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We present an application of time-dependent density-functional theory �TDDFT� to the study of the optical
properties of the Si�111�2�1 surface from the infrared to the ultraviolet. We have carried out ab initio
calculations using different methods, from DFT to Bethe-Salpeter equation �BSE� and, within TDDFT, we have
tested the ability of different kernels to describe the optical features in a wide range of energies. We find good
agreement between TDDFT and BSE results, by using in TDDFT a long-range frequency-dependent exchange-
correlation kernel derived from the many-body formalism �the MB kernel�. The agreement between theory and
experiment is very good in the whole frequency range studied. Excitonic effects, important in the infrared part
of the spectrum, are less pronounced in the visible and UV ranges.
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I. INTRODUCTION

The inclusion of the electron-hole �e-h� interaction is cru-
cial to obtain optical absorption spectra of nanostructures,
surfaces, and bulk materials in good agreement with
experiments.1,2 Such interaction leads to two effects: the cre-
ation of bound electron-hole states �excitons� within the one-
particle gap, and a distortion of the continuous spectrum
above the gap. Both effects are generally present, though
bound excitons are not observed when the e-h interaction is
so weak that their binding energy is smaller than the thermal
broadening or the experimental resolution. The first ab initio
calculation of optical spectra with the inclusion of excitonic
effects by solving the Bethe-Salpeter equation �BSE� within
many-body perturbation theory �MBPT� appeared in 1995
�Ref. 3� for a small molecular cluster. Only in 1998, how-
ever, the case of excitons in extended systems was
studied.4–6 The ingredients of the calculations have a simple
physical meaning �the bare and screened e-h interactions, v
and W, respectively� and the results compare well with ex-
perimental data.

The BSE is generally rewritten as an eigenvalue problem
whose dimension is given by the number of e-h pairs con-
sidered. As a consequence, its solution can be particularly
demanding, preventing its application to complex systems
like surfaces. In fact, in these systems the large number of
single-particle states dramatically increases the dimension of
the BS equation.

An alternative approach to calculate the absorption spec-
tra is the time-dependent density-functional theory
�TDDFT�.7 In the last years TDDFT has emerged as a pow-
erful tool for the description of excited states �especially for
finite and molecular systems�8,9 alternative to more cumber-
some quantum chemical methods such as configuration inter-
action. TDDFT is, in principle, exact for neutral excited-state
properties, and its simplicity relies on the fact that the two-
point response function ��r ,r� ,�� is needed, instead of the
four-point function of the Bethe-Salpeter approach.

However, the exact exchange-correlation �xc� kernel �fxc�,
a key ingredient of TDDFT, is unknown; hence approxima-
tions are employed. The simplest and most commonly used,
the adiabatic local-density approximation �ALDA or
TDLDA�, is known to fail in extended systems �such as sur-
faces�. More refined kernels have been recently
proposed10–13 but never tested on surfaces. In,10,14 a nonlocal,
static kernel with the correct long-range behavior has been
successfully applied to three-dimensional systems. In Refs.
11–13 a more elaborated nonlocal and energy-dependent fxc,
derived within the MB framework, has been presented; it has
been applied, up to now, only to one-dimensional15 and
three-dimensional11–13 systems, yielding spectra very similar
to BSE and experimental ones.

In this paper, we study the performance of the MB TD-
DFT kernel, proposed in Refs. 11–13, to calculate the optical
spectra of the Si�111�2�1 surface: a paradigmatic two-
dimensional system. This surface exhibits clear bound
surface-state excitons that have been already described
theoretically16 by using the Bethe-Salpeter equation. In par-
ticular, we show here that this MB-based kernel reproduces
the bound excitons in the infrared �IR� energy range of the
Si�111�2�1 surface, and also correctly describes the high-
energy range. We calculate the linear response of the surface
up to the visible and ultraviolet energy range �where only
tight-binding calculations17 have been carried out so far�,
explaining the differences with respect to the independent
particle approximation in terms of correlation effects. More-
over, we test the reliability of a simpler long-range, nonlocal,
and energy-independent kernel,10 to describe both regimes.

II. TIME-DEPENDENT DENSITY-FUNCTIONAL
THEORY

TDDFT is, in principle, exact and represents a promising
and simple alternative to the BSE. Indeed, TDDFT requires
the knowledge of the density response function ��r , t ;r� , t��,
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in contrast to the BS equation where the full, four-point, e-h
Green’s function is needed.

