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A theory of optical emission of quantum dot arrays in quantum microcavities is developed. The regime of
the strong coupling between the quantum dots and photonic mode of the cavity is considered. The quantum
dots are modeled as two-level systems. In the low pumping �linear� regime the emission spectra are mainly
determined by the superradiant mode where the effective dipoles of the dots oscillate in phase. In the nonlinear
regime the superradiant mode is destroyed and the emission spectra are sensitive to the parity of quantum dot
number. Further increase in the pumping results in the emission line narrowing being an evidence of the lasing
regime.
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I. INTRODUCTION

The light-matter coupling on the nanoscale is in focus of
the research during the last decade owing to the possibilities
to realize quantum electrodynamical effects in the solid state
and to the perspectives of the efficient emission control
needed for device applications. Semiconductor microcavities
with embedded quantum dots are among the most promising
objects in these respects. Two regimes of the light-matter
interaction in such systems can be identified. The first one,
weak-coupling regime, is characterized by the relatively
small interaction constant as compared with the decay rates
of the photonic and excitonic states. In this case, the micro-
cavity merely modifies the quantum dot emission rate owing
to the Purcell effect. The second, strong-coupling regime
corresponds to the large coupling constant as compared with
the decay rates which makes possible the coherent energy
transfer between the quantum dot and a cavity resulting in
formation of the mixed, half-light—half-matter states called
exciton-polaritons. Such a strong-coupling regime was ob-
served recently in semiconductor microcavities with quan-
tum dots.1,2

On the face of it, the light-matter interaction in quantum
dot in a cavity systems seems to be quite similar to that
studied extensively in atomic physics,3–5 however, the solid-
state realization of the strong coupling is quite specific. On
one hand, the implementation of artificial objects such as
quantum dots opens possibilities to make system more com-
plex and tunable as compared with the atomic beams but on
the other hand, inevitable randomness resulting from the
technological process and specifics of the energy transfer
processes in solids play important role and should be explic-
itly taken into account. As a result, earlier approaches6–8 are
not directly applicable and the advanced formalism is
demanded.9

Although, in most of the experimental and theoretical
studies the simplest possible situation of one quantum dot
being close in energy to the cavity resonance was considered
so far,10,11 it is feasible to achieve the strong coupling for
multiple quantum dots,12,13 which gives rise to the peculiar
interference effects already for two quantum dots, as sug-
gested in Refs. 13–15. Theoretical analysis16 demonstrated
that, at the weak pumping where both cavity mode and quan-

tum dots can be treated as classical harmonic oscillators the
optical properties are dominated by the superradiant mode
which can be considered as a collective in-phase oscillation
of quantum dot dipole moments.17–19 In perfect systems this
mode is the only one which interacts with a photon and the
coupling is strongly enhanced as compared with the single-
dot case. The superradiant mode is relatively stable to the
impact of disorder �i.e., spread of quantum dot resonant en-
ergies� and can be even stabilized by the allowance for the
interdot tunneling.16

The increase in the pumping rate yields the increase in the
electric field in a cavity and of the exciton dipole moment
oscillation amplitudes. Thereby, the model of the classical
oscillators becomes violated and the unharmonicity effects
have to be taken into account. Important questions in this
respect are �i� how the emission spectra of the strongly
coupled system of quantum dots and cavity change as a func-
tion of pumping and �ii� whether the superradiant mode sur-
vives to some extent in the nonlinear regime? The present
paper is devoted to the theoretical study of these questions.

We demonstrate here that the emission spectra per se pro-
vide an important insight into the physical processes in-
volved in the quantum dots in microcavity system. The main
results of our paper can be summarized as follows: �1� the
emission spectra of the single quantum dot detuned from the
cavity resonance strongly depends on the pumping rate: it
transforms from the doublet with dominant dot emission line
to the single-peak spectrum positioned near the cavity reso-
nance with an increase in the pumping power. �2� In the case
where the spread of resonance energies of quantum dots is
negligible, the nonlinear emission spectra at moderate pump-
ing rates exhibit either a single or a double peak structure
depending whether the number of dots in a cavity is even or
odd, respectively. �3� At relatively high pumping rates the
emission shows a single line whose width decreases with an
increase in the pumping being a signature of the lasing re-
gime.

It is the allowance for the incoherent pumping of the ex-
citonic states and the spread of the quantum dot resonance
energies as well as the possibility to have small number of
dots near the cavity resonance that make the emission spectra
more informative and differ our model from the Tavis-
Cummings model, well known in the atomic physics.8,20

PHYSICAL REVIEW B 82, 205330 �2010�

1098-0121/2010/82�20�/205330�12� ©2010 The American Physical Society205330-1

http://dx.doi.org/10.1103/PhysRevB.82.205330


The paper is organized as follows: Sec. II describes the
model assumptions and outlines the calculation procedure.
We demonstrate that in the strong-coupling regime with
well-defined polariton states, the optical spectra can be found
from the kinetic equation. An advantage of this approach
over the full density-matrix calculations,21 besides lower
computational costs, is the possibility to derive transparent
analytic answers for the optical spectra. In Sec. III the devel-
oped method is applied to the case of a single quantum dot
where the results known in the literature are reproduced in a
simple fashion in the case of a dot being degenerate with the
cavity mode. We also consider in this section the situation of
a dot detuned from the cavity mode and demonstrate the
specific properties of the emission spectra. Section IV is de-
voted to the case of several quantum dots in a cavity and the
quantum dot number parity effects are studied there in detail.
To a certain extent, our results are valid in the case of a
single quantum dot with multiple size-quantization levels in
the vicinity of the photonic mode resonance, studied in Ref.
22. Concluding remarks are presented in Sec. V. Derivation
of analytical results for the microcavity with single dot is
presented in Appendix A. The effects of exciton-exciton in-
teractions are briefly discussed in Appendix B.

II. MODEL

We are interested in the microcavity with N embedded
quantum dots. It is assumed that only one photonic mode of
the cavity is of importance, i.e., it is close enough to the
quantum dot transition energies. Each quantum dot is de-
scribed as a two-level system where the ground state corre-
sponds to the empty quantum dot and the excited state cor-
responds to the dot occupied by a single electron-hole pair
�exciton�. Such an assumption is readily realized for the
small quantum dots whose effective size is smaller as com-
pared with the exciton Bohr radius.23 For the purposes of the
present paper the spin degrees of freedom of photons and
excitons are disregarded.

