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We have studied the zero-temperature statistics of the charge transfer between the two edges of Quantum
Hall liquids of, in general, different filling factors, �0,1=1 / �2m0,1+1�, with m0�m1�0, forming Mach-
Zehnder interferometer. Expression for the cumulant generating function in the large-time limit is obtained for
symmetric interferometer with equal propagation times along the two edges between the contacts and time-
independent bias voltage. The low-voltage limit of the generating function can be interpreted in terms of the
regular Poisson process of electron tunneling, while its leading large-voltage asymptotics is proven to coincide
with the solution of kinetic equation describing quasiparticle transitions between the m states of the interfer-
ometer with different effective flux through it, where m�1+m0+m1. For m�1, this dynamics reflects both the
fractional charge e /m and the fractional statistical angle � /m of the tunneling quasiparticles. Explicit expres-
sions for the second �shot noise� and third cumulants are obtained, and their voltage dependence is analyzed.
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I. INTRODUCTION

Electronic Mach-Zehnder interferometer �MZI� �Refs.
1–3� can be realized with the edge states of the Quantum
Hall liquids �QHLs�. Together with the quantum antidots,4,5

MZIs in the regime of the fractional Quantum Hall effect
�FQHE� are expected6–8 to be useful for observation of the
fractional statistics of FQHE quasiparticles. In contrast to
fractional quasiparticle charge, which has been confirmed in
several experiments,4,9,10 there is no commonly accepted ob-
servation of anyonic statistics of the quasiparticles, which
remains a challenging experimental problem. Currently, this
problem attracts interest in the context of solid-state quantum
computation, since individual manipulation of anyonic qua-
siparticles involving their braiding provides an interesting
possible basis for implementation of the quantum informa-
tion processing.11–13 However, in a typical interferometer-
based experimental setup, the quasiparticles emerge as a con-
tinuum of gapless edge excitations that should be described
by a 1D field theory.14 Individual quasiparticles can be real-
ized in this theory only asymptotically in a special limit. In
the fractional edge-states MZI, such a limit occurs at large
voltages, when the system is characterized by the Hamil-
tonian dual to the Hamiltonian of the initial electron tunnel-
ing model of the MZI. The latter is perturbative in electron
tunneling at low voltages, and is much better defined, since
weak electron tunneling is probably the most basic process in
solid-state physics.

Several different models of the quasiparticles transport in
the MZI �cf. Refs. 7, 15, and 16� were obtained from quali-
tative physical considerations of tunneling geometry of the
interferometer. They produce conflicting result, e.g., different
periods of the tunnel current modulation by the magnetic flux
�ex through the MZI. The dual description derived quantita-
tively from the electronic model by the instanton
technique8,17 gives the definite model of the quasiparticle

tunneling, the main elements of which have been found
previously18 for the Fabry-Perot interferometers formed by
the edges with different filling factors. In this model, in
agreement with the theoretical picture postulated in Ref. 7,
MZI acquires m=m0+m1+1 different quantum states which
differ by the effective flux � through it. This flux contains, in
addition to the external flux �ex, a statistical contribution,
because of which the tunneling of each quasiparticle changes
the effective flux by ��0, where �0=h /e is the “electron
flux quantum,” switching the MZI from one flux state into
another. Since quasiparticle also carries the charge e /m, the
change in flux by ��0 results in the change in the interfer-
ence phase for the quasiparticles by 2� /m and the corre-
sponding change in the rate of coherent tunneling through
the interferometer. Summation over the m flux states in cal-
culation of the physical quantities restores the �0 periodicity
of their �ex dependence. At low voltages, this periodicity is
guaranteed by the �0 periodicity of the total electron tunnel-
ing amplitude.

In this work, we follow the approach to the MZI that
allows us to obtain the uniform description of its transport
properties in both regimes of electron and quasiparticle tun-
neling. We consider the standard MZI geometry �Fig. 1� with
two tunneling contacts between the two effectively parallel
edges of QHLs, but allow for, in general, different filling
factors, �0,1=1 / �2m0,1+1�, with m0�m1�0, of these edges.
The tunnel contacts between edges with different filling fac-
tors can be realized experimentally, e.g., through the gate-
induced modulation of electron density in different areas of
the 2D electron gas.19 In the symmetric case of equal propa-
gation times along the two edges between the contacts, the
corresponding 1D field theory permits an exact Bethe ansatz
solution.8 Making use of this solution, we calculate the zero-
temperature full counting statistics20 of the charge transferred
between the two edges forming the MZI. The transferred
charge distribution is shown to reflect the anyonic braiding
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statistics of the tunneling quasiparticles, and splitting of elec-
trons into quasiparticles with increasing voltage.

The paper is organized as follows. In Sec. II we introduce
the model of symmetric MZI and its Bethe ansatz solution.
In Sec. III, we use this solution to derive the general expres-
sion for the generating function P��� of the distribution of
the transferred charge. The method employed in this calcu-
lation generalizes to the MZI transport through two point
contacts the method developed earlier by Saleur and Weiss21

for a single point contact. The charge transfer statistics found
for one contact21 demonstrated fractionalization of electron
charges with increasing bias voltage across the contact. In
the case of MZI, one can expect that in addition to the charge
fractionalization, braiding properties of anyonic quasiparti-
cles should emerge in the charge transfer statistics. To see
this, we analyze our result for the transfer statistics in differ-
ent regimes. We find that the logarithm of the cumulant-
generating function separates into two parts, which for very
different absolute values of the electron tunneling amplitudes
in the two contacts, U2 /U1�1, become identical with the
cumulant-generating functions of the two separate contacts.
In general, however, each “single-contact” term accounts
also for the interference between the contacts. At low volt-
ages, these single-contact terms are combined in such a way
that the charge transfer occurs only in units of electron
charge, with the low-voltage asymptotic describing the regu-
lar Poisson distribution of tunneling electrons. In Sec. IV, we
develop analogous qualitative interpretation of the large-
voltage asymptotics of the Bethe ansatz result for the gener-
ating function. The interpretation is based on the m-state
model of the quasiparticle tunneling described above. Fol-
lowing the method of Ref. 25, the cumulant-generating func-
tion is calculated from the kinetic equation governing the