TDDFT casts all many-body effects into the
dynamical exchange-correlation kernel fxc�r� , t ;r�� , t��
=�vxc�r� , t� /���r�� , t��, where vxc�r� , t� is the time-dependent
exchange-correlation potential. The absorption spectra can
be rewritten in terms of the time Fourier transformed �, that
TDDFT defines as a solution of a Dyson-type equation

��r�,r�� ;�� = �0�r�,r�� ;�� +� � dr̃�dr̄��0�r�, r̃�;��

�� 1

�r̃� − r̄��
+ fxc�r̃�, r̄�;�����r̄�,r�� ;�� , �1�

with �0�r� ,r�� ;�� the independent-particle susceptibility. A re-
liable calculation of the absorption spectra depends on how
good is the approximation used to describe fxc�r� ,r�� ;��.

The simplest approximation, the adiabatic extension of
the static LDA �ALDA�, is surprisingly good in molecules
and small clusters,8 where the Hartree contribution is domi-
nant. However, in extended systems, where the xc compo-
nent �fxc� becomes more important, ALDA fails in describing
excitonic effects.18 This failure has been traced back to the
lack, in the ALDA, of the long-range spatial tail of the ker-
nel, reflecting the −1 /r electron-hole interaction at large
distances.12 In the last years several attempts to include the
correct long-range tails have been proposed. A simplified
scheme, proposed in 2002 by Reining et al.,10 consists in
approximating the TDDFT kernel, in momentum space, with
the expression −� /q2, which, by construction, has the right
asymptotic behavior of the exact TDDFT kernel. Here, we
refer to this kernel as the Reining Onida Rubio Olevano
�RORO�. The constant � is material dependent and can be
determined by fitting the bulk optical spectra.14,19

Instead, starting from the many-body framework, several
groups, following different approaches, have shown in the
last years that it is possible to derive a spatially nonlocal and
energy-dependent kernel that is completely parameter free.
Reining and co-workers11 have assumed the equivalence of
the four-point polarizability of the BS equation with the two-
point polarizability of TDDFT, that is rigorous only for the
two-point contraction of the BS equation polarizability. An
alternative approach,12,13 instead, used the BS equation to
derive a perturbative expansion of the fxc in powers of the
screened e-h interaction W. The first order of this expansion,
shown in Eq. �2�, reduces to the expression found by Reining
and co-workers. This same first-order expression for fxc has
been later obtained by using a density-functional approach to
the MBPT.20 From now on, we will refer to this kernel as to
the MB kernel.

The MB xc-kernel fxc
MB has been shown to yield optical

spectra of bulk semiconductors11,12 and insulators13 in very
good agreement with BS equation results and experiment.
Noticeably, fxc

MB has been proved to correctly account for
strongly bound excitons in wide-gap insulators, such as LiF
and SiO2,13 and in one-dimensional polymers.15

According to Refs. 12 and 13, the MB xc kernel is written
as

fxc
MB�r�,r�� ;�� =� � dr̄�dr̃��QP

−1 �r�, r̄�;��P�1��r̄�, r̃�;���QP
−1 �r̃�,r�� ;�� ,

�2�

P�1� being the first order W contribution to the irreducible
polarizability P.21 P�1� is strictly related to the exciton
Hamiltonian, which, however, is not diagonalized in this ap-
proach. The perturbative stability of fxc is ensured by the
exact inclusion of the GW induced gap correction in the
quasiparticle polarizability �QP to all orders.13 Then, the ir-
reducible polarizability is calculated according to the TD-
DFT formulation,

P��� = �QP��� + �QP���fxc
MB���P��� . �3�

Since P and fxc are all two-point quantities, TDDFT is, in
principle, computationally less demanding than the BS equa-
tion and could be employed in the case of more complex
systems, such as surfaces, nanostructures, biological mol-
ecules, etc., where the BS equation is hardly usable. Surfaces
are particularly difficult to study, since a large number of k
points and of transitions must be included in the excitonic
Hamiltonian. As a consequence, the optical spectra of sur-
faces are, in general, calculated in a small energy range
above the gap, in order to reduce as much as possible the
dimension of the BS kernel. Although TDDFT provides a
potentially efficient tool to overcome this limitation, the per-
formance of the MB xc-kernel is unknown in the two-
dimensional case. Testing the performance of this kernel is
the main purpose of this work.