Under above assumptions the Hamiltonian of the studied
system can be written in the following form:24

H = ��Cc†c + �
i=1

N

��X,ibi
†bi + �g�

i=1

N

�c†bi + cbi
†� . �1�

Here �C is the resonance frequency of the cavity, �X,i
�i=1, . . . ,N� are quantum dot resonance frequencies, c† and
c are the creation and annihilation operators for the photon
mode, respectively, and bi

† and bi are the analogous operators
for the quantum dot modes. Cavity mode is bosonic while
quantum dots are treated as two-level systems. Therefore op-
erators bi

† and bj obey Fermi commutation rules for i= j
�bi

†bi+bibi
†=1� while for different i� j quantum dot opera-

tors simply commute.25 The last term in Eq. �1� describes the
coupling between the excitons and photon, �g is the coupling
strength. It is assumed here that the coupling constant is
identical for all dots. This assumption implies that �i� the
typical interdot distances are small as compared with the
wavelength of the light so that the same amplitude of the
electric field is acting on each dot and �ii� exciton oscillator

strengths for different dots are identical. In realistic
structures12,13 the spread of the coupling constants is on order
of 15% and, hence, it is much less important than the spread
of the resonant frequencies. The developed theory can be
easily extended to include different coupling strengths.26

We disregard the biexcitonic states in our approach since
their binding energy is about several millielectronvolts,27–29

exceeding exciton-light coupling constant by about an order
of magnitude. The two-photon lasing of a microcavity tuned
to the biexciton resonance is analyzed in Ref. 30.

The different nature of photon and exciton states makes it
impossible to consider the dynamics of the coupled quantum
dots/microcavity system in a model of classical harmonic
oscillators. Indeed, the quantum dot cannot accommodate
more than one exciton, although the number of photons in
the cavity is not limited. At small pumping densities the ex-
citation is transferred back and forth between the exciton and
photon modes. An increase in the pumping power can result
in the appearance of extra photons in the cavity. These extra
photons cannot be absorbed by the quantum dot but modify
the light-matter coupling instead.

In our model we neglect completely the interaction be-
tween excitons. Clearly, since we model each dot as a two-
level system the number of excitons in any quantum dot is no
more than one and there is no interaction within the same
dot. The Coulomb interaction of excitons in different dots is
neglected as well assuming that it is much smaller than the
coupling constant �g. The effects of interactions are briefly
discussed in Appendix B.

Hamiltonian �1� describes the eigenstates and the energy
levels of the quantum dots in the microcavity in the absence
of pumping and the nonradiative decay of the excitons and
photons. We introduce the pumping rate to the ith exciton
state, Wi, that is the number of excitons generated in a quan-
tum dot per unit of time and the decay rates of the exciton
and photon populations, �X,i �i=1, . . . ,N�, and �C, respec-
tively. The cavity decay rate �C defines the number of pho-
tons leaving the cavity per unit of time due to, e.g., nonzero
transparency of the mirrors, and the exciton population decay
rates �X,i characterize the nonradiative processes in quantum
dots. In the present paper we focus on the strong-coupling
regime where the eigenstates of Hamiltonian �1� are well
defined. Therefore, we assume that �X,i, �C�g �i
=1, . . . ,N�. The requirement of the well-defined states
also imposes a certain restriction on the pumping rate
W�g2 /�C, g2 /�X,i, see below.

Realization of the strong-coupling regime is a challenging
technological task, see Ref. 31 for review. As it has been
demonstrated in Ref. 32, in order to enhance the coupling
constant g, it is necessary to achieve small volume of optical
mode, large overlap between the photon field and exciton
wave function and large exciton oscillator strength. The de-
cay rate for the photonic mode, �C is determined mostly by
the photon escape through the mirrors, scattering on structure
imperfections and nonresonant absorption. At helium tem-
peratures the excitonic damping �X is several times smaller
than photon decay rate �C.11,13 The summary of the coupling
constants and photon mode decay rates is presented in the
Table I.

Hamiltonian �1� describes the energy transfer between the
quantum dots and the microcavity and conserves the total
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number of particles in the system �excitons and photons�.
Therefore, its eigenstates can be labeled by the total number
of particles, m �and by other quantum numbers which take
into account the degeneracy of noninteracting m particle
states, e.g., m photons, 0 excitons or m−1 photons, 1 exci-
ton, etc.�. For instance, for a single quantum dot in the mi-
crocavity tuned exactly to the photon mode, �X=�C, the
states are combinations

��m,0� � �m − 1,1��/�2, �2�

where �nC,nX� denotes the state with the definite number of
photons, nC, and excitons, nX, with energies

Em,� = m��C � �m�g . �3�

These states with different m form Jaynes-Cummings
ladder.6,20 The extension of Eqs. �2� and �3� for the important
cases of a detuned quantum dot and multiple quantum dots in
a cavity are presented below in Secs. III and IV, respectively.
It is seen from Eq. �3� that the energy spectrum of the inter-
acting quantum dot and microcavity depends strongly on the
number of particles. The light-matter coupling strength in-
creases with m.

The manifolds, i.e., the sets of states with fixed m, are
intermixed by the dissipative processes. Namely, the emis-
sion of photon results in the transition from the manifold
with m particles to the manifold with m−1 particle, while the
generation of an exciton in a quantum dot leads to the in-
crease in the number of particles by 1, i.e., to the transition
from the manifold m to the manifold m+1. In the strong-
coupling regime one can describe the populations of the
states in the framework of the distribution function fm,�,
where the subscript � enumerates different states in the
manifold �e.g., �=� in the case of single dot in a cavity, see
Eqs. �2� and �3��. The distribution function is governed by
the phenomenological kinetic equation which has the follow-
ing form:

dfm,�

dt
= − Dm,�fm,� + �

m�=m�1,��

Wm�,��→m,�fm�,��, �4�

where Dm,� is the total decay rate of the state �m ,�� caused
by the transitions to lower and upper manifolds resulting
from the photon escape from the cavity, nonradiative exciton
decay and pumping,