quasiparticle transitions in the basis of the m flux states. Di-
rect comparison of this generating function with the leading
asymptotics of the Bethe ansatz result reveals their coinci-
dence under a special choice of m quasiparticle interference
phases which are found as 	l= �
+ �m−1��+2�l� /m, where
l=0, . . . ,m−1 numbers the flux states of the interferometer.
The l-dependent, statistical part of these phases agrees with
the expected anyonic statistics of the quasiparticles, while
the common phase is given by the electron interference
phase 
 with an additional phase shift � /m for even m. The
equivalence of the two distributions in the large-voltage limit
proves that the Bethe ansatz construction we implemented
indeed describes the statistical transmutation of the effective
flux through the MZI. In Sec. V, we use the obtained gener-
ating function to find the first three cumulants of the trans-
ferred charge distribution. We study, in particular, the voltage
dependence of the first and the second cumulants propor-
tional to the average current and the shot noise, respectively.
The ratio of the two, the Fano factor, is an experimentally
observable9,10 characteristics of the electron-quasiparticles
decomposition. Finally, we consider the third cumulant,
which determines the asymmetry of the transferred charge
distribution around the average. In Sec. VI, we look at the
special case m=2 which allows to obtain these cumulants in
terms of the elementary functions for arbitrary voltages. The
results of this work are summarized in the Conclusion.

II. MODEL OF THE SYMMETRIC MACH-ZEHNDER
INTERFEROMETER AND ITS BETHE-ANSATZ

SOLUTION

We start our discussion with the electronic model of the
MZI �Fig. 1� formed by two single-mode edges with filling
factors �l=1 / �2ml+1�, l=0,1. Electron operator �l of the
edge l is expressed using the standard bosonization
approach14 as

�l = �D/2�vl�1/2�le
i�	l�x,t�/��l+klx�.

Here 	l are the two chiral bosonic modes propagating with
velocities vl in the same direction �to the right in Fig. 1�,
which satisfy the usual equal-time commutation relations
�	l�x� ,	p�0��= i� sgn�x��lp. The Majorana fermions �l ac-
count for the mutual statistics of electrons in different edges,
and D is a common energy cutoff of the edge modes. The
Fermi momenta kl correspond to the average electron density
in the edges, while the operators of the density fluctuations
are: l�x ,��= ���l /2���x	l�x ,��.

In the symmetric case of equal times of excitation propa-
gation between the contacts along the two edges and equal
velocities v1=v2�v, the two combinations of the bosonic
operators 	l that enter the standard electron tunneling La-
grangian of the two contacts,

Lt = �
j=1,2

�Tj�1
†�2�x=xj

+ H.c.�

can be expressed as the values at points x1,2 of the same
right-propagating chiral bosonic field

1

�1

U1 U2

x2

�

x

0

x

(a)

(b) �0
�1

FIG. 1. Mach-Zehnder interferometer considered in this work.
�a� Conceptual diagram of the two copropagating edges of QHLs
with different filling factors �0 and �1 coupled at points xj, j=1,2,
by two point contacts with tunneling amplitudes Uj. The edges are
assumed to support one bosonic mode each with arrows indicating
direction of propagation of these modes. �b� Schematic geometry of
the edge propagation in the experimentally realized interferometers.
Filled areas denote the Ohmic contacts which emit/absorb edge
modes and special arrangement of which makes it possible to
implement tunneling between the copropagating edges within one
plane of the two-dimensional electron gas.
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	−�x� =
��1	0 − ��0	1

��0 + �1

. �1�

The tunnel Lagrangian describing electron tunneling in the
two contacts can then be written as

Lt = �
j=1,2

�DUj/��cos��	−�xj� + 
 j� , �2�

where Uj and 
 j are the absolute values and the phases of the
dimensionless tunneling amplitudes, Uje

i
j =TjD /v. The
products of the Majorana fermions �1�2 were omitted from
Lagrangian �2�, since they cancel out in each perturbative
order due to charge conservation. The phases 
 j are obtained,
as usual, by integrating the gauge-invariant phase of the elec-
tron operators along the two edges between the contacts. The
phase difference includes then the contributions from the ex-
ternal magnetic flux �ex and from the average electron num-
bers N0,1 �which set the Fermi wave vectors� on the two sides
of the interferometer


2 − 
1 = 2����ex/�0� + �N0/�0� − �N1/�1�� + const � − 
 .

The factor �=�2m in Lagrangian �2� follows from the nor-
malization of the bosonic field 	−, which in the absence of
tunneling is a free right-propagating chiral field. This field
undergoes successive scattering at the two contacts by the
tunneling terms of the Lagrangian. The scattering breaks the
charge conservation and therefore creates tunneling current.
The applied voltage can be introduced at first as a shift of the
incoming field of one of the edges: 	0−��0Vt. As one can
see from Eq. �1�, such a shift translates into the shift of the
tunneling field 	−−Vt /�.

The thermodynamic Bethe ansatz solution of the tunnel-
ing model was developed22 for a single-point tunneling con-
tact with �2=2m by application of one-particle boundary S
matrices23 to a distribution of the bosonic field excitations
�kinks �+�, antikinks �−�, and m−2 sorts of breathers �b��,
which were introduced through the massless limit of the
“bulk” sine-Gordon model. The height of the kinks �anti-
kinks� defined by the sine-Gordon interaction is equal to ��.
Therefore, as follows from Eq. �1�, they carry charge �e /2
along the edges 0 and 1, respectively, while the breathers are
neutral. This solution was generalized8 to the two tunneling
contacts relevant for the MZI problem. Based on the chiral
dynamics of the local fluctuations of the field 	−�x�, it has
been argued that the quasiparticle scattering at the two point
contacts occurs successively and independently at different
points and, hence, is described by the successive application
of two boundary S matrices to the same distribution of the
excitations of the model. Since there is no kink�antikink�-
breather transitions at the contacts, �S j,k

b�=0, j=1,2�, only
the kink-antikink �and vice verse� transitions are important
for the charge transport, and their boundary S matrices con-
serving the quasiparticles momentum k �always positive for
chiral propagation� are written as

S j,k
�� =

�ak/TjB�m−1ei�k

1 + i�ak/TjB�m−1 , S j,k
−+ =

ei��k−
j�

1 + i�ak/TjB�m−1 . �3�

Here the standard energy scales TjB are used to characterize
the tunneling strength at the individual contacts, and

a = v
2����1/�2�1 − ����

����/�2�1 − ����
.

The explicit relation between the energy scales TjB and elec-
tron tunneling amplitudes is given below.