III. Si(111)2Ã1 SURFACE

The Si�111�2�1 surface reconstruction is well described
by Pandey’s 	-bonded chain model,22 where the atoms in the

first layer form zigzag chains along the �11̄0� direction.
Filled and empty surface bands occur within �or close to� the
bulk gap, due to the dangling bonds of first-layer atoms. The
first determination of surface states with optical means ap-
peared in 1968 when Chiarotti and co-workers measured the
surface differential reflectivity �SDR� of Ge�111�2�1.23 In
SDR experiments, the reflectance of the chemisorbed surface
�oxidized in that case� is subtracted from that of the clean
surface, the difference being surely related to the surface. In
1971 a similar experiment was carried out on Si�111�2�1.
SDR shows, for both materials, a peak at 0.45 eV, related to
transitions across surface states.24 Later SDR experiments,
carried out with polarized light, showed that these peaks oc-
cur just for light polarized along the surface chains25 �y po-
larization in Fig. 1�. Such large anisotropy in surface optical
properties is a clear-cut demonstration of the validity of Pan-
dey’s chain model for Si and Ge�111�2�1 surfaces.

Optical spectra have been measured for Si�111�2�1 not
only in the infrared,24,25 where transitions across surface
states occur, but also in the visible and ultraviolet, up to 3.5
eV, by SDR �see Fig. 1� �Ref. 26� and up to 4.5 eV by
reflectance anisotropy spectroscopy �RAS� �Refs. 27 and 28�
�see Fig. 2�. RAS �Ref. 29� is an experimental technique
used nowadays as a practical tool to characterize surfaces
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and interfaces. It is a high resolution and nondestructive op-
tical technique that achieves surface sensitivity by measuring
the difference in reflectivity of normal incident light, for two
perpendicular directions on a surface. This geometry leads to
a cancellation of the bulk isotropic contribution for cubic
crystals.

The reflectance anisotropy spectrum is defined as


R

R
=


Ry − 
Rx

R
,

where

Ri

R is the correction �for light polarized along the i
direction� to Fresnel’s reflectivity, accounting for the nonlo-
cality, anisotropy, and inhomogeneity of the surface dielec-
tric tensor. In a repeated slab geometry the RA signal turns
out to be equal to


Ri

R
=

4�d

c
Im

4	�ii
hs

�bulk − 1
,

where �ii
hs is the half-slab polarizability.30 This can be calcu-

lated according to various approximations, even including
MB effects within BSE or TDDFT.

Tight-binding calculations31 first, and BS equation calcu-
lations later,16 have shown that the optical spectrum of this
surface in the infrared range is dominated by a quasi-one-
dimensional surface-state exciton, with large binding energy
�0.27 eV�, that takes most of the oscillator strength of the
transitions across surface states. According to this picture,
this bound exciton generates the absorption peak appearing
in experiments at 0.45 eV �Refs. 24, 27, and 28� �see Figs. 1
and 2�, whose observed asymmetry is most probably due to
phonon replicas. The peak calculated within the independent
quasiparticle approximation �GW� occurs instead at about
0.8 eV �see Fig. 3�. For what concerns the visible range,
RAS calculations have been carried out so far only within a
single-particle, semiempirical tight-binding scheme.17

Here, we will first show BS equation calculations from
the infrared to the UV, then we will use them as a benchmark
to assess the accuracy of the TDDFT approach.

IV. QUASIPARTICLE CORRECTIONS

In agreement with previous results,16,32 a GW minimum

gap of about 0.75 eV between the surface states �near J̄� is
obtained.33 While the quasiparticle electronic gap between
surface states opens, with respect to the DFT-LDA states, by
about 0.4–0.5 eV, the GW corrections between bulk states
are about 0.6–0.7 eV. The resulting quasiparticle surface
band gaps are shown in Table I, where also experimental data
taken from Refs. 34–37 are reported. As in previous
works,16,32 the agreement with experiments is good, also
considering the significant discrepancy between the data,
which are obtained using different techniques. This point has
been discussed in details in Ref. 31, and in the case of highly
n-doped samples will be the object of a forthcoming
publication.38

V. OPTICAL SPECTRA

The RAS spectrum calculated within the independent-
quasiparticle approximation �GW� is shown in Fig. 3. The
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FIG. 1. �Color online� Experimental SDR spectrum of
Si�111�2�1 for light polarized along the silicon surface chains
�y polarization, red dashed line� and perpendicular to the chains

�x polarization, black line� �Ref. 26�; y is the �11̄0� direction, x is

the �112̄�.