Dm,� = �
m�=m�1,��

Wm,�→m�1,��,

and Wm�,��→m,� are the corresponding transition probabili-
ties. They can be separated into two parts, corresponding to
the photon escape from the cavity, WC, and exciton genera-
tion in ith dot, WX,i,

Wm,�→m�,�� = Wm,�→m�,��
C + �

i=1

N

Wm,�→m�,��
X,i ,

Wm,�→m�,��
C = �C�m�,m−1�cm−1,��;m,��2,

Wm,�→m�,��
X,i = ��X,i�m�,m−1 + Wi�m�,m+1��bm�,��;m,�

�i� �2. �5�

Here cm�,��;m,� and bm�,��;m,�
�i� are the matrix elements of an-

nihilation operators of photon and exciton in ith dot, respec-
tively, taken between the states �m ,�� and �m� ,���. It is
worth to stress that both pumping and decay events change
the number of particles by one, thus coupling only neighbor-
ing manifolds: m, m�1. Note that the manifold number m in
Eq. �4� varies from 0 to infinity, i.e., it includes the ground
state of the system being the state with no particles. The
distribution function obeys the normalization condition

�
m=0

	

�
�

fm,� = 1. �6�

The values of the exciton generation rates Wi in Eq. �5� de-
pend on the particular mechanism of incoherent pumping.
Their microscopic derivation is given in Ref. 16. The model
assumes that the system is excited nonresonantly; i.e., exci-
tons or free electron-hole pairs are generated in excited states
whose energies are far from the photon mode energy ��C.
Thus, the pumping results in a formation of steady distribu-
tion of carriers in excited quantum dots. Interaction with
phonons leads to the relaxation of carriers and excitons from
excited states to the lowest ones that are resonant with the
photon mode. Therefore, the rates Wi are determined by the
distribution function of the carriers in the excited states
and the probabilities of electron-phonon interaction.16 For
the distances between size quantization levels being about
10 meV the relaxation from dark to resonant states is due to
acoustic phonon emission. The wavelength of such phonons
is on the order of 2 nm and considerably smaller than typical
interdot distances, so the exciton generation in different dots
is uncorrelated, see Eq. �5�.16

In the kinetic approach the emission spectra can be calcu-
lated by the Fermi golden rule

TABLE I. Experimental values of coupling strengths g and pho-
tonic decay rates �C for several zero-dimensional quantum micro-
cavities, where strong coupling has been achieved. For Refs. 12 and
13 given values of g correspond to two quantum dots resonant with
photonic mode.

Reference
�g

��eV�
��C

��eV�

Reithmaier et al. �Ref. 1� 80 90

Yoshie et al. �Ref. 2� 85 89

Peter et al. �Ref. 10� 200 140

Henessy et al. �Ref. 11� 100 76

Reitzenstein et al. �Ref. 12� 66, 76 100

Laucht et al. �Ref. 13� 44, 51 147

Dousse et al. �Ref. 33� 44 74
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I��� 
 �
m,�,��

fm,�Wm,�→m−1,��
C ��Em,� − Em−1,�� − ��� �7�

and are determined by the rate of the photon escape from the
cavity Wm,�→m−1,��

C . Here Em,� is the energy of the corre-
sponding state and the � function ensures the energy conser-
vation. The common factor in Eq. �7� containing the mirror
transmission coefficients, etc., is ignored. To derive Eq. �7�
we considered the process of the photon escape from the
cavity and represented the emission intensity as a weighted
with the stationary distribution function fm,� sum over all
manifolds. Within the applicability of the kinetic equation
the line broadening has to be small as compared with the
transition energy, the condition surely satisfied in the strong-
coupling regime. It is seen that Eq. �7� gives infinitely nar-
row emission lines due to the presence of the � functions.

In order to find the linewidths one has to go beyond the
kinetic equation approach and take into account the nondi-
agonal elements of the complete density matrix of the system
�m,�;m�,��. It satisfies the following equation:

d�

dt
=

i

�
��,H� +

�C

2
�2c�c† − c†c� − �c†c�

+ �
i=1

N
�X,i

2
�2bi�bi

† − bi
†bi� − �bi

†bi�

+ �
i=1

N
Wi

2
�2bi

†�bi − bibi
†� − �bibi

†� . �8�

Here the first term describes the Hamiltonian-driven dynam-
ics of the coupled quantum dots and cavity system, second
term describes the photon escape through the cavity mirrors,
and last two terms stand for the nonradiative exciton decay
and nonresonant exciton pumping, respectively.

In the basis of manifolds, the diagonal elements of � are
reduced to the distribution function: fm,�=�m,�;m,�. Taking
the diagonal part of Eq. �8� one immediately arrives to the
kinetic equation �4� with transition rates given by Eq. �5�.
Determination of the emission spectrum requires also knowl-
edge of the off-diagonal elements. To this end, we use the
general expression for the spectrum3

I��� 
 Re	
0

	

dtei�t
c†�0�c�t�� , �9�

where c�t� and c†�t� are the time-dependent field operators
for the cavity mode, the angular brackets denote both quan-
tum mechanical and statistical averaging and express the cor-
relation function of the photonic mode via the density matrix
as

I��� 
 �
m,�,��

fm,�cm−1,��;m,�
� �

m1,�1,�1�

cm1−1,�1�;m1,�1

� �̃m1,�1;m1−1�1�
�m,�,��� ��� . �10�

Here

�̃m1,�1;m1−1�1�
�m,�,��� ��� = Re	

0

	

dtei�t�m1,�1;m1−1�1�
�m,�,��� �t� ,

where �m1,�1;m1−1�1�
�m,�,��� �t� are the time-dependent solutions of the

total density matrix, Eq. �8�. The superscripts m ,� ,�� in
Eq. �10� label the manifold, populated at t=0, so the initial
conditions read �cf. Refs. 3 and 34�

�m1,�1;m1−1�1�
�m,�,��� �0� = �m,m1

��,�1
���,�1�

. �11�

Thus, each term in the sum �10� with given indices m and �
is proportional to the stationary population fm,�,
similarly to Eq. �7�. In derivation of Eq. �10� we took into
account that, in the strong-coupling limit, the stationary
density matrix �st is diagonal in the basis of the manifolds,
and can be found from the kinetic equation �4�, �m,�;m�,��

st

=�m,m���,��fm,�.
Equation �10� is the particular case of the more general

expression presented in Ref. 21 which is valid for the arbi-
trary coupling strength. In our case, the strong-coupling con-
dition results in the substantial reduction in the computa-
tional costs since much smaller number of the nondiagonal
elements of the density matrix are to be calculated. If one
neglects dissipative processes completely, then

�m1,�1;m1−1�1�
�m,�,��� = e−i�Em,�−Em−1,���t/��m,m1

��,�1
���,�1�

,

and Eq. �10� reduces to Eq. �7�.

