a relation of
the type �Eq. �A31�� thanks to the matching of the WKB
wave function with the solutions of the linearized
Schrödinger equation around x=0 that we express as

�l�x� = �̄l Ai�alx + yl� + �̄l Bi�alx + yl� for x � 0,

�r�x� = �̄r Ai�yr − arx� + �̄r Bi�yr − arx� for x � 0,

yl =
xc

2 − Rl
2

�2xc�2/3 yr =
xc

2 − Rr
2

�2xc�2/3 ,

al
3 = ar

3 = �2xc� .

The difference here comes from the asymmetry V0=1 so that
the relation �Eq. �A31�� becomes

tan�Sl + �l� = Xl =
�l

�l
, �A67�

tan�Sr + �r� = Xr =
�r

�r
, �A68�

�r =
�Rr

2 − xc
2�3/2

3�xc�
�l =

�Rl
2 − xc

2�3/2

3�xc�
�A69�

In order to obtain a polynomial in terms of Xl in the high-
energy region, we use the latest relations to express Xr as a
function of Xl,

Xr =
tan�St + �r� − tan Sl

1 + tan Sl tan�St + �r�
=

�� tan �l − 1�
�l

�l
+ � + tan �l

�� + tan �l�
�l

�l
− �� tan �l − 1�

,

Xr =
�Xl + �

�Xl − �
, �A70�

where we have introduced ��� tan �l−1 and ���+tan �l.
Then, we use the continuity conditions at x=0 to obtain

Xr =
�̄r

�̄r

= −
Xl�Bi��yr�Ai�yl� + Bi�yr�Ai��yl�� + Bi��yr�Bi�yl� + Bi�yr�Bi��yl�
Xl�Ai��yr�Ai�yl� + Ai�yr�Ai��yl�� + Ai��yr�Bi�yl� + Ai�yr�Bi��yl�

�A71�

From Eqs. �A70� and �A71�, we obtain a polynomial for Xl,

���Bi��yr�Ai�yl� + Bi�yr�Ai��yl�� + ��Ai��yr�Ai�yl� + Ai��yl�Ai�yr���Xl
2

+ ���Ai��yr�Ai�yl� + Bi��yr�Bi�yl� + Ai��yl�Ai�yr� + Bi��yl�Bi�yr��

− ��Bi��yr�Ai�yl� − Ai��yr�Bi�yl� + Bi�yr�Ai��yl� − Ai�yr�Bi��yl���Xl

+ ��Ai��yr�Bi�yl� + Ai�yr�Bi��yl�� − ��Bi��yr�Bi�yl� + Bi�yr�Bi��yl�� = 0 �A72�
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Again, it is easy to check that for �xc�=Rl, we have �=�, �
=−1, and xl=yl=0 so that the polynomials �Appendix A 1 b�
in region D and Eq. �A72� in region E coincide, what assures
the continuity of the spectrum between these two regions. To
obtain the implicit equations and extract the spectrum En�xc�

in this region, we inject the solutions XS/AS into Eq. �A67� to
obtain an expression of the mismatch indices 
S/AS like in
region B �see Eq. �A34� with �→�l� and write explicitly the
action Sl as a function of the energy and xc as in expression
�32� with R→Rl.
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