III. CUMULANT-GENERATING FUNCTION FOR THE
CHARGE TRANSFER DISTRIBUTION

At zero temperature, dynamics of the liquid should be
described with only one type of quasiparticles, e.g., kinks,
which fill out all available states with the bulk distribution
�k�, with k being the quasiparticle momentum, up to some
limiting momentum A defined by the applied voltage. Each
momentum-k quasiparticle undergoes successive scattering
at the two tunneling contacts independently of other quasi-
particles. The overall scattering process is described by the
product of the two boundary S matrices given by Eq. �3�. Our
goal is to find the cumulant-generating function ln P��� of
the charge transfer between the two branches of the interfer-
ometer, which is defined, as usual, as the logarithm of the
Fourier transform of the probability distribution function of
the transferred charge. We measure the charge in units of the
electron charge by setting e=1. Independence of the scatter-
ing events of quasiparticles with different momenta implies
then that ln P��� can be found as a sum of logarithm of the
generating functions of individual momentum states, and its
long-time asymptotics is

ln P��� = tv	
0

A

dk�k�ln p�k,�� . �4�

The generating function of one state with momentum k

p�k,�� = 1 + �C�k��ei� − 1� �5�

is defined by the total transition probability �C�k� of the
momentum-k kink into antikink. Taking the product of the
scattering matrices of the two contacts to find the total scat-

tering matrix Ŝ2Ŝ1, and using the parametrization of the con-
tact tunneling strengths as �TjB /a�2�exp
� j / �m−1��, we can
write the probability �C�k� from the corresponding matrix

element of Ŝ2Ŝ1 as

�C�k� = ��Ŝ2Ŝ1�−,+�2 = B����2,k� − ���1,k�� . �6�

Here ��� j ,k� are the transition probabilities in the individual
point contacts

��� j,k� = �Ŝ j
−,+�2 = �1 + k2�m−1�e−�j�−1, �7�

and the factor B characterizes interference between the two
contacts
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B�TjB,
� =
�T1B

m−1 + T2B
m−1ei
�2

T2B
2�m−1� − T1B

2�m−1� . �8�

Without a loss of generality, we assume below a specific
relation between the tunneling strength parameters of the two

contacts, �2��1, and write them as �1,2= �̄���0, with ��0
�0.

The aim of our subsequent derivation is to find the
cumulant-generating function ln P��� in terms of the two
generating functions ln PS for charge transfer in an indi-
vidual point contact that was found from the Bethe ansatz
solution by Saleur and Weiss.21 This derivation does not need
the explicit expressions for �k� and A which can be found in
Ref. 22. Following the approach for one contact, we first
relate ln P��� in Eq. �4� to the effective tunneling current. To
do this, we introduce the generalized tunneling probability
�C�u ,k�

�C�u,k� � 
1 + ��C
−1�k� − 1�e−u�−1. �9�

which is the solution of the following differential equation in
the new parameter u:

�u�C�u,k� = �1 − �C�u,k���C�u,k� �10�

that satisfies the initial condition �C�u ,k� �u=0=�C�k�. One can
extend Eq. �5� for p to include the parameter u through the
substitution �C�k�→�C�u ,k�. Equation �9� shows then that
the logarithm of p extended this way can be expressed as

ln p = ln�1 + �C�k��eu+z − 1���z=0
z=i�. �11�

Calculating the derivatives of Eq. �11� with respect to u and
�, and using Eq. �9�, one can see that

− i�� ln p = �u ln p + �C�u,k� = �C�u + i�,k� . �12�

Combining Eq. �12� with Eq. �4� in which p is extended to
include the parameter u, one sees that the cumulant-
generating function satisfies the following relation

�i� ln P�u,��/t = 	
0

A

k�k��C�u + i�,k� � I�u + i�,V� ,

�13�

which expresses it through the total tunneling current I�u ,V�
in the two contacts that is defined by the generalized tunnel-
ing probability �C�u ,k�.

As the next step, one substitutes Eq. �6� into Eq. �9� and
casts the total tunneling probability �C�u ,k� into the follow-
ing form

�C�u,k� = B
eu sinh ��0

sinh ���u� � � ���̄ � ���u�,k� , �14�

where ���u� is defined by the conditions that

cosh ���u� = cosh ��0 + B�eu − 1�sinh ��0 �15�

and ���u��0. Differentiation of Eq. �15� shows that the
coefficient in Eq. �14� in front of the sum can be written as
the derivative of ���u�

�u���u� = B
eu sinh ��0

sinh ���u�
. �16�

Using Eqs. �14� and �16� in the definition of the tunneling
current I�u ,V� Eq. �13� we obtain an important relation

I�u,V� = �u���u��
�

� I1/m��̄ � ���u�,V� , �17�

which expresses the derivative of the cumulant-generating
function Eq. �13� for the charge transfer in a symmetric in-
terferometer in terms of the tunneling current I1/m in one
point contact between the two edges with the effective filling
factor �=1 /m. The current in one contact has been
calculated22 from the Bethe ansatz solution, and its tunneling
conductance

G1/m�V/TB� = G1/m��V/a�e−�/�2�m−1��� = I1/m��,V�/V

is given at zero temperature by a universal scaling function
expressed in the form of the low- and high-voltage expansion
series. Integrating Eq. �17� over u, and using the result in Eq.
�13�, we express the generating function ln P���
=ln P�u ,�� �u=0 in the following form:

ln P��� = − Vt
	
�1

�̄−���i��

+ 	
�2

�̄+���i��
�d� · G1/m��V/a�e−�/�2�m−1��� . �18�

The explicit expansion series for G1/m in Eq. �18� allow in-
tegration in each order. The integration transforms the gen-
erating function Eq. �18� into the sum of the two generating
functions ln PS for charge transfer in individual contacts and
gives our key result

ln P��� = �
j=1,2

ln PS�V/TjB,e�− 1�j���0−���i���� . �19�

The single-contact generating function ln PS is known in
terms of the low- and high-voltage expansion series21

ln PS�s,ei��
�0Vt

= �
n=1

�
cn�m�

mn
s2n�1/�−1��ein� − 1�, s � e�

=i�� + �
n=1

�
cn���

n
s2n��−1��e−in�� − 1�, s � e�,

cn��� = �− 1�n+1 ���n + 1���3/2�
��n + 1���3/2 + �� − 1�n�

, �20�

where

e� = �����/�1−���1 − � ,

and �0 is the conductance quantum.
Equation �19� representing the total generating function