III. SINGLE QUANTUM DOT

In this section we analyze emission spectra of a microcav-
ity with a single quantum dot. Our calculation technique is
tested in well-studied case of zero detuning between exciton
and the photon mode21,35,36 ��C=�X� and then applied to a
general case, �C��X.

A. Resonant quantum dot

Photoluminescence spectra for zero detuning, calculated
for different rates of incoherent pumping rate W, are shown
in Fig. 1. Variation in the ratio between pumping and decay
rates controls the population of the Jaynes-Cummings states,
Eq. �2�. Radiative transitions between these states determine
optical spectra. Several regimes of light emission are re-
solved for different pumping rates:

�a� Linear regime, W��C, see Fig. 1�a�. The mean num-
ber of polaritons 
m��W /�C is much less than unity so that
only the manifolds with m=0 and m=1 are populated, and
f0� f1,�. Photon emission from two states with m=1 results
in the Rabi doublet in spectrum with peaks at

E1,� − E0 = ��C � �g .

In these case photon and exciton modes can be treated as
coupled harmonic oscillators since average number of pho-
tons and excitons in the system is very small and the statis-
tics of these states becomes unimportant.9,16,37,38

�b� Intermediate regime, W��C. The mean number of
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polaritons is on order of unity and several lowest manifolds
are populated. The emission energies correspond to the dif-
ference of level energies in all relevant neighboring mani-
folds, hence, the spectrum has a complex multipeak stucture.
In particular, for the case of Fig. 1�b�, where W=�C, the
peaks correspond to emission from manifolds with m=1–3,
with the energies indicated by vertical lines.

�c� High pumping regime, W��C. The mean number of
photons is much larger than one, 
m��W / �2�C��1. Here,
only the optical transitions between the states �2� with the
same symmetry, e.g., m ,+→m−1,+, are important. The cor-
responding photon energies are

Em,� − Em−1,� � ��C �
�g

2�m
, �12�

resulting in a two-peak emission spectrum, see Fig. 1�c�.
Simple analytical expression

I��� 

1

�� − �0 − geff�2 + 
2 +
1

�� − �0 + geff�2 + 
2 ,

�13�

well describes the spectrum, see Appendix A for details of
derivation. The doublet �13� is characterized by an effective
Rabi splitting 2geff=g /�
m� and peak half width

= �W+�C� /4. Hereafter we neglect exciton nonradiative de-
cay as compared with the photon leakage through the mir-
rors. We note, that although Eq. �13� has a simple form, it is
determined by a lot of optical transitions �12� with different

m. As shown in Appendix A, the interplay between these
transitions due to the fermionic nature of the exciton leads to
the broadening of the peaks with respect to the linear regime,
cf. Figs. 1�a� and 1�c�. Moreover, the distance between the
peaks is much smaller than in linear case because geff�g.
This effect allows semiclassical interpretation since the mean
number of cavity photons is much larger than unity. The
decrease in geff with pumping can be considered as quench-
ing of the optical transition due to the saturation of two-level
dot.39 In agreement with this concept, the average number of
excitons is close to 1/2, just like for a two-level system,
interacting with strong �classical� electromagnetic field.40

�d� The further increase in pumping rate leads to the tran-
sition to lasing regime, which takes place when W is equal to

W� = 2g2/3�C
1/3. �14�

The lasing regime is manifested as single-peak spectrum,
with half width rapidly decreasing when pumping rate
grows. The approximate analytical expression for spectrum
reads

I��� 

1

�� − �C�2 + �g2�C/W2�2 . �15�

In agreement with this result Fig. 1�d� demonstrates that the
emission spectrum becomes much narrower than in the linear
case, cf. solid and dotted curves. The spectral width
�C�g /W�2 is also smaller than the effective Rabi splitting
2geff.

Further increase in the pumping results in the self-
quenching of a single-dot laser regime21,41 and, correspond-
ingly, violates the strong-coupling condition. Indeed, if the
pumping rate exceeds the splitting between the + and −
states in the “actual” manifold, W��
m�g or

W �
g2

�C
,

the states + and − within the given manifold become ill
defined. It is worth noting that, in high finesse microcavities,
with g��C, the characteristic pumping rates separating
different spectral regimes are considerably different,
�C�W��g2 /�C. If W�g2 /�C the strong-coupling regime
is maintained and our results are in the perfect agreement
with those obtained in Ref. 21 by keeping all elements of the
density matrix which provides the justification of calculation
technique presented in Sec. II.

B. Detuned quantum dot

Now we turn to the case when the exciton state is detuned
from the photon mode. Figure 2 presents emission spectra
calculated at different pumping rates W for large detuning
�
�X−�C=5g, and Fig. 3 shows how the mean numbers of
excitons 
nX� and photons 
nC� depend on the pumping rate
for different values of �. The figures reveal nontrivial behav-
ior of spectra and particle statistics when W changes. To
understand it we analyze the eigenstates of Hamiltonian �1�.