0 1 2 3 4 5
Energy (eV)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

(R
y-R

x)/
R

FIG. 2. Experimental RAS spectrum of Si�111�2�1 by Goletti

et al. �Ref. 28�, y is the �11̄0� direction �parallel to the chains�, x is

the �112̄� �perpendicular to the chains�.
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FIG. 3. �Color online� Calculated RAS for Si�111�2�1 within

GW and BSE. y is the �11̄0� direction �parallel to the chains�, x is

the �112̄� �perpendicular to the chains�.
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infrared peak appears at 	0.8 eV, while it occurs at 0.45 eV
in the experiments. Using the BSE �Ref. 39� �see Fig. 3�, we
recover the results of the calculations of Reining and Del
Sole �carried out in 1991 within semiempirical tight
binding�31 and of the more recent ab initio BSE calculations
by Rohlfing and Louie.16 The BSE predicts a strongly bound
exciton at about 0.45 eV in both cases.

GW calculations show a qualitative agreement with the
experiment �see Fig. 2�. We distinguish three different energy
regimes, as related to the character of the optical transitions:
in the IR �E�1.1 eV� the RAS is dominated by a sharp
surface exciton peak. Below the bulk direct gap �E
�3.4 eV� we observe mixed surface-state/bulk-state excita-
tions, that turn to purely bulk-state transitions above it �E
3.4 eV�. The BSE results are overall similar to GW ones
but improve the agreement with the experimental RAS
shown in Fig. 2. The agreement between theory and experi-
ment is surprisingly good also for the fine details in the vis-
ible: the experimental RAS has negative structures at 2.1 and
3 eV and a negative plateau in between, a spike at 3.4 eV,
and a valley centered at 3.8 eV. Similar structures appear in
the BSE spectrum at about the same energies. However, a
discrepancy occurs as far as the intensity is concerned: the
calculated RAS in the visible and UV overestimates the ex-
periment by a factor 3. This is a general feature of RA
spectra,40–42 probably due to the presence of multiple do-
mains, steps, surface imperfections, etc. A detailed discus-
sion of this point for Si�100� is given in Ref. 41.

The key point is now to see whether it is possible to
properly include electronic correlations in the optical spectra
by means of TDDFT. A simple test clearly shows the inabil-
ity of TDLDA to improve the calculated spectrum with re-
spect to a standard DFT-LDA calculation �Fig. 4� in the IR
region. The TDLDA spectrum is very similar to the LDA
spectrum, and important discrepancies remain with respect to
experiment.

In contrast, by using the fxc
MB we find a very good agree-

ment with the BSE and experiment. The surface contribu-
tions to reflectance for x and y polarization, perpendicular
and parallel to the chains, are compared in Fig. 5 with those
obtained by solving the BS equation. It is clear that the
agreement between BS equation and TDDFT in the present
formulation is very good: with a MB-derived long-range ker-
nel TDDFT is able to reproduce BS equation results, even
where surface state transitions give rise to bound excitons.

The high-energy structures in Fig. 5 can be interpreted as
the contribution of the E1 bulk resonant exciton occurring

close to 3.4 eV, with a low-frequency spread due to surface-
allowed indirect transitions; the valley at 4.5 eV is due to
surface perturbation on the E2 peak.

The RAS, calculated within the BS equation and TDDFT
approaches, is shown in Fig. 6. Again, the agreement is very
good for the excitonic peak in the infrared, and good in the
visible. The main discrepancy between the two curves is just
around 3.4 eV, and can be explained by the fact that the RAS
arises from small differences between the spectra calculated
for different polarizations of light. As a result, the small dif-
ferences between BS equation and TDDFT for the two po-
larizations shown in Fig. 5, after subtraction, can yield, at
some frequencies, a bigger difference in the RAS, as evident
in Fig. 6. Nevertheless, we can conclude that BSE and TD-
DFT give results in fairly good agreement also for the RAS.