ln P as the sum of the two single-contact generating func-
tions ln PS seems to suggest that the charge transfer in the
MZI is divided into two independent processes associated
with the two point contacts of the MZI. Indeed, one mani-
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festation of this division is that the dependence of each of
these processes on the bias voltage V �through the function
PS� is determined, as in Eq. �20�, only by the characteristic
energy scale TjB of the corresponding junction. Also, simi-
larly to the individual ln PS, the total generating function
exhibits the transition from tunneling of integer electrons at
low voltages to tunneling of the fractionally charged quasi-
particles at large voltages. The division into individual
single-contact generating functions is, however, not com-
plete. The total generating function ln P depends also on the
charge dynamics in the interferometer as a whole, since each
individual charge transfer process in one contact triggers
multiple charge transfers involving interference between
both contacts of the interferometer. Information about this
charge dynamics enters Eq. �19� through the function ���u�
determined by Eq. �15� and sensitive to both interferometer
contacts. As discussed in more details below, one of the con-
sequence of such interference is a relatively complex �non-
Poisson� dynamics of quasiparticle tunneling at large volt-
ages. This dynamics is created by the anyonic braiding
statistics of the quasiparticles which gives a statistical con-
tribution to the interference phase between the two contacts
of the MZI that is changed by each quasiparticle tunneling.
The interference can become irrelevant if the two contacts
are strongly asymmetric. For T2B�T1B, the generating func-
tion ln P is well approximated at low voltages by the single-
contact ln PS defined by T1B, i.e., by the strongest electron
tunneling amplitude U1—see Eq. �24� below. At large volt-
ages, the generating function ln P is approximated by the
single-contact ln PS defined by T2B, i.e., by the weakest elec-
tron tunneling amplitude U2.

A. Low-voltage behavior of the generating function

At small voltages, when V�TjBe� for both j=1,2, the
low-voltage expansions of the single-contact generating
function ln PS Eq. �20� for both terms in Eq. �19� can be
combined as follows:

ln P��� = �0Vt�
n=1

�
cn�m�

mn �
j=1,2

�V/TjB�2n�m−1�

�� cosh�n���i���
cosh�n��0�

− 1 . �21�

Since cosh�n���i��� is a polynomial of cosh����i���, and the
latter, according to Eq. �15�, is a linear function of ei�, this
expansion of the MZI generating function shows that at low
voltages, the charge transfer between the edges of the MZI is
quantized in units of electron charge.

More explicitly, using the standard expansion of cosh nx
�see Eq. 1.331.4 in Ref. 24� and the relations that follow
from Eqs. �8� and �15�:

cosh ���i�� = cosh ��0�1 + R�ei� − 1�� ,

R � B tanh ��0 =
�T1B

m−1 + T2B
m−1ei
�2

T1B
2�m−1� + T2B

2�m−1� ,

cosh ��0 =
T1B

2�m−1� + T2B
2�m−1�

2�T1BT2B��m−1� , �22�

we bring Eq. �21� into the following form:

ln P��� = �0Vt�
n=1

�
cn�m�

mn ��
j

�V/TjB�2�m−1��n

· ��1 + R�z − 1��n + n �
l=1

�n/2�
�− 1�lCl−1

n−l−1

l�2 cosh ��0�2l

· �1 + R�z − 1��n−2l�z=1
z=ei�

. �23�

Equation �23� quantifies our previous conclusions about
properties of the MZI charge transfer statistics Eq. �19� in the
low-voltage regime. In the limit of strongly different con-
tacts, T2B�T1B, one finds that R→1 and cosh ��0�1 so
that the charge transfer statistics Eq. �23� approaches that of
one point contact21 characterized by T1B �i.e., the strongest
electron tunneling amplitude U1� with corrections in T1B /T2B
also quantized in the electron charge units. The nth term in
the expansion of this statistics in powers of the bias voltage
V corresponds in this case to tunneling of exactly n electrons.
By contrast, the nth order term of the general MZI transfer
statistics Eq. �23� involves transfer of all numbers of elec-
trons up to n. In the lowest order in V, the MZI statistics
reduces to the Poisson distribution, with the coefficient in
front of �z−1� in Eq. �23� equal to the average electron tun-
neling current. One can check this starting from Eq. �2� by
direct perturbative calculation,8 if the energy scales TjB are
expressed through the electron tunneling amplitudes Uj

TjB = 2D���m�/Uj�1/�m−1�. �24�

B. Large-voltage behavior of the generating function

At large voltages, V�TjBe�, the combination large-
voltage expansions of both single-contact generating func-
tions ln PS in Eq. �19� brings the total MZI generating func-
tion into the following form:

ln P��� = �0Vt�
n=1

�
cn�1/m�

n �
j

�V/TjB�2n�1−m�/m

�� cosh�n���i��/m�
cosh�n��0/m�

− 1� . �25�

In terms of the parameters introduced in Eq. �22�, this
equation can be rewritten as

ln P��� = �0Vt�
n=1

�
cn�1/m�
n2n/m ��

j

�TjB/V�2�m−1��n/m

��
�

�1 + R�z − 1� � ��1 + R�z − 1��2

− cosh−2 ��0�1/2�n/m�z=1
z=ei�

. �26�

We can see again that in the asymmetric limit, T2B�T1B,
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when R→1 and cosh ��0�1, Eq. �26� for the charge trans-
fer statistics reduces to that of a single point contact.21 The
dominant contact is now characterized by the larger quasi-
particle tunneling amplitude W2 �i.e., smaller electron tunnel-
ing amplitude U2� and corresponding energy scale T2B, re-
lated to W2 as

TjB = 2mD�Wj/��1/m��m/�m−1�. �27�

The nth order term in the expansion in Eq. �26� of the
generating function corresponds to the transfer of the frac-
tional charge n /m by n quasiparticles. One can see, however,
that the MZI transfer statistics Eq. �26� does not contain in
general the terms ei�/m that would correspond directly to
transfer of individual quasiparticles of charge 1 /m. In par-
ticular, the n=1 term of the expansion that gives the leading
large-voltage contribution to the statistics, cannot be inter-
preted as a Poisson process of tunneling of independent qua-
siparticles, in contrast to the leading low-voltage term that
did represent Poisson process of individual electron tunnel-
ing events. The reason for this is the m-state dynamics of the
effective flux through the interferometer associated with the
quasiparticle tunneling, which introduces correlations in the
tunneling process. These correlations stem from the anyonic
braiding statistics of the quasiparticles, with each tunneling
quasiparticle changing the tunneling rate for the next quasi-
particle by changing the statistical contribution to the effec-
tive interference phase between the two contacts of the inter-
ferometer. They can be most easily understood in the
description of the quasiparticle tunneling based on the ki-
netic equation discussed in the next section.