Two m-particle states can be considered for sufficiently
large detuning �g�m��� as excitonlike �X� and cavity pho-

FIG. 1. �Color online� Photoluminescence spectra for N=1
quantum dot in resonance with the cavity mode for different pump-
ing rates W. Panels �a�–�d� correspond to W /�C=0.01, 1, 2, and 30,
respectively, and are calculated for �X=�C, �C /g=0.1, and
�X /g=0.01. Energies of the transitions, mainly determining the
spectra, are indicated in panels �a� and �b� by vertical lines. Dotted
curve in panel �d� shows the Lorentzian with half width equal to
�C /2, corresponding to empty cavity spectrum in the linear regime.
Photon mode energy is used as the reference point, the spectra are
normalized to their maximum values.
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tonlike state �C�. Their energies in the second order of per-
turbation theory in g are given by �m=1,2 , . . .�

Em
�C� = m��C − mg2/� , �16a�

Em
�X� = �m − 1���C + ��X + mg2/� . �16b�

Only the excitonlike states

�mX� = �m − 1,1� +
g�m

�
�m,0�, m = 1,2, . . . �17�

are populated by pumping to the quantum dot and they de-
termine the emission spectrum. The first term in Eq. �17�
corresponds to occupied dot and m−1 photons while the sec-
ond one describes a small admixture of the state with empty
dot and m photons.

Let us consider which eigenstates determine the emission
spectra for different pumping. For very small pumping rates,
corresponding to Fig. 2�a�, only the manifold with m=1 is
populated. The spectrum consists of the peak close to the
exciton energy E1

X and very weak peak at the energy E1
C of

the almost empty photonlike state, corresponding energies
are shown by vertical lines in Fig. 2�a�. Such spectrum is
typical for linear in pumping regime at large detuning.16

Interestingly, the state with one exciton, �1X�, becomes
significantly populated already at small pumpings. Indeed,
the pumping rate to this state is just

W0→�1X�
X = W

while its decay rate �determined by the photon escape from
the cavity� is small,

W�1X�→0
C = �C � � g

�
�2

�18�

since photonic fraction is almost negligible in this state. At
W�W�1X�→0

C the dot is already almost completely occupied
while the cavity is still almost empty, 
nC���g /��2� 
nX�
�1, cf. Fig. 3, panels �a� and �b�.

By contrast, the pumping to the second state �2X� is inef-
ficient,

W�1X�→�2X�
X = W � � g

�
�2

� W

while its radiative decay rate is high,

W�2X�→�1X�
C � �C.

Consequently, to populate second state �17� high pumping is
required, contrary to the first state, see the inset of Fig. 3.
Interestingly, that relatively high value of radiative rate
W�2X�→�1X�

C means that even for negligible population of the
state �2X� its contribution to the emission spectrum can be
already important. The frequency of the corresponding peak
is close to the photon mode, E2

X−E1
X=��C+�g2 /�, see

Fig. 2�b�. This peak dominates in the spectrum when the
pumping rate exceeds �C.

Increase in pumping rate up to

W � �C � ��

g
�2

�19�

makes population of the second state �2X� considerable �in
this case W�1X�→�2X�

X �W�2X�→�1X�
C �. At such pumping average

FIG. 2. Photoluminescence spectra for N=1 quantum dot de-
tuned from the cavity resonance for different pumping rates W.
Panels �a�–�d� correspond to W /�C=0.02, 2, 10, and 30, respec-
tively, and are calculated for detuning �X−�C=5g. Other param-
eters are the same as for Fig. 1. Energies of the transitions, mainly
determining the spectra, are indicated in panels �a�–�c� by vertical
lines. Photon mode energy is used as the reference point, the spectra
are normalized to their maximum values.

FIG. 3. �Color online� Average numbers of �a� excitons and �b�
photons as functions of the pumping rate, calculated for the values
of detuning ��X−�C� /g=0,2 ,4 ,5 ,7, indicated at each curve. Other
parameters are the same as for Fig. 1. The inset schematically illus-
trates the three lowest manifolds of Jaynes-Cummings ladder. Ver-
tical arrows indicate radiative and nonradiative transitions between
the excitonlike �X� states, governing the kinetics of the system.
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exciton and photon numbers are both on order of unity, as is
demonstrated by Fig. 3. The further increase in the pumping
rate leads to the population of higher states �17� with m�3.
For higher m the exciton fraction in states �17� is smaller so
that the number of excitons slowly decreases and tends to
1/2, as in case of zero detuning. Thus, the exciton population
has a plateau at �g /��2�W /�C� �� /g�2. This plateau be-
comes more prominent for higher values of detuning, see
Fig. 3�a�.

The ratio between the emission and pumping rates
for m�3 manifolds remains the same as for transition
�2X�→ �1X�, so the photon number increases linearly with
pumping, see Fig. 3�b�. The peak frequency remains approxi-
mately equal to �C+g2 /� �vertical line in Fig. 2�c�� because
the states Em

X are almost equidistant. At even higher pumping
rates, the detuning becomes smaller as compared to the ef-
fective exciton-photon coupling g�nC so that our analysis
presented in Sec. III A for high powers at zero detuning be-
comes applicable. Increase in pumping leads to the transition
into lasing regime with narrowing spectrum, cf. Figs. 2�c�
and 2�d�.

IV. MESOSCOPIC EFFECTS IN EMISSION

In this section we consider the microcavity where N�1
quantum dots are close to the photonic mode resonance. First
we ignore the detuning between the excitonic and photonic
energies and then take detuning into account. It is worth
mentioning that the detuning and spread of exciton frequen-
cies can be controlled by the electric field, as experimentally
shown in Refs. 13 and 42.

In case when all N quantum dots are the same ��X,i=�C,
�X,i
�X, and Wi
W�, emission spectra at low pumping
�NW��C� are determined by the symmetrical, superradiant
mode, where all the excitons oscillate in phase.16,17 Super-
radiant mode belongs to the manifold with m=1 particle,
which consists of N+1 states in total,

E1,SR,� = ��C � �N�g , �20�

E1,dark = ��C, �21�

N−1 of which, given by Eq. �21�, are optically inactive.
These states do not interact with photon since their overlap
with the cavity mode is exactly zero. We call them as dark.43

Thus, the emission spectrum has a two-peak structure with
the splitting between the peaks enhanced by the factor �N.
Increase in the pumping rate leads to the population of the
higher manifolds with m�2. Extra peaks arise in the spec-
trum due to the radiative transitions between the manifolds
m=2 and m=1 since dark states of the first manifold may
serve as final states for the transitions from the second one. If
the number of dots is larger than unity, the transitions be-
tween second and first manifold become manifested at sub-
stantially lower powers as compared with a single-dot case.
This effect is related to the population of the dark states,
Eq. �21�. While the pumping rates to the superradiant and
dark states are the same, the total decay rates D1,dark of the
dark states in the first manifold are much smaller since pho-

ton emission is not possible. For instance, if �C is negligible,
dark states decay only via pumping to the second manifold,
W�1,dark�→2,�

X . Consequently, they are already strongly popu-
lated at small pumping and act as a reservoir for the pumping
of the second manifold. It is similar to the role of the long-
living state �1X� in pumping mechanism considered in the
previous section, when the single dot detuned from the pho-
tonic mode was analyzed.