A crucial aspect of the present TDDFT method is that it is
computationally more advantageous than the BS equation.
The BS exciton Hamiltonian for the present Si�111�2�1
surface is as large as 100 000�100 000. In contrast the Fou-
rier transform of Eq. �1� reduces to the inversion, at each

TABLE I. Electronic gaps at the surface high-symmetry points.
Values are in electron volt.

J̄ K̄ J�̄

DFT 0.34 0.61 1.67

GW 0.8 1.0 2.4

Expt. 0.6,a 0.75,b 0.5c

aRefence 34.
bRefence. 35 and 36.
cRefence 37.
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FIG. 4. �Color online� RAS calculated within DFT-LDA and
TDLDA, compared with experiment �Ref. 25�. A broadening of
0.05 eV has been used in the calculated spectra.
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FIG. 5. �Color online� Calculated surface contribution to reflec-
tance for light polarized along x �perpendicular to the chains� and
along y �parallel to the chains� within TDDFT �many-body kernel�
and BSE.

PULCI et al. PHYSICAL REVIEW B 82, 205319 �2010�

205319-4



frequency, of a 100�100 matrix, three orders of magnitude
smaller than the BS hamiltonian. Moreover to calculate P�1�

�see Eq. �2��, the BS Hamiltonian must not be diagonalized.
An even simpler approach to calculate optical spectra is

based on the use the nonlocal, but energy-independent ker-
nel, known as the RORO kernel: fxc=−� /q2.10 Here we
check its ability to describe the RAS of the Si�111� surface at
high and low energies, namely, in the regions of weak exci-
tonic effects and of bound excitons, respectively. We have
performed the test for �=0.2, which is appropriate for bulk
Si �in this way, we do not introduce additional parameter for
the surface�. The results are shown in Fig. 6. The agreement
with the BS equation results is fairly good in both regimes.
The main discrepancy is that the exciton binding energy is
slightly underestimated within the RORO approach. This is
probably due to the fact that surface screening of the e-h
interaction is weaker than bulk screening described by the
bulk � value. On the other hand, it is already known that the
RORO kernel does not give an accurate description of exci-
tonic effects when they are strong, as in insulators.43 In con-
clusion, we argue that the RORO kernel can be applied,
without additional parameters, to surfaces of semiconductors
with not too strong excitonic effects. In these cases, the re-
duced accuracy of the RORO method is more than compen-
sated by the dramatic reduction in the computational work:
the kernel is calculated at once in terms of the parameter �,

without calculating nor diagonalizing the exciton Hamil-
tonian. The computational complexity is the same as that of
a single-particle calculation.

VI. CONCLUSIONS

We have carried out wide range calculations of the optical
properties of the prototypical surface Si�111�2�1, from the
infrared to the UV range. We confirm that a strongly bound
surface-state exciton appears in the infrared, close to the ex-
perimental value of 0.45 eV, while only weak excitonic ef-
fects occur at higher frequencies. The inclusion of excitonic
effects is however crucial to obtain a quantitative agreement
with experiment in the high-energy region.

Moreover, we have carried out TDDFT calculations for
the optical properties of a surface using the many-body ker-
nel. The agreement with BS equation results is very good,
both for transitions across surface states, where strong exci-
tonic effects occur, and for bulklike transitions. This is a
demonstration that TDDFT is able to reproduce BSE results
also at surfaces. Together with the early demonstrations that
this kernel works well in three dimensions, and more recent
demonstrations that it works well in 0 and 1 dimension, we
have finally shown that the approach of Eqs. �1� and �2� may
yield good optical spectra, in very good agreement with
those coming from the solution of the BS equation, in all
systems, from zero to three dimensions.

Finally, we have also carried out optical spectra calcula-
tions for Si�111�2�1 using the static −� /q2 kernel proposed
in Ref. 10. In this case the agreement with BS results slightly
worsens but it is still satisfactory. If such kind of agreement
will be confirmed by calculations for other surfaces, the
RORO method could become a simple and computationally
unexpensive approach to the optical properties of surfaces
with weak excitonic effects.

ACKNOWLEDGMENTS

CPU time granted by CINECA, ENEA CRESCO, and
CASPUR is gratefully acknowledged. The research leading
to these results has received funding from the European
Community’s Seventh Framework Programme �FP7/2007-
2013� under grant Agreement No. 211956.