IV. KINETIC EQUATION FOR THE LARGE-VOLTAGE
CHARGE TRANSFER

To derive kinetic equation that reproduces the large-
voltage asymptotics of the generating function Eq. �25�, and
therefore provides a simple physical picture of the dynamics
of quasiparticle tunneling, we start by rewriting this asymp-
totics in terms of the quasiparticle tunneling amplitudes Wj.
From the last relation in Eq. �22�, we have

cosh���0/m� =
1

2
��T1B

T2B
��m−1�/m

+ �T2B

T1B
��m−1�/m� . �28�

Using this equation to transform the leading, n=1, term in
Eq. �25�, and replacing the energy scales TjB by the quasi-
particle amplitudes Wj with the help of Eq. �27�, we have

ln P�z� = tK�V��2W1W2 cosh����z�
m � − �

j

Wj
2� , �29�

where K�V�=�0V�2mD /V�2�m−1�/mc1�1 /m� /�2�1 /m�.
Kinetic equation describing the quasiparticle tunneling

can be written down based on the following considerations.
The general picture of the quasiparticle dynamics in the MZI
discussed in the Introduction implies that the quasiparticles
create statistical contribution to the effective flux through the
interferometer. Because of this statistical contribution, the
MZI can be found in m separate states which differ by the
effective flux, with each tunneling quasiparticle changing

successively the state l into l−1 modulo m. Since the total
rates of the quasiparticle tunneling in the MZI depend on the
effective flux, such dynamics of flux introduces correlations
into quasiparticle transitions, separating naturally the pro-
cesses of successive quasiparticle tunneling events into the
groups of m transitions. As usual, to cast the kinetic equation
governing this flux dynamics into the form appropriate for
the calculation of the cumulant-generating function, we mul-
tiply transition probabilities by a factor z1/m=ei�/m that keeps
track of the transferred charge. Then, we introduce the prob-
abilities dl,n�t� that at time t the MZI is in the state l and n
quasiparticles have been transferred through it. Combining
these probabilities into an m-dimensional vector Ql�z , t�
=�ndl,n�t�zn/m, one can write the kinetic equation in the fol-
lowing matrix form:

�tQl�z,t� = �
l�

M�z�l,l�Ql��z,t� . �30�

According to the qualitative picture of quasiparticle tun-
neling discussed above, the transition matrix has a simple
form, with the only nonvanishing elements are those on the
main diagonal, l= l�, and those with l= l�−1

M�z�l,l� = − �l�l,l� + �l�z
1/m�l,l�−1. �31�

Here the Kronecker symbol �l,l� is defined modulo m. The
leading large-time asymtotics of the generating function for
the probability distribution evolving according to the kinetic
equation �30� is �see, e.g., Ref. 25�: ln P�z�= t�, where � is
the maximum eigenvalue of the transition matrix Eq. �31�.
The structure of this matrix shows directly that the charac-
teristic equation det�M −��=0 has the form

�
l=0

m−1

��l + �� − z�
l=0

m−1

�l = 0. �32�

The maximum eigenvalue � is the solution of this equation
which goes to zero when z→1, since all other eigenvalues of
the matrix M�z=1� are negative.

Before trying to establish the general relation between the
generating function obtained from this equation and the gen-
erating function Eq. �29�, we consider the simple case m=2.
In this case, Eq. �29� for the large-voltage asymptotics of the
generating function Eq. �25�, can be simplified further. First,
we have from Eq. �22�

cosh����z�
2

� = �cosh2���0

2
� +

R

2
�z − 1�cosh ��0�1/2

.

Using this relation, Eq. �22�, and Eq. �28� with m=2, we
transform Eq. �29� into

ln P�z� = tK�V�����
j

Wj
2�2

+ �W1
2 + W2

2ei
�2 · �z − 1��1/2

− �
j

Wj
2 . �33�

On the other hand, in the kinetic-equation approach, Eq. �32�
be solved readily for m=2 giving the following expression
for �:
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� = ����
j

� j�2
+ 4�0�1�z − 1��1/2

− �
j

� j�/2. �34�

This equation describes the generating function for the
statistics of any transfer process consisting of the two steps
with the rates �0,1, e.g., incoherent charge transfer through a
resonant level.25 Comparison of Eqs. �33� and �34� shows
that the generating function Eq. �34� obtained from the ki-
netic equation reproduces the large-voltage asymptotics Eq.
�33� of the generating function Eq. �25�, if the tunneling rates
are taken as

�0,1 = K�V��W1 + W2ei	0,1�2, 	l = �
 + ��/2 + �l . �35�

Equation �35� for the tunneling rates agrees with the physical
picture of quasiparticle tunneling discussed above. Statistical
contribution to the effective flux though the MZI means that
tunneling of each quasiparticle changes the phase between
the interferometer contacts by 2� /m=� in agreement with
the quasiparticle anyonic exchange statistics. Equation �35�
also shows that the quasiparticles see a phase shift � /2 in
addition to the phase 
 /2 induced by the external magnetic
flux. The origin of this phase shift is discussed below.

Following this logic, we look for solution of Eq. �32� in
the case of arbitrary m taking the tunneling rates �l as

�l = K�V��W1 + W2ei	l�2, 	l = 	 + 2�l/m �36�

with some unknown 	. With these tunneling rates, Eq. �32�
reads

�
l=0

m−1 �cos 	l +
� + W1

2 + W2
2

2W1W2
� = z�

l=0

m−1
�l

2K�V�W1W2
, �37�

where ��� /K�V�. To further transform Eq. �37�, we use the
basic identity

xm − 1 = �
l=0

m−1

�x − ei2�l/m� , �38�

and the two identities that follow directly from it

�
l=0

m−1

2 cos
	l

2
= 2 cos�	

2
m + �

m − 1

2
� ,

2m−1�
l=0

m−1 �cos 	l + cosh���

m
�� = cosh �� − �− �mcos�m	� .