It turns out that the superradiant regime is destroyed by
the relatively weak pumping. The emission spectra for
N=3 and N=4 quantum dots presented in Figs. 4�a� and 4�b�
at small pumping rate NW=0.2�C already show complex
multipeak structure arising from the population of the higher
manifolds.

Let us now focus on the regime of large pumping. For
W��C the typical number of cavity photons is large, so the
electromagnetic field can be treated classicaly. Then Hamil-
tonian �1� can be considerably simplified by replacement of
the photon creation and annihilation operators c† and c by
their expectation values. For mth manifold expectation val-
ues are approximately equal to �m. Hence, Hamiltonian �1�
has the form

Hm � m��C + �m�g�
i

�bi + bi
†� , �22�

including only excitonic operators. To diagonalize it we
notice that the two-level dot behaves like the spin 1/2. In
particular, bi+bi

† can be presented as 2ŝx
�i�, where ŝx

�i� is
the operator of x projection of spin 1/2 with eigenvalues
�1 /2. After summation over all N dots we obtain the opera-
tor of total spin projection. Its eigenvalues are equidistantly

FIG. 4. Photoluminescence spectra for N=3 �panels a, c, e� and
N=4 �panels b, d, f� quantum dots for different pumping rates W.
Panels �a� and �b�, �c� and �d�, and �e� and �f� were calculated for
NW /�C=0.2, 4, and 30, respectively. Other parameters are the same
as for Fig. 1. Energies of the transitions corresponding to the super-
radiant mode are indicated at panels �a� and �b� by vertical lines.
Photon mode energy is used as the reference point, the spectra are
normalized to their maximum values.

NONLINEAR EMISSION SPECTRA OF QUANTUM DOTS… PHYSICAL REVIEW B 82, 205330 �2010�

205330-7



distributed between −N /2 and N /2, so the spectrum of
Hamiltonian �22� reads

Em,� = �m�C + 2��m�g ,

� = −
N

2
, −

N

2
+ 1, . . . ,

N

2
− 1,

N

2
. �23�

Each state � corresponds to �+N /2 dots with “spin up” and
N /2−� dots with “spin down.” State degeneracy equals to
CN

�+N/2 and the total number of states �23� is 2N. The detailed
analysis of the eigenstates of the Tavis-Cummings Hamil-
tonian �1� of the cavity with N�1 atoms can be found in
Ref. 44. The radiative transitions between manifolds m and
m−1 conserve � in used approximation. Decay and pumping
rates are � independent. Thus, emission spectrum is deter-
mined by the states with the smallest ���, which have the
highest degeneracy. It is important that the smallest value of
��� equals to either 1/2 or 0 depending on the parity of the
number of dots, so

Em,�1/2 − Em−1,�1/2 � ��C �
�g

2�m
�odd N� , �24�

Em,0 − Em−1,0 � ��C �even N� . �25�

These two cases are schematically illustrated in Figs. 5�a�
and 5�b�. We conclude that for odd number of dots and high
pumping rates ��C�NW�W�, where W� is given by
Eq. �14�� the emission spectrum has a two-peak shape, like
for N=1, while for even N it consists of single peak at
�=�C.

Our above analysis is fully confirmed by the results of
numerical calculation presented on Fig. 4. Panels �a�–�f�
show the dependence of spectra for N=3 and N=4 dots on
pumping rate. As we mentioned above, the superradiant
regime is already destroyed at relatively low pumping
NW=0.2�C since the dark states increase the pumping effi-
ciency to the second manifold, see panels �a� and �b�.
At relatively high pumping NW=4�C, shown in panels
�c� and �d�, the distance between peaks for both N=3 and
N=4 becomes smaller due to saturation of oscillator strength,
while individual peaks are wider, just like for a single dot.
However, the spectral shape strongly depends on the parity
of N, the doublet corresponds to N=3 and singlet corre-
sponds to N=4. Finally, at high pumping rates the system is

in the lasing regime, see Figs. 4�e� and 4�f�. Its spectrum
consists of single peak which width decreases with the
pumping power.

Similarly to the case of a single dot, at very high pumping
rates the self-quenching should take place, which is disre-
garded in our consideration. However, this effect is less im-
portant at N�1 since the self-quenching threshold grows
with N.15

To conclude this section we would like to emphasis, that
the specific feature of semiconductor cavity is, besides inco-
herent pumping, the fact that the number of quantum dots
strongly coupled with photonic mode cannot be very large,
N�1...10. Parity-sensitive mesoscopic effects demonstrated
above become then important.

Moreover, the inevitable disorder leading to the spread of
the excitonic resonant frequencies �X,i makes semiconductor
systems particularly different from the atomic cavities. In
order to study the disorder effect we calculated the emission
spectra of three and four quantum dots in a microcavity for
the different realizations of the exciton resonance frequen-
cies, see Fig. 6. For all four curves in Fig. 6 the mean arith-
metic values of the detuning �1 /N��i=1

N ��X,i−�C� were on the
order of the light-matter coupling constant g. Although the
spectra are modified by disorder, the doublet �N=3� can be
still well distinguished from the singlet �N=4�. Thus, we
conclude that the parity-dependent mesoscopic effects in
emission spectra are relatively stable against the disorder.

V. CONCLUSIONS

To summarize, we have developed a kinetic theory of the
nonlinear emission of quantum dots embedded into the semi-
conductor microcavity. We considered the case of the strong
coupling where the light-matter interaction constant is larger
than the damping rates of the cavity mode and exciton, gov-
erned by the photon escape through the mirrors and exciton

FIG. 5. �Color online� Scheme of the radiative transitions for
�a� odd and �b� even numbers of quantum dots N.