*Author to whom correspondence should be addressed;
olivia.pulci@roma2.infn.it
1 G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

�2002�, and references therein.
2 M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 �2000�, and

references therein.
3 G. Onida, L. Reining, R. W. Godby, R. Del Sole, and W. An-

dreoni, Phys. Rev. Lett. 75, 818 �1995�.
4 S. Albrecht, L. Reining, R. Del Sole, and G. Onida, Phys. Rev.

Lett. 80, 4510 �1998�.
5 L. X. Benedict, E. L. Shirley, and R. B. Bohn, Phys. Rev. Lett.

80, 4514 �1998�.

6 M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 80, 3320 �1998�.
7 E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 �1984�.
8 I. Vasiliev, S. Ogüt, and J. R. Chelikowsky, Phys. Rev. Lett. 86,

1813 �2001�.
9 B. Walker, A. M. Saitta, R. Gebauer, and S. Baroni, Phys. Rev.

Lett. 96, 113001 �2006�.
10 L. Reining, V. Olevano, A. Rubio, and G. Onida, Phys. Rev. Lett.

88, 066404 �2002�.
11 F. Sottile, V. Olevano, and L. Reining, Phys. Rev. Lett. 91,

056402 �2003�.
12 G. Adragna, R. Del Sole, and A. Marini, Phys. Rev. B 68,

165108 �2003�.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Energy (eV)

-0.04

-0.02

0.00

0.02

0.04

0.06

(R
y-R

x)/
R

BSE
TDDFT MB-kernel

-α/q
2

FIG. 6. �Color online� Calculated RAS for Si�111�2�1 within
TDDFT �many-body kernel�, TDDFT-RORO kernel ��=+0.2�, and
BS equation.

TEST OF LONG-RANGE EXCHANGE-CORRELATION… PHYSICAL REVIEW B 82, 205319 �2010�

205319-5

http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevB.62.4927
http://dx.doi.org/10.1103/PhysRevLett.75.818
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevLett.80.4510
http://dx.doi.org/10.1103/PhysRevLett.80.4514
http://dx.doi.org/10.1103/PhysRevLett.80.4514
http://dx.doi.org/10.1103/PhysRevLett.80.3320
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1103/PhysRevLett.86.1813
http://dx.doi.org/10.1103/PhysRevLett.86.1813
http://dx.doi.org/10.1103/PhysRevLett.96.113001
http://dx.doi.org/10.1103/PhysRevLett.96.113001
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.88.066404
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevLett.91.056402
http://dx.doi.org/10.1103/PhysRevB.68.165108
http://dx.doi.org/10.1103/PhysRevB.68.165108


13 A. Marini, R. Del Sole, and A. Rubio, Phys. Rev. Lett. 91,
256402 �2003�.

14 P. Gori, M. Rakel, C. Cobet, W. Richter, N. Esser, A. Hoffmann,
R. Del Sole, A. Cricenti, and O. Pulci, Phys. Rev. B 81, 125207
�2010�.

15 D. Varsano, A. Marini, and A. Rubio, Phys. Rev. Lett. 101,
133002 �2008�.

16 M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 83, 856 �1999�.
17 A. Selloni, P. Marsella, and R. Del Sole, Phys. Rev. B 33, 8885

�1986�.
18 V. Olevano, M. Palummo, G. Onida, and R. Del Sole, Phys. Rev.

B 60, 14224 �1999�.
19 S. Botti, F. Sottile, N. Vast, V. Olevano, L. Reining, H. C. Weis-

sker, A. Rubio, G. Onida, R. Del Sole, and R. W. Godby, Phys.
Rev. B 69, 155112 �2004�.

20 F. Bruneval, F. Sottile, V. Olevano, R. DelSole, and L. Reining,
Phys. Rev. Lett. 94, 186402 �2005�.

21 The approach proposed by Sottile �Ref. 11�, uses as zero-order
response function the KS one and includes in Eq. �2� an addi-
tional contribution: fxc

QP. This term is first order in the self-
energy, and it should account for the QP corrections to the
Kohn-Sham energy levels. In Ref. 13 it is argued that this con-
tribution is not stable, hence self-energy corrections are usually
embodied in the zeroth-order GW response function.

22 K. C. Pandey, Phys. Rev. Lett. 49, 223 �1982�.
23 G. Chiarotti, G. Del Signore, and S. Nannarone, Phys. Rev. Lett.

21, 1170 �1968�.
24 G. Chiarotti, S. Nannarone, R. Pastore, and P. Chiaradia, Phys.