�39�

The first one is obtained essentially by taking x=−ei	 in Eq.
�38�, while the second one follows from the first if the sum
of the cosines is transformed into their product. By direct
comparison of the second identity in Eq. �39� with Eq. �37�
we see that � as defined by ln P�z� / t in Eq. �29� indeed
solves Eq. �32� if

cosh �� = �− �mcos�m	� +
z

2 �
l=0

m−1
�l

K�V�W1W2
. �40�

Making use of Eq. �38� one more time, we calculate the
product on the right-hand side of Eq. �40�

�
l=0

m−1
�l

K�V�W1W2
=

�W2
meim�	−�� − W1

m�2

W1
mW2

m . �41�

One can see that with this expression for the product, Eq.
�40� precisely coincides with the definition of cosh ���z� by
Eq. �22�. Indeed, combining all three relations in Eq. �22�
one can express cosh ���z� as

cosh ���z� = − cos 
 +
�T1B

m−1 + T2B
m−1ei
�2

2�T2BT1B��m−1� z . �42�

Replacing TjB in Eq. �42� with the amplitudes Wj through
Eq. �27�, we see that Eq. �42� precisely coincides with Eqs.
�40� and �41�, if cos 
= �−��m+1�cos�m	�, i.e., if the phase 	
is chosen to satisfy the condition

m	 = 
 + �m − 1�� . �43�

The deviation of the phase 	 from 
 /m in this equation is
important only for even m. In this case, it produces the shift
�m−1�� /m of the interference phase in the quasiparticle tun-
neling rates from the value induced by the external magnetic
field. This shift coincides with the phase acquired by one of
the two Klein factors of the MZI quasiparticle tunneling ac-
tion of the MZI �Ref. 17� in the flux-diagonal representation
due to the m-power periodicity condition for the Klein fac-
tors, which corresponds physically to the requirement of the
proper exchange statistics between electrons and quasiparti-
cles. This phase shift ensures, actually, that there is no shift
in the interference pattern of the tunnel current in the inter-
ferometer �see the final results below� between the regimes
of electron and quasiparticle tunneling.

V. CUMULANTS OF THE CHARGE TRANSFER
DISTRIBUTION

So far, we have established the interpretation of the low-
and high-voltage asymptotic behavior of the charge transfer
statistics in terms of, respectively, tunneling of individual
electrons and quasiparticles. In this section, we calculate the
charge transfer cumulants in these two limits, with the em-
phasis on the quasiparticle limit which exhibits the nontrivial
behavior of the cumulants. We also will use the generating
function found in Sec. III for arbitrary voltages to calculate
the full voltage dependence of the cumulants, and to study
the crossover between the two asymptotic regimes of elec-
tron and quasiparticle tunneling. The cumulants of the charge
N�t� transferred through the interferometer during a large
time interval t can be found from the cumulant-generating
function Eq. �13� by the standard relation

�Nj�t��c/t = �u
j ln P�u=0/t = �u

j−1I�u,V��u=0, �44�

where the current I�u ,V� is given by Eq. �17�.
The first cumulant gives the average tunneling current:

I�V�� I�0,V�= �N�t�� / t. At arbitrary voltages, the average
current was calculated before in Ref. 17. Its large-V asymp-
totics can also be obtained directly from Eqs. �26� and �27�
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I�V� =
K�V�

m
B�W2

2 − W1
2� =

1

�
l

�l
−1

, �45�

where the interference factor B Eq. �8� can be expressed in
term of the quasiparticle amplitudes W1,2 as

B�Wj,
� =
�W1

m + W2
mei
�2

W2
2m − W1

2m . �46�

The second equality in Eq. �45� provides direct interpretation
of the asymptotics of the average current in terms of the
quasiparticles transitions.7 It can be proven formally by mak-
ing use of the identity

�
l

�l
−1 =

W1�W1
− W2�W2

2K�V��W1
2 − W2

2�
ln��

l

�l� , �47�

which can be obtained by directly differentiating individual
rates �l in this equation. On the other hand, differentiating
the product of all �l’s together, as given by Eq. �41�, and
using Eq. �43�, we obtained the second equality in Eq. �45�.
This equality agrees naturally with the simple solution of the
quasiparticle kinetic equation, which gives the average tun-
neling rate as inverse of the average tunneling times in the
different states of the interferometer.

The second cumulant �N2�t�� defines the spectral density
of the current fluctuations at zero frequency SI�0�
= �N2�t��c / t, which at zero temperature reflects the shot noise
associated with the charge transfer processes. From Eq. �17�,
one can write the first derivative of the current as

�uI�u,V� = I�u,V� � �u ln��u���u��

− ��u���u��2�
�

��̄I1/m��̄ � ���u�,V� . �48�

Substituting this formula into Eq. �44� and calculating the
derivatives of ���u� Eq. �16� for u→0 we obtain expression
for the spectral density of current

SI�0� = �1 − B coth ��0�I − B2 �
j=1,2

��I1/m�� j,V� . �49�

It is convenient to characterize the shot noise represented by
this spectral density through the Fano factor F defined as F
=SI�0� / I. In the case of MZI, the Fano factor reflects both
the charge and statistics of the tunneling excitations and il-
lustrates the transition between the electron and quasiparticle
regimes. In the low-voltage limit, F=1 as a result of the
regular Poisson process of electron tunneling. To find the
Fano factor in the quasiparticle, large-voltage, limit, we start
with Eq. �49� which gives the following general expression
for F:

F = 1 − B�coth ��0 − �
j

��I1/m�� j,V�

���
j

�− 1� jI1/m�� j,V��−1 . �50�

Using Eq. �22�, the fact that in the large-voltage limit only
one quasiparticle tunneling term �W2 can be kept in the
current I1/m, cf. Eq. �45�, and that with the parametrization of

the energy scales TjB with � introduced above, W2�e�/m, we
get from Eq. �50�

F = 1 − B�W2
2m + W1

2m

W2
2m − W1

2m −
1

m

W2
2 + W1

2

W2
2 − W1

2 . �51�

The Fano factor Eq. �51� corresponds to the dynamics of
quasiparticle tunneling as described by the kinetic Eq. �30�.
This can be seen by following the steps similar to that taken
above for the average current. Applying the differential op-
erator from Eq. �47� to individual terms in the sum of the
inverse tunneling rates �l, one obtains directly the following
identity:

−
W1�W1

− W2�W2

2K�V��W1
2 − W2

2��l

�l
−1 = �

l

�l
−2.