FIG. 6. �Color online� Photoluminescence spectra calculated
taking into account inhomogeneous broadening. Thick �solid� and
thin �red� curves correspond to N=3 and N=4 dots, respectively.
Solid and dashed curves were calculated for different particular
realizations of random spread of excitonic energies. The value of
pumping rate was NW=4�C. Arithmetic mean values of the detun-
ing are 
��X,i−�C�� /g�0.4, 0.5, 0.6, and 1 for thick solid, thick
dashed, thin solid, and thin dotted curves, respectively. Other pa-
rameters are the same as for Fig. 1. Photon mode energy is used as
the reference point, the spectra are normalized to their maximum
values.
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nonradiative decay, respectively. In this case the eigenstates
of the system belonging to the manifolds with the total par-
ticle number m are well defined so that the emission spectra
can be found from the Fermi golden rule. The populations of
the coupled photon-exciton states are determined by the ki-
netic equation which takes into account both pumping and
decay processes. The linewidths of the emission spectra are
found as corrections to the kinetic equation.

Our method was tested in the case of a single quantum dot
in a microcavity being resonant with the photonic mode. In
the strong-coupling regime we reproduced the results of
Ref. 21. The transition from the linear regime with Rabi
doublet via multipeak spectrum to the narrow emission line
being the characteristic of the laser is demonstrated.

We have studied in detail the case of a single dot detuned
from the cavity mode. At low pumping rates the emission is
dominated by the quantum dot line. An increase in the pump-
ing results in the population of the second manifold and the
emission line is close to the cavity position. Even higher
pumping results in the line narrowing and transition to the
lasing regime similarly to the case of the resonant quantum
dot.

The eigenmodes of the interacting cavity-quantum dots
system can be found analytically in the case of large photon
number where the cavity field is classical and the light-
matter coupling can be formulated in the terms of angular
momentum. In the situation where several dots are embedded
into the microcavity the emission spectra are shown to dem-
onstrate parity effect: at relatively strong pumping there are
one or two peaks in the spectrum depending on whether the
dot number is even or odd, respectively. This parity effect is
relatively robust to the spread of exciton resonance energies
caused, e.g., by the disorder. To conclude, the nonlinear
emission spectra of the quantum dots in a cavity provide
important information both about light-matter interaction and
about the quantum dot ensemble.
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APPENDIX A: ANALYTICAL SOLUTION FOR SINGLE
QD IN MICROCAVITY

In this appendix we present analytical solutions for polar-
iton distribution function and emission spectrum of single
quantum dot, strongly coupled with microcavity photon
mode. The detuning is neglected, �C=�X.

We consider relatively high pumping, W��C, so that the
spectrum is determined by high manifolds, m�1. Moreover,
the strong-coupling regime is assumed, i.e., g��C,
�mg�W, the exciton decay is neglected. In this case only
states with the same symmetry are coupled by the photon
annihilation operator,

cm−1,�;m�� � �m��,��. �A1�

Clearly, under these assumptions states �=+ and �=− are
equally populated. First we need to determine the stationary
distribution function of polaritons fm= fm,++ fm,−=2fm,+
=2fm,−. Under the assumption Eq. �A1� kinetic
equation �4� reads

dfm

dt
= − �Cmfm + �C�m + 1�fm+1 +

W

2
�fm−1 − fm� .

�A2�

Since typical values of m are high, the discrete function fm
can be replaced by continuous distribution f�m�. Finite dif-
ference Eq. �A2� then, at steady state, becomes differential
equation

�m + 
m��
d2f

dm2 + 2�m − 
m��
df

dm
+ 2f = 0, �A3�

where 
m�=W / �2�C�. The solution of Eq. �A3�, describing
the distribution function, reads

f�m� 
 �m + 
m��4
m�+1e−2m, �A4�

where the normalization constant to be determined from
Eq. �6� is omitted. Equation �A4� describes the statistics of
cavity polaritons, their distribution over m tends to the
Gaussian one at 
m��1,

f�m� 
 exp�−
�m − 
m��2

2
m� � �A5�

with 
m� being the average number of polaritons.
Now we proceed to the calculation of emission

spectrum. In the strong-coupling regime the only relevant
off-diagonal components of the density matrix are those with
�=��, which can be presented as �m,�;m−1,�
= �am� ibm�exp�−i�Ct�, where am and bm are real coeffi-
cients. Equation �8� leads to

ȧm�t� = gmbm�t� +
W

2
�am−1�t� − am�t�� + ��Ca�m,

ḃm�t� = − gmam�t� −
W

2
bm�t� + ��Cb�m, �A6�

where gm
g��m−�m−1� and the term

��Cd�m = �C��m�m + 1�dm+1 − �m −
1

2
�dm�, d = a,b

�A7�

describes the cavity decay. Initial conditions �11� are

am�0� = �mfm, bm�0� = 0 �A8�

and emission spectrum �10� is given by
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I��� 
 �
m

�m	
0

	

cos��� − �C�t�am�t�dt . �A9�

Similarly to kinetic equation, system �A6� can be solved ef-
ficiently by introducing continuous functions a�m� and b�m�,
which satisfy differential equations

da

dt
= gmb −

PX

2

da

dm
+ �C�a + m

da

dm
� ,

db

dt
= − gma −

PX

2
b + �C�b + m

db

dm
� . �A10�

Keeping in mind initial conditions �A8� we seek the solu-
tions of Eq. �A10� in the form

a�m� = �mf�m�A�t�, b�m� = �mf�m�B�t� . �A11�

To proceed further we integrate �A10� over m using identities

	 dma�m� � �
m�A, 	 dm�ma�m� � 
m�A ,

	 dmm3/2 da

dm
� −

3
m�
2

A, 	 dm�m
da

dm
�

A

2
,

	 dm��m − �m − 1�a�m� � −
A

2
, �A12�

which follow from Eqs. �A5� and �A11� in the leading order
in 
m�. The functions A�t� and B�t� satisfy the coupled dif-
ferential equations

dA

dt
= geffB,

dB

dt
= − geffA − 2
B �A13�

with initial conditions A�0�=1, B�0�=0, where geff
�g / �2�
m�� and 
= �W+�C� /4. The solution reads

A�t� = exp�− 
t��cos �t +



�
sin �t� �A14�

with �=�geff
2 −
2. Finally, the emission spectrum is obtained

by Fourier transformation, I���
 
m��0
	cos���−�C�t�A�t�dt.