Rev. B 4, 3398 �1971�.
25 P. Chiaradia, A. Cricenti, S. Selci, and G. Chiarotti, Phys. Rev.

Lett. 52, 1145 �1984�.
26 S. Selci, P. Chiaradia, F. Ciccacci, A. Cricenti, N. Sparvieri, and

G. Chiarotti, Phys. Rev. B 31, 4096 �1985�.
27 C. Goletti, G. Bussetti, F. Arciprete, P. Chiaradia, and G. Chiar-

otti, Phys. Rev. B 66, 153307 �2002�.
28 C. Goletti, G. Bussetti, P. Chiaradia, and G. Chiarotti, J. Phys.:

Condens. Matter 16, S4289 �2004�.
29 D. E. Aspnes, J. F. Harbison, A. A. Studna, and L. T. Florez, J.

Vac. Sci. Technol. A 6, 1327 �1988�; P. Weightman, D. S. Mar-
tin, R. J. Cole, and T. Farrell, Rep. Prog. Phys. 68, 1251 �2005�.

30 F. Manghi, E. Molinari, R. Del Sole, and A. Selloni, Phys. Rev.
B 39, 13005 �1989�.

31 L. Reining and R. Del Sole, Phys. Rev. Lett. 67, 3816 �1991�.
32 J. E. Northrup, M. S. Hybertsen, and S. G. Louie, Phys. Rev.

Lett. 66, 500 �1991�.
33 We have carried out a DFT-LDA calculation to optimize the

geometry, by using a 12 layers slab plus six layers of vacuum,
and 20 Ry cutoff in the kinetic energy. Test calculations per-
formed at 30 Ry have shown negligible differences. The ground-
state calculations have been carried on by using ABINIT and

FHI98MD �Refs. 44 and 45�. Both codes have yielded a buckling
of 0.53 Å for the first-layer silicon atomic chains. As a second
step, we performed a quasiparticle calculation correcting the
DFT eigenvalues within the perturbative GW scheme �Refs. 46
and 47�.

34 R. M. Feenstra, W. A. Thompson, and A. P. Fein, Phys. Rev.
Lett. 56, 608 �1986�; J. A. Stroscio, R. M. Feenstra, and A. P.
Fein, ibid. 57, 2579 �1986�.

35 R. I. G. Uhrberg, G. V. Hansson, J. M. Nicholls, and S. A. Flod-
ström, Phys. Rev. Lett. 48, 1032 �1982�.

36 P. Perfetti, J. M. Nicholls, and B. Reihl, Phys. Rev. B 36, 6160
�1987�.

37 P. Martensson, A. Cricenti, and G. V. Hansson, Phys. Rev. B 32,
6959 �1985�.

38 G. Bussetti et al. �unpublished�.
39 We have calculated the optical spectra by using the YAMBO pack-

age �Ref. 48� by solving the BS and the TDDFT equations. We
used 128 k points in the BZ, 3999 plane waves. The screening
has been calculated using 45 q points in the IBZ and 503 G
vectors. TDLDA and TDDFT calculations with the RORO ker-
nel have been performed using the code DP, http://www.dp-
code.org, 48 filled states and 40 empty states have been in-
cluded. 531 plane waves �107 in the exchange term� have been
used.

40 J. R. Power, O. Pulci, A. I. Shkrebtii, S. Galata, A. Astropekakis,
K. Hinrichs, N. Esser, R. Del Sole, and W. Richter, Phys. Rev. B
67, 115315 �2003�.

41 M. Palummo, N. Witkowski, O. Pluchery, R. Del Sole, and Y.
Borensztein, Phys. Rev. B 79, 035327 �2009�.

42 M. Marsili, N. Witkowski, O. Pulci, O. Pluchery, P. L. Silves-
trelli, R. D. Sole, and Y. Borensztein, Phys. Rev. B 77, 125337
�2008�.

43 V. Garbuio, M. Cascella, L. Reining, R. Del Sole, and O. Pulci,
Phys. Rev. Lett. 97, 137402 �2006�; R. Del Sole, O. Pulci, V.
Olevano, and A. Marini, Phys. Status Solidi B 242, 2729
�2005�.

44 First-principles computation of material properties: the ABINIT

software project, http://www.abinit.org, X. Gonze, J.-M. Beu-
ken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L.
Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M.
Mikami, Ph. Ghosez, J.-Y. Raty, and D. C. Allan, Comput.
Mater. Sci. 25, 478 �2002�.