On the other hand, replacing the sum of inverse �l’s in this
equation with the corresponding expression from Eq. �45�

�
l

�l
−1 = m/�BK�V��W2

2 − W1
2�� ,

and performing differentiation, we see that the large-voltage
asymptotics Eq. �51� of the Fano factor can be written in
terms of the tunneling rates �l as

F = �
l

�l
−2/��

l

�l
−1�2

.

This result agrees with the calculation26 based directly on the
kinetic equation. Because of the complex nature of the qua-
siparticle tunneling dynamics characterized by m different
tunneling rates �l, F is not equal simply to the quasiparticle
charge 1 /m but varies as a function of parameters, e.g., the
interference phase 
, between 1 /m and 1.

At arbitrary bias voltage V, the Fano factor F should be
plotted numerically. Figure 2 shows F in the case
m=3 which corresponds, e.g., to tunneling between the two
�=1 /3 edges. The curves are shown for different degrees of
asymmetry between the two contacts of the interferometer
and two values of interference phase, maximum constructive
interference, 
=0, and complete destructive interference,

=�. The range of variation of F with the interference phase

 decreases with increasing junction asymmetry. In general,
the curves show the transition between electron tunneling
with F=1 at small voltages V to quasiparticle tunneling at
large voltages. In the quasiparticle regime, F is still can be
significantly different from 1/3 because of the nontrivial
three-state flux dynamics of the MZI. In particular, for iden-
tical junctions, the three total quasiparticle tunneling rates in
Eq. �36� satisfy the relation: �l�cos2�	l /2�. Taking into ac-
count Eq. �43� for the nonstatistical contribution to the inter-
ference phase, one can see that under the condition of de-
structive interference, 
��, the tunneling rate in one of the
flux states of the interferometer, l=0, is much smaller than
the rates in the two other states. This mean that on the rel-
evant large time scale set by the smallest rate, the three qua-
siparticles transition that transfer interferometer from state
l=0 back to itself happen almost simultaneously, so that the
three quasiparticle charges 1/3 are effectively transferred to-
gether, restoring F back to 1. Away from the regime of com-
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plete destructive interference, there is a transition region be-
tween the electron and quasiparticle tunneling which is
characterized by the Fano factor F reaching the minimum
below the quasiparticle minimum 1 /m=1 /3. With increasing
junction asymmetry, the minimal value decreases, while the
minimum becomes broader and moves to large voltages. This
behavior is qualitatively independent of m, see Fig. 3 below
for m=2.

Finally, we study the third charge transfer cumulant that
characterizes the asymmetry around average of the trans-
ferred charge distribution, and has been measured experi-

mentally for electron tunneling in metallic tunnel junctions—
see, e.g., Refs. 27 and 28 and in quantum point contacts.29 As
for the other cumulants, the large-time asympotic of the third
cumulant is linear in time, and it can be characterized by the
coefficient C3��N3�c / t. To calculate this coefficient, we first
find the second derivative of the tunnel current from Eq. �48�

�u
2I�u,V� = 
�u

2 ln �u���u� + ��u ln �u���u��2�I

− �
�

�3�u���u
2����̄ � ��u���3�

�̄

2�I1/m��̄ � ��,V� .

�52�

Derivatives of ���u� here can be found from Eq. �16�. In
particular, the coefficient in front of I in Eq. �52� can be
expressed as

�u
2 ln �u���u� + ��u ln �u���u��2

= 1 − 3 coth ���u� � �u���u� + �3 coth2 ���u� − 1�

���u���u��2. �53�

Substitution of Eqs. �16�, �52�, and �53� into Eq. �44� gives
us the coefficient C3 of the third cumulant

C3 = �1 − 3B coth ��0 + B2�3 coth2 ��0 − 1��I

− �
j=1,2

�3B2�1 − B coth ��0���I1/m�� j,V�

+ �− � jB3��
2I1/m�� j,V�� . �54�

The ratio F3=C3 / I has also been suggested30 as a possible
alternative to the Fano factor to characterize the charge of the
tunneling particles. Indeed, in a Poisson process, F3 is equal
to the Fano factor multiplied by the tunneling charge. There-
fore, in the case of MZI, F3 Eq. �54� reduces to 1 in the
low-voltage limit, as a result of the regular Poisson electron
tunneling. In the quasiparticle, large-voltage, limit, repeating
the calculation similar to that leading to Eq. �50�, we can
relate both factors as follows:

F3 = 3F − 2 + B2�2 +
1

m2 +
12W2

2mW1
2m

�W2
2m − W1

2m�2

−
3

m

�W2
2 + W1

2�
�W2

2 − W1
2�

�W2
2m + W1

2m�
�W2

2m − W1
2m� . �55�

VI. CHARGE TRANSFER STATISTICS FOR m=2

For general m, the results for the cumulants of the charge
transfer statistics in the MZI discussed above could not be
presented in a finite analytical form for arbitrary bias volt-
ages. As we show in this section, the situation is simpler for
m=2, when the kink quasiparticles of the bulk sine-Gordon
model that provide the basis for the Bethe-ansatz solution of
the MZI transport are the regular fermions �though carrying
charge 1/2�, and their distribution �k� in Eq. �4� is the
Fermi-Dirac step function. In practice, the m=2 regime
should take place in the MZI formed by the two edges of
different Quantum Hall liquids, with filling factors �=1 /3
and �=1, i.e., m0=1, m1=0, and m=1+m0+m1=2. Indi-

FIG. 2. The zero-temperature Fano factor F of the tunnel current
in the Mach-Zehnder interferometer formed by two �=1 /3 edges,
i.e., for m=3, as a function of the bias voltage V for different
degrees of asymmetry of the tunneling strength of the two contacts
characterized by the T1B /T2B ratio. The solid curves corresponds to
the case of complete constructive interference, 
=0; for the dashed
curves, 
=�. In the latter case, F=1 identically for identical con-
tacts, T1B /T2B=1. The curves illustrate the transition between the
electron regime F=1 at small voltages to the quasiparticle m-state
tunneling dynamics at large voltages. The transition region is char-
acterized by the Fano factor F reaching the minimum below the
quasiparticle minimum 1 /m=1 /3.