At a threshold value of the pumping, W=W�
2g2/3�C
1/3

the � turns to zero. The spectrum has different form, de-
pending on the relation between the pumping rate W and W�.
For W�W� the value of � is real and the spectrum has
two-peak shape

I��� 

2� − � + �C

�� − �C − ��2 + 
2 +
2� + � − �C

�� − �C + ��2 + 
2 .

�A15�

The peak width is increasing with pumping. At relatively
low ��C�W�W�� pumping rates �A15� can be simplified to
Eq. �13�. Above the threshold the spectrum has single-peak
shape

I��� 

1

�� − �C�2 + ���� − 
�2 +
1

�� − �C�2 + ���� + 
�2 .

�A16�

Only the first term in Eq. �A15� is of interest at high pump-
ing �W�W��, leading to the peak �15�, narrowing when W
increases. We remind that our theory is valid at
W�g2 /�C�W�� �g /�C�4/3. At very high pumping rate the
laser self-quenching takes place.21,41

APPENDIX B: EFFECTS OF THE BLUESHIFT,
RANDOM SOURCES APPROACH

In this appendix we consider the effects of exciton-
exciton interactions on the emission spectra of quantum dots
embedded in the microcavities. In order to elucidate the role
of interactions we use classical model of Ref. 16 and treat
excitons and photons as classical oscillators �quantum treat-
ment for the model case of interactions is presented in
Ref. 45 and for the lasing regime in Ref. 46�. These oscilla-
tors are conveniently described by the dimensionless exciton
polarizations Pi= 
bi� �i=1, . . . ,n� and dimensionless electric
field amplitude in the cavity E= 
c�. Corresponding linear
equations of motion can be derived from Hamiltonian �1� by
considering Heisenberg equations of motion for the excitonic
and photonic operators, taking average of the Heisenberg
equations and neglecting high-order correlators of exciton
fields. So far, exciton-exciton interactions were disregarded.
In the semiclassical approach they can be introduced as non-
linear terms in the coupled oscillators model,

dE

dt
= − �i�C +

�C

2
�E + g�

i

Pi, �B1a�

dPi

dt
= − �i�X,iPi +

�X,i

2
+ �

j

� ji�Pj�2�Pi + gE + wi�t� ,

i = 1, . . . ,N . �B1b�

Equation for the cavity field remains linear while the equa-
tions for the polarizations, Eq. �B1b�, acquire anharmonic
contributions described by the real coefficients � ji which de-
termine energy shift of ith exciton due to the interaction with
jth exciton. Rigorous derivation of P3 terms and discussion
of their microscopic origin is out of the scope of this paper.
Terms wi�t� in Eq. �B1b� are the random forces which deter-
mine exciton generation in quantum dots.16

In order to make the analysis more transparent we, instead
of studying Eqs. �B1a� and �B1b� in their complexity, focus
on the single exciton in one quantum dot and take into ac-
count simplest possible interaction in the form ��P�2P. The
frequency spectrum of such an oscillator driven by the white-
noise random force


w�t�w�t��� = W��t − t�� ,

where the brackets denote averaging over the different real-
izations of the pumping, is related to the joint probability
F�P , t ; P� , t��, which can be rigorously determined by
Fokker-Planck equation technique.47,48
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Similarly to Eq. �9� in the quantum case, the spectrum
reads


�P����2� 
 Re	
0

	

dt
P�t�P��0��ei�t �B2�

where the correlator 
P�t�P��0�� is given by


P�t�P��0�� =	 	 PP��F�P,t;P�,0�d2Pd2P�, �B3�

and d2P
d Re Pd Im P. Joint probability can be expressed
as47

F�P,t;P�,0� = G�P,t�P�,0�F�P�� �B4�

via the conditional probability G�P , t � P� ,0� and the station-
ary distribution function F�P��
 limt→	 G�P� , t � P� ,0�. The
conditional probability satisfies Fokker-Planck equation47

�G�P,t�P�,0�
�t

= L�P,P��G�P,t�P�,0� ,

G�P,0�P�,0� = ��P − P�� ,

L�P,P�� = �i��0 + ��P�2� +
�X

2
� �

�P
P + c.c. + W

�2

�P � P� .

�B5�

Equation �B5� allows analytical solution for arbitrary
pumping.49 For relatively high pumping rate the spectrum is
nonzero only for �−�X�0 and takes the form


�P����2� 
 W�� − �X�exp�−
� − �X

�
nX�
�, � � �X.

�B6�

We introduce the parameter 
nX�=W /�X which characterizes
the stationary excitonic population 
�P�t��2�, it depends both
on pumping strength and on the excitonic decay rate but it
does not depend on the value of the nonlinearity. It follows
from Eq. �B6� that the emission spectrum of the system is
strongly asymmetric, the maximum position is shifted by
�
nX� from the noninteracting position. Moreover, the spec-
trum is strongly broadened: its width is of the same order as
the energy shift. Equation �B6� can be understood as follows.
For the strong nonlinearity, where �
nX���X the shape of
the spectrum is determined by the fluctuations of the exci-
tonic population nX.49 The steady state distribution of nX is
the same as for �=0, i.e., it is described by the Poisson
formula. In this case the root-mean-square value of fluctua-
tions of nX is proportional to the average population 
nX�.
The spectrum is also asymmetric since interactions blueshift
exciton energy only, hence, high energy wing is larger than
low energy one.

The very same considerations can be applied for the sys-
tem of coupled dots and microcavity. The pumping results in
the blueshifts of exciton energies and increase in the exciton
resonance widths. As a result, the light-matter coupling be-
comes weaker. It is worth to stress that the blue shift and
broadening are contributed by all particles in the system,
including the excitons generated in the higher energy states
and in the wetting layer. For rather realistic pumping rates
the blueshift can reach about 1 meV �see, e.g., Ref. 50�,
hence the broadening of the exciton state due to the particle
number fluctuations can exceed the Rabi splitting 2g being
less than 0.5 meV in the state-of-the-art structures, see
Table I. Therefore, the observation of the nonlinear effects
for quantum dots embedded into the microcavities may be
hindered by the particle number fluctuations.
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