45 M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Com-
put. Phys. Commun. 107, 187 �1997�.

46 L. Hedin, Phys. Rev. 139, A796 �1965�.
47 M. S. Hybertsen and S. G. Louie, Phys. Rev. B 35, 5585 �1987�;

R. W. Godby, M. Schlüter, and L. J. Sham, ibid. 37, 10159
�1988�.

48 A. Marini, C. Hogan, M. Grüning, and D. Varsano, Comput.
Phys. Commun. 180, 1392 �2009�.

PULCI et al. PHYSICAL REVIEW B 82, 205319 �2010�

205319-6

http://dx.doi.org/10.1103/PhysRevLett.91.256402
http://dx.doi.org/10.1103/PhysRevLett.91.256402
http://dx.doi.org/10.1103/PhysRevB.81.125207
http://dx.doi.org/10.1103/PhysRevB.81.125207
http://dx.doi.org/10.1103/PhysRevLett.101.133002
http://dx.doi.org/10.1103/PhysRevLett.101.133002
http://dx.doi.org/10.1103/PhysRevLett.83.856
http://dx.doi.org/10.1103/PhysRevB.33.8885
http://dx.doi.org/10.1103/PhysRevB.33.8885
http://dx.doi.org/10.1103/PhysRevB.60.14224
http://dx.doi.org/10.1103/PhysRevB.60.14224
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevB.69.155112
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.49.223
http://dx.doi.org/10.1103/PhysRevLett.21.1170
http://dx.doi.org/10.1103/PhysRevLett.21.1170
http://dx.doi.org/10.1103/PhysRevB.4.3398
http://dx.doi.org/10.1103/PhysRevB.4.3398
http://dx.doi.org/10.1103/PhysRevLett.52.1145
http://dx.doi.org/10.1103/PhysRevLett.52.1145
http://dx.doi.org/10.1103/PhysRevB.31.4096
http://dx.doi.org/10.1103/PhysRevB.66.153307
http://dx.doi.org/10.1088/0953-8984/16/39/004
http://dx.doi.org/10.1088/0953-8984/16/39/004
http://dx.doi.org/10.1116/1.575694
http://dx.doi.org/10.1116/1.575694
http://dx.doi.org/10.1088/0034-4885/68/6/R01
http://dx.doi.org/10.1103/PhysRevB.39.13005
http://dx.doi.org/10.1103/PhysRevB.39.13005
http://dx.doi.org/10.1103/PhysRevLett.67.3816
http://dx.doi.org/10.1103/PhysRevLett.66.500
http://dx.doi.org/10.1103/PhysRevLett.66.500
http://dx.doi.org/10.1103/PhysRevLett.56.608
http://dx.doi.org/10.1103/PhysRevLett.56.608
http://dx.doi.org/10.1103/PhysRevLett.57.2579
http://dx.doi.org/10.1103/PhysRevLett.48.1032
http://dx.doi.org/10.1103/PhysRevB.36.6160
http://dx.doi.org/10.1103/PhysRevB.36.6160
http://dx.doi.org/10.1103/PhysRevB.32.6959
http://dx.doi.org/10.1103/PhysRevB.32.6959
http://www.dp-code.org
http://www.dp-code.org
http://dx.doi.org/10.1103/PhysRevB.67.115315
http://dx.doi.org/10.1103/PhysRevB.67.115315
http://dx.doi.org/10.1103/PhysRevB.79.035327
http://dx.doi.org/10.1103/PhysRevB.77.125337
http://dx.doi.org/10.1103/PhysRevB.77.125337
http://dx.doi.org/10.1103/PhysRevLett.97.137402
http://dx.doi.org/10.1002/pssb.200541153
http://dx.doi.org/10.1002/pssb.200541153
http://www.abinit.org
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://dx.doi.org/10.1016/S0010-4655(97)00117-3
http://dx.doi.org/10.1016/S0010-4655(97)00117-3
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.35.5585
http://dx.doi.org/10.1103/PhysRevB.37.10159
http://dx.doi.org/10.1103/PhysRevB.37.10159
http://dx.doi.org/10.1016/j.cpc.2009.02.003
http://dx.doi.org/10.1016/j.cpc.2009.02.003