FIG. 3. The zero-temperature Fano factor F of the tunnel current
for m=2, i.e., in the Mach-Zehnder interferometer formed by edges
with �=1 /3 and �=1, as given by Eq. �59�. The solid curves cor-
responds to the case of complete constructive interference, 
=0; for
the dashed curves, 
=�. In the latter case, F=1 identically for
identical contacts. In general, the transition from the electron re-
gime F=1 at small voltages to the two-state tunneling dynamics of
quasiparticles at large voltages is characterized by the Fano factor F
reaching the minimum in the crossover region.
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vidual tunneling contacts of this type have been realized
experimentally.19 Using the Fermi-Dirac property of the dis-
tribution function �k� for m=2, one can obtain the cumulant
generating function ln P��� either by integration in Eq. �4�,
or equivalently, by direct substitution into Eq. �18� of the
known single-contact tunnel conductance G1/2, which can be
expressed simply as G1/2�s�=�0�1−arctan�2s� / �2s�� /2. The
resulting generating function is

ln P��� = �0Vt �
j=1,2


yj�u�arctan�1/yj�u��

+ �1/2�ln�1 + yj
2�u����u=0

u=i�, �56�

where yj�u��yj�0�exp
�−1� j����u�−��0� /2�, and yj�0�
�TjB / �2V�.

This generating function can be combined with Eq. �44�
to calculate the cumulants of the transferred change distribu-
tion for m=2 using the same steps as in the previous section.
Alternatively, one can substitute Eq. �4� into Eq. �44� and
perform the integration directly. Below we briefly discuss the
first three cumulants obtained in this way. The first cumulant
gives the average tunneling current in the MZI as17

I = �0B��2I2 − �1I1� , �57�

where Ij �arctan�V /2� j�, and � j �TjB /4=DWj
2 /� are the

characteristic quasiparticle tunneling rates in separate con-
tacts. Using the fact that K�V�=�0D for m=2, one can see
explicitly that the current agrees at large voltages with Eq.
�45� that follows from the quasiparticle kinetic equation with
the tunneling rates Eq. �35�:

I =
��0

2

��1 + �2ei
�2

�1 + �2
=

�0�1

�0 + �1
. �58�

It is interesting to note that this agreement relies strongly on
the shift of the interference phase Eq. �43� from the exter-
nally induced phase 
.

The second cumulant gives the following expression for
the Fano factor at arbitrary voltages, including the transition
region between electron and quasiparticle tunneling:

F = 1 −
��1 + �2ei
�2

�1I1 − �2I2
�2�1�2��2I1 − �1I2�

��1
2 − �2

2�2

+
1

2��1
2 − �2

2� �
j=1,2

� j�Ij +
V/2� j

1 + �V/2� j�2� . �59�

This equation is plotted in Fig. 3 and describes the transition
from F=1 for electron tunneling at small voltages to

F = 1 −
1

2

��1 + �2ei
�2

��1 + �2�2

for quasiparticle tunneling at large voltages. One can see that
the quasiparticle charge e /2 manifests itself most clearly for

=0, when the total quasiparticle tunneling rates Eq. �35�
coincide, �1=�2, regardless of the relation between the indi-
vidual rates � j. Similarly to the case m=3 illustrated in Fig.
2, the Fano factor reduces to electron value 1 even in the
quasiparticle regime, if �1��2 and 
=�. In this case, one of
the total quasipartical tunneling rates � is much smaller than

the other, so on the relevant large time scale set by the
smaller rate the quasiparticles effectively tunnel together, re-
storing F to 1.

Calculating the third cumulant, we find the following ex-
pression for the “alternative” Fano factor:

F3 = 3F − 2 +
��1 + �2ei
�4

4��1I1 − �2I2���1
2 − �2

2�2 �
j=1,2

���− 1� j+1 �
3� jIj�� j

4 + 10� j
2� j�

2 + 5� j�
4 �

��1
2 − �2

2�2 +
3V

2��1
2 − �2

2�

�
� j

2 + 3� j�
2

1 + �V/2� j�2 + �− 1� j+1 V

�1 + �V/2� j�2�2 , �60�

where j� is defined by j , j�=1,2, j�� j. Equation �60� is
plotted in Fig. 4, which shows F3 as a function of the inter-
ference phase 
 at several voltages. Voltage dependence of
F3 is qualitatively very similar to that of the Fano factor
shown in Fig. 3: it approaches 1 at small voltages, in agree-
ment with the underlying Poisson tunneling process of elec-
trons. At large voltages, Eq. �60� reduces to the following
form:

F3 = 3F − 2 +
3

4

��1 + �2ei
�4

��1 + �2�4 .

This expression can be understood in terms of the same two-
state tunneling dynamics of the quasiparticles that was dis-
cussed above. Also similarly to the Fano factor, the voltage
dependence of F3 is nonmonotonic, with a minimum be-
tween the regimes of electron and quasiparticle tunneling.
The main qualitative difference between the noise-related
Fano factor and its third-cumulant alternative is that the
minimum of F3 can become negative for some values of
parameters �regime not shown in Fig. 4�.

FIG. 4. Alternative “Fano factor” F3=C3 / I Eq. �60� related to
the third cumulant of the tunnel current noise in the Mach-Zehnder
interferometer with m=2 and zero temperature, as a function of the
interferometer phase 
. The curves are plotted for several bias volt-
ages V between the interferometer edges and illustrate the transition
between the electron and quasiparticles tunneling with increasing
voltage. The transition is characterized by the nonmonotonous
change in F3, which reaches minimum at the intermediate voltages.
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VII. CONCLUSION

Starting from the exact solution of the tunneling model of
symmetric Mach-Zender interferometer in the FQHE regime,
we have calculated the statistics of the charge transfer be-
tween interferometer edges. The obtained statistics shows the
transition from electron tunneling at low voltages to tunnel-
ing of anyonic quasiparticles of the fractional charge e /m
and statistical angle � /m at large voltages. Deep in the elec-
tron tunneling regime, the dynamics of charge transfer is
represented by the standard Poisson process. Dynamics of
quasiparticle tunneling is more complicated and reflects the
existence of m effective flux states of the interferometer. The
interference phase between the quasiparticle tunneling am-
plitudes in two contacts of the interferometer contains a con-

tribution from the quasiparticle exchange statistics, making
the quasiparticle tunneling rates in different interferometer
states different. In general, the transition from electron to
quasiparticle tunneling is reflected in the Fano factor F or its
third-cumulant alternative F3, which both reach minima in
the transition region. However, in the regime close to com-
plete destructing interference �interferometer phase 
=� and
equal tunneling strength in the two contacts�, both F and F3
have electron value 1 for all voltages.